

MATH 124: Matrixology (Linear Algebra) Level Galaga (1981) ☑, 7 of 10 University of Vermont, Spring 2015

Dispersed: Saturday, March 21, 2015.

Due: By start of lecture, Tuesday, April 7, 2015. **Sections covered:** 4.4, 6.1, a smidgeon of 5.1.

Some useful reminders:

Instructor: Prof. Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 12:30 to 3:00 pm Mondays

Course website: http://www.uvm.edu/~pdodds/teaching/courses/2015-01UVM-124

Textbook: "Introduction to Linear Algebra" (3rd or 4th edition) by Gilbert Strang (published

by Wellesley-Cambridge Press).

• All questions are worth 3 points unless marked otherwise.

- Please use a cover sheet and write your name on the back and the front of your assignment.
- You must show all your work clearly.
- You may use Matlab to check your answers for non-Matlab questions (usually Qs. 1-8).
- Please list the names of other students with whom you collaborated.
 - 1. (Q 5, Section 4.4) Find two orthogonal vectors in the plane $x_1 + x_2 + 2x_3 = 0$. Make these vectors into an orthonormal basis.

Do this by (a) finding a basis for the null space of the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$ and (b) using the Gram-Schmidt Process to generate an orthogonal basis.

2. First, please absorb this short video:

Help—Definition of Orthogonal matrices (6:36):

http://www.youtube.com/v/hQG6w7Myqtw?rel=0

Now show that any orthogonal matrix \mathbf{Q} preserves lengths and angles when it transforms vectors. Remember that orthogonal matrices have the special property that $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ (also: let's allow \mathbf{Q} to be an m by n matrix where $m \geq n$ — \mathbf{Q} need not be square for this question).

(a) Lengths: Show that $\mathbf{Q}\vec{x}$ has the same length (magnitude) as \vec{x} .

Hint—Showing that the squares of the lengths match is sufficient.

(b) Angles: Show that the cosine of the angle between two vectors \vec{x} and \vec{y} is the same as that for the angle between $\mathbf{Q}\vec{x}$ and $\mathbf{Q}\vec{y}$.

Hint—We can show that the cosine of the angle between the \vec{x} and \vec{y} is the same as the cosine of the angle between $\mathbf{Q}\vec{x}$ and $\mathbf{Q}\vec{y}$. By rearranging the dot product formula,

$$\vec{x}^{\mathrm{T}}\vec{y} = ||\vec{x}|| \, ||\vec{y}|| \cos \theta,$$

where θ is the angle between \vec{x} and \vec{y} , we have

$$\cos \theta = \frac{\vec{x}^{\mathrm{T}} \vec{y}}{||\vec{x}|| \, ||\vec{y}||}.$$

From part (a), we already have that the bottom of this fraction doesn't change $(||\mathbf{Q}\vec{x}|| = ||\vec{x}|| \text{ and } ||\mathbf{Q}\vec{y}|| = ||\vec{y}||)$, so we need to just show that the numerator remains the same.

3. Consider the matrix

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \\ -1 & 1 \end{array} \right],$$

and its corresponding Q (determined by Gram-Schmidt)

$$\mathbf{Q} = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 0 & 1/3 \\ -1/\sqrt{2} & 2/3 \end{bmatrix},$$

find the upper triangular matrix \mathbf{R} so that $\mathbf{A} = \mathbf{Q}\mathbf{R}$. (Look up the formula for \mathbf{R}).

4. (Q 5, Section 6.1) Find the eigenvalues and eigenvectors of \mathbf{A} and \mathbf{A}^2 :

$$\mathbf{A} = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix} \text{ and } \mathbf{A}^2 = \begin{bmatrix} 7 & -3 \\ -2 & 6 \end{bmatrix}.$$

How are the eigenvectors and eigenvalues of A and A^2 related?

- 5. Compute the eigenvalues (but not the eigenvectors) of A^{-1} for the A given above. How are the eigenvalues of A and A^{-1} related?
- 6. Find the eigenvalues (but not the eigenvectors) of ${\bf A}+3{\bf I}$ where for ${\bf A}$ as given in question 4.

Now what's the relationship between the eigenvalues of $\bf A$ and $\bf A+3I$?

- 7. Building on your findings in the previous questions:
 - (a) Show that if A^{-1} exists, then the eigenvalues of A^{-1} are inverses of the eigenvalues of A, and that they share the same eigenvectors.
 - (b) Show that λ^2 is an eigenvalue of ${\bf A}^2$ if λ is an eigenvalue of ${\bf A}$, and that they share the same eigenvectors.

(c) Show that $\lambda + k$ is an eigenvalue of $\mathbf{A} + k\mathbf{I}$ (where k is any number and \mathbf{I} is the identity matrix) if λ is an eigenvalue of \mathbf{A} , and that they share the same eigenvectors.

Note: You are deriving these results for arbitrary n by n matrices.

Hint—please see this tweet:

https://twitter.com/matrixologyvox/status/582724638561693696

8. (Q 2, 5.1)

Watch the following video for help on this question and determinants in general.

Help—Determinants from the ground up (19:23):

http://www.youtube.com/v/CuFUXcXZRq8?rel=0

Given a 3 by 3 matrix $\bf A$ has determinant equal to 5, find (a) det $(1/2 \ \bf A)$, (b) det $(-\bf A)$, (c) det $(\bf A^2)$, and (d) det $(\bf A^{-1})$.

Here are some things you are allowed to know (even if we haven't covered them in class yet): $|t\mathbf{A}| = t^n |\mathbf{A}|$ and $|\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$ and $|\mathbf{I}| = 1$.

9. Matlab question:

Use Matlab's eig command to find the eigenvalues and eigenvectors of the matrix we studied above:

$$\mathbf{A} = \left[\begin{array}{cc} -1 & 3 \\ 2 & 0 \end{array} \right].$$

Basic usage:

[V,Lambda] = eig(A)

The unit eigenvectors are the columns of V and the eigenvalues are on the main diagonal of Lambda.

Confirm that you have a match with your pencil and paper calculations.

10. Matlab question:

In class, we talked about a random texter, lost on a network of paths connecting five locations labelled 1–5.

We found the following transition matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 1 & 1 \\ 0 & 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 \end{bmatrix},$$

which connects the probability our magic rectangle user is at location i at time t, $x_{i,t}$, via

$$\vec{x}_{t+1} = \mathbf{A}\vec{x}_t$$

where $[\vec{x}_t]_i = x_{i,t}$.

- (a) Find the eigenvalues and eigenvectors of ${\bf A}$ using Matlab.
- (b) Let's start our texter at location 3 at time t=0:

$$ec{x}_0 = \left[egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}
ight].$$

Using Matlab to compute large powers, what does \vec{x}_t tend toward as $t \to \infty$? Does it matter where our texter starts?

- (c) Given A's eigenvalues, explain why or why not A is invertible.
- 11. (Bonus question, 1 point) How many players does each side have on the field in an Australian Rules Football match, and how long is a typical ground (playing area)?