P	What's	Principles of Complex Systems, CSYS/MATH 300
o	University of Vermont, Fall 2014	
C	The	Ussignment $3 \bullet$ code name: Allons-y
S	Story?	Als

Dispersed: Thursday, September 11, 2014.
Due: By start of lecture, 1:00 pm, Thursday, September 18, 2014.
Some useful reminders:
Instructor: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 2:30 pm to $3: 45 \mathrm{pm}$ on Tuesday, $12: 30 \mathrm{pm}$ to $2: 00 \mathrm{pm}$ on Wednesday
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM-300
All parts are worth 3 points unless marked otherwise. Please show all your working clearly and list the names of others with whom you collaborated.

Graduate students are requested to use $A \operatorname{AT} T_{E X}$ (or related $T_{E X}$ variant).

1. (3+3 points) Simon's model I:

For Herbert Simon's model of what we've called Random Competitive Replication, we found in class that the normalized number of groups in the long time limit, n_{k}, satisfies the following difference equation:

$$
\begin{equation*}
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k} \tag{1}
\end{equation*}
$$

where $k \geq 2$. The model parameter ρ is the probability that a newly arriving node forms a group of its own (or is a novel word, starts a new city, has a unique flavor, etc.). For $k=1$, we have instead

$$
\begin{equation*}
n_{1}=\rho-(1-\rho) n_{1} \tag{2}
\end{equation*}
$$

which directly gives us n_{1} in terms of ρ.
(a) Derive the exact solution for n_{k} in terms of gamma functions and ultimately the beta function.
(b) From this exact form, determine the large k behavior for $n_{k}\left(\sim k^{-\gamma}\right)$ and identify the exponent γ in terms of ρ.

Note: Simon's own calculation is slightly awry. The end result is good however.

Hint-Setting up Simon's model:

Direct link: http://www.youtube.com/v/OTzI5J5W1K0?rel=0
The hint's output including the bits not in the video:

$$
\begin{aligned}
& \text { PoCS 2013-09-23 } \\
& \frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k} \quad \Gamma(k)=(k-1)! \\
& n_{k}=\left[\frac{(k-1)(1-\rho)}{1+(1-\rho) n}\right]\left[\frac{(n-2)(1-\rho)}{1+(1-\rho)(h-1)}\right] n_{k-2} \\
& {\left[\frac{(k-3)(1-\rho)}{1+(1-e)(k-2)}\right] n_{\hat{k}-3}} \\
& \Gamma(x+1)=x \Gamma(x) \\
& x=n+1 \quad \Gamma(n+1)=n \Gamma(n)==n! \\
& \cdots \tan ^{\text {and }} \quad 0<z<1 . \quad(1+z k)(1+z(k-1)) \cdots(1+z-1) \\
& =z^{k}\left(\frac{1}{z}+k\right)\left(\frac{1}{z}+k-1\right) \ldots\left(\frac{1}{z}+1\right)=z_{\text {differ by } 1}^{k} \frac{\left(\frac{1}{z}+k\right)\left(\frac{1}{z}+k-1\right) \ldots}{\frac{1}{z} \cdot\left(\frac{1}{z}-1\right)\left(\frac{1}{z}-2\right) \ldots} \\
& =z^{k} \frac{\Gamma\left(\frac{1}{z}+k+1\right)}{\Gamma\left(\frac{1}{z}+1\right) .}
\end{aligned}
$$

2. (3+3 points) Simon's model II:
(a) A missing piece from the lectures: Obtain γ in terms of ρ by expanding Eq. 1 in terms of $1 / k$. In the end, you will need to express n_{k} / n_{k-1} as $(1-1 / k)^{\theta}$; from here, you will be able to identify γ. Taylor expansions and Procrustean truncations will be in order.
This (dirty) method avoids finding the exact form for n_{k}.
(b) What happens to γ in the limits $\rho \rightarrow 0$ and $\rho \rightarrow 1$? Explain in a sentence or two what's going on in these cases and how the specific limiting value of γ makes sense.
3. $(6+3+3$ points $)$

In Simon's original model, the expected total number of distinct groups at time t is ρt. Recall that each group is made up of elements of a particular flavor.

In class, we derived the fraction of groups containing only 1 element, finding

$$
n_{1}^{(g)}=\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

(a) (3 +3 points $)$

Find the form of $n_{2}^{(g)}$ and $n_{3}^{(g)}$, the fraction of groups that are of size 2 and size 3.
(b) Using data for James Joyce's Ulysses (see below), first show that Simon's estimate for the innovation rate $\rho_{\text {est }} \simeq 0.115$ is reasonably accurate for the version of the text's word counts given below.
Hint: You should find a slightly higher number than Simon did.
Hint: Do not compute $\rho_{\text {est }}$ from an estimate of γ.
(c) Now compare the theoretical estimates for $n_{1}^{(g)}, n_{2}^{(g)}$, and $n_{3}^{(g)}$, with empirical values you obtain for Ulysses.

The data (links are clickable):

- Matlab file (sortedcounts = word frequency f in descending order, sortedwords = ranked words): http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM300/docs/ulysses.mat
- Colon-separated text file (first column = word, second column = word frequency f):
http://www.uvm.edu/~pdodds/teaching/courses/2014-08UVM300/docs/ulysses.txt

Data taken from http://www.doc.ic.ac.uk/ rac101/concord/texts/ulysses/. Note that some matching words with differing capitalization are recorded as separate words.
4. $(3+3$ points) Zipfarama via Optimization:

Complete the Mandelbrotian derivation of Zipf's law by minimizing the function

$$
\Psi\left(p_{1}, p_{2}, \ldots, p_{n}\right)=F\left(p_{1}, p_{2}, \ldots, p_{n}\right)+\lambda G\left(p_{1}, p_{2}, \ldots, p_{n}\right)
$$

where the 'cost over information' function is

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\frac{C}{H}=\frac{\sum_{i=1}^{n} p_{i} \ln (i+a)}{-g \sum_{i=1}^{n} p_{i} \ln p_{i}}
$$

and the constraint function is

$$
G\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i}-1 \quad(=0)
$$

to find

$$
p_{j}=(j+a)^{-\alpha}
$$

where $\alpha=H / g C$.
3 points: When finding λ, find an expression connecting λ, g, C, and H.
Hint: one way may be to substitute the form you find for $\ln p_{i}$ into H 's definition (but do not replace p_{i}).
Note: We have now allowed the cost factor to be $(j+a)$ rather than $(j+1)$.
5. $(3+3)$
(a) For $n \rightarrow \infty$, use some computation tool (e.g., Matlab, an abacus, but not a clever friend who's really into computers) to determine that $\alpha \simeq 1.73$ for $a=1$. (Recall: we expect $\alpha<1$ for $\gamma>2$)
(b) For finite n, find an approximate estimate of a in terms of n that yields $\alpha=1$.
(Hint: use an integral approximation for the relevant sum.)
What happens to a as $n \rightarrow \infty$?

