Principles of Complex Systems, CSYS/MATH 300
 University of Vermont, Fall 2013
 Assignment 8 • code name: Bad Date(s)

Dispersed: Friday, November 1, 2013.
Due: By start of lecture, 1:00 pm, Thursday, November 14, 2013.
Some useful reminders:
Instructor: Peter Dodds
Office: Farrell Hall, second floor, Trinity Campus
E-mail: peter.dodds@uvm.edu
Office hours: 10:30 am to 11:30 am, Monday, and 1:00 pm to 3:00 pm, Wednesday
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2013-08UVM-300
All parts are worth 3 points unless marked otherwise. Please show all your working clearly and list the names of others with whom you collaborated.

Graduate students are requested to use $A \operatorname{A} T_{E X}$ (or related $T_{E X}$ variant).

1. $(3+3+3)$

Solve Krapivsky-Redner's model for the pure linear attachment kernel $A_{k}=k$.
Starting point:

$$
n_{k}=\frac{1}{2}(k-1) n_{k-1}-\frac{1}{2} k n_{k}+\delta_{k 1}
$$

with $n_{0}=0$.
(a) Determine n_{1}.
(b) Find a recursion relation for n_{k} in terms of n_{k-1}.
(c) Now find

$$
n_{k}=\frac{4}{k(k+1)(k+2)}
$$

for all k and hence determine γ.
2. $(3+3)$:

From lectures:
(a) Starting from the recursion relation

$$
n_{k}=\frac{A_{k-1}}{\mu+A_{k}} n_{k-1}
$$

and $n_{1}=\mu /\left(\mu+A_{1}\right)$, show that the expression for n_{k} for the Krapivsky-Redner model with an asymptotically linear attachment kernel A_{k} is:

$$
\frac{\mu}{A_{k}} \prod_{j=1}^{k} \frac{1}{1+\frac{\mu}{A_{j}}}
$$

(b) Now show that if $A_{k} \rightarrow k$ for $k \rightarrow \infty$, we obtain $n_{k} \rightarrow k^{-\mu-1}$.
3. $(3+3+3)$

From lectures, complete the analysis for the Krapivsky-Redner model with attachment kernel:

$$
A_{1}=\alpha \text { and } A_{k}=k \text { for } k \geq 2 .
$$

Find the scaling exponent $\gamma=\mu+1$ by finding μ. From lectures, we assumed a linear growth in the sum of the attachment kernel weights $\mu t=\sum_{k=1}^{\infty} N_{k}(t) A_{k}$, with $\mu=2$ for the standard kernel $A_{k}=k$.

We arrived at this expression for μ which you can use as your starting point:

$$
1=\sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1+\frac{\mu}{A_{j}}}
$$

(a) Show that the above expression leads to

$$
\frac{\mu}{\alpha}=\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+\mu+1)}
$$

Hint: you'll want to separate out the $j=1$ case for which $A_{j}=\alpha$.
(b) Now use result that [1]

$$
\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)}=\frac{\Gamma(a+2)}{(b-a-1) \Gamma(b+1)}
$$

to find the connection

$$
\mu(\mu-1)=2 \alpha
$$

and show this leads to

$$
\mu=\frac{1+\sqrt{1+8 \alpha}}{2} .
$$

(c) Interpret how varying α affects the exponent γ, explaining why $\alpha<1$ and $\alpha>1$ lead to the particular values of γ that they do.

References

[1] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001.

