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Principles of Complex Systems, CSYS/MATH 300
University of Vermont, Fall 2014

Assignment 7 • code name: Quoth the Raven 

Dispersed: Monday, October 20, 2014.
Due: By start of lecture, 1:00 pm, Thursday, October 30, 2014.
Some useful reminders:
Instructor: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 2:30 pm to 3:45 pm on Tuesday, 12:30 pm to 2:00 pm on Wednesday
Course website: http://www.uvm.edu/∼pdodds/teaching/courses/2014-08UVM-300

All parts are worth 3 points unless marked otherwise. Please show all your workingses
clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related TEX variant).

1. (3 + 3):
Consider a modified version of the Barabàsi-Albert (BA) model [1] where two
possible mechanisms are now in play. As in the original model, start with m0

nodes at time t = 0. Let’s make these initial guys connected such that each has
degree 1. The two mechanisms are:

M1: With probability p, a new node of degree 1 is added to the network. At time
t+ 1, a node connects to an existing node j with probability

P (connect to node j) =
kj∑N(t)
i=1 ki

(1)

where kj is the degree of node j and N(t) is the number of nodes in the
system at time t.

M2: With probability q = 1− p, a randomly chosen node adds a new edge,
connecting to node j with the same preferential attachment probability as
above.

Note that in the limit q = 0, we retrieve the original BA model (with the
difference that we are adding one link at a time rather than m here).
In the long time limit t → ∞, what is the expected form of the degree distribution
Pk?
Do we move out of the original model’s universality class?
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Different analytic approaches are possible including a modification of the BA
paper, or a Simon-like one (see also Krapivsky and Redner [2]).
Hint: You can attempt to solve the problem exactly and you’ll find an integrating
factor story.
Another hint, moment of mercy: Approximate the differential equation by
considering large t (this will simplify the denominators).
(3 points for set up, 3 for solving.)

2. (3 + 3)
More on the peculiar nature of distributions of power law tails:
Consider a set of N samples, randomly chosen according to the probability
distribution Pk = ck−γ where k ≥ 1 and 2 < γ < 3. (Note that k is discrete
rather than continuous.)

(a) Estimate min kmax, the approximate minimum of the largest sample in the
network, finding how it depends on N .
(Hint: we expect on the order of 1 of the N samples to have a value of
min kmax or greater.)
Hint—Some visual help on setting this problem up:

Direct link: http://www.youtube.com/v/4tqlEuXA7QQ?rel=0

(b) Determine the average value of samples with value k ≥ min kmax to find how
the expected value of kmax (i.e., ⟨kmax⟩) scales with N .
For language, this scaling is known as Heap’s law.

3. (3 + 3)
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Let’s see how well your answer for the previous question works.
For γ = 5/2, generate n = 1000 sets each of N = 10, 102, 103, 104, 105, and 106

samples, using Pk = ck−5/2 with k = 1, 2, 3, . . .

Question: how do we computationally sample from a discrete probability
distribution? Does our approach differ for large and small spaces?
Hint: A continuum approximation will help.

(a) For each value of sample size N , plot the maximum value of the n = 1000

samples as a function of sample number (which is not the sample size N).
So you should have kmax for i = 1, 2, . . . , n where i is sample number. These
plots should give a sense of the unevenness of the maximum value of k, a
feature of power-law size distributions.

(b) For each set, find the maximum value. Then find the average maximum
value for each N . Plot ⟨kmax⟩ as a function of N and calculate the scaling
using least squares.
Does your scaling match up with your theoretical estimate?
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