Social Contagion

Principles of Complex Systems CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Sealie &

Lambie **Productions**

These slides brought to you by:

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Social Contagion

Social Contagion Models

UNIVERSITY VERMONT

少Q (~ 1 of 94

Social Contagion

Social Contagion Models

References

References

Things that spread well:

buzzfeed.com (⊞):

LOL + cute + fail + wtf:

+ News ...

Social Contagion

Social Contagion Models Background Granovetter's model Network version Final size Spreading success Groups

References

少 Q (~ 4 of 94

Social Contagion

Social Contagion Models

References

Please try reloading this page. If the problem persists let us know.

少Q (~ 5 of 94

Social Contagion

Social Contagion

The whole lolcats thing:

Social Contagion

UNIVERSITY VERMONT

少 Q (~ 2 of 94

Social Contagion References

少 Q (~ 3 of 94

Final size

Granovetter's model Network version Spreading success Groups

Social Contagion Models Background

References

Outline

少 Q (~ 6 of 94

Some things really stick:

Social Contagion

Social Contagion Models

References

少 Q (~ 7 of 94

Social Contagion

Social Contagion Models

Social Contagion

Social Contagion

Social Contagion

Examples abound

smoking (⊞) [7]

obesity (⊞) [6]

segregation [19]

residential

fashion

striking

▶ ipods

Social Contagion

Social Contagion Models Background

References

UNIVERSITY OF VERMONT

少 Q (~ 11 of 94

Social Contagion

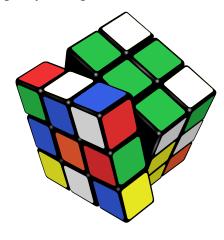
Social Contagion Models

References

Social Contagion

Social Contagion Models Background

References


► Harry Potter

- voting
- gossip
- Rubik's cube **
- religious beliefs
- ▶ leaving lectures

SIR and SIRS contagion possible

► Classes of behavior versus specific behavior: dieting

wtf + geeky + omg:

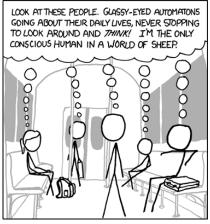
References

少 Q (~ 8 of 94

Social Contagion

Social Contagion Models Background

References



少 Q (~ 10 of 94

http://xkcd.com/610/ (⊞)

少 Q (~ 13 of 94

Framingham heart study:

Evolving network stories (Christakis and Fowler):

- ► The spread of quitting smoking (⊞) [7]
- ► The spread of spreading (⊞) [6]
- ► Also: happiness (⊞) [9], loneliness, ...
- ► The book: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (⊞)

Controversy:

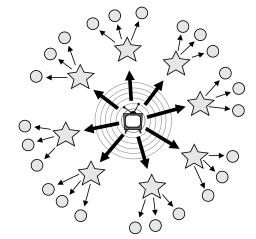
- ► Are your friends making you fat? (⊞) (Clive Thomspon, NY Times, September 10, 2009).
- ► Everything is contagious (⊞)—Doubts about the social plague stir in the human superorganism (Dave Johns, Slate, April 8, 2010).

Social Contagion

Social Contagion Models

Background Granovetter's mode Network version

Final size Spreading success Groups


References

少 Q (~ 14 of 94

The two step model of influence [16]

Social Contagion

Social Contagior Models Background

Granovetter's mor Network version

Spreading succes Groups

References

UNIVERSITY OF VERMONT

少Q (~ 17 of 94

Social Contagion

Two focuses for us

- ► Widespread media influence
- ► Word-of-mouth influence

We need to understand influence

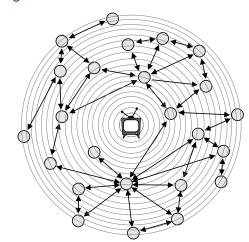
- ▶ Who influences whom? Very hard to measure...
- What kinds of influence response functions are there?
- Are some individuals super influencers? Highly popularized by Gladwell [10] as 'connectors'
- ► The infectious idea of opinion leaders (Katz and Lazarsfeld) [16]

Social Contagion

Social Contagion Models

Background Granovetter's model

Final size Spreading success Groups


References

少○15 of 94

The general model of influence

Social Contagion

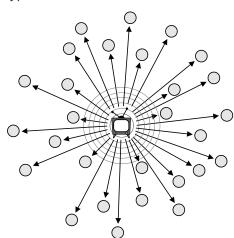
Social Contagion

Background Granovetter's model

Network version Final size

Spreading success Groups

Reference


少∢(~ 18 of 94

Social Contagion

Social Contagio

References

The hypodermic model of influence

Social Contagion

Social Contagion Models Background

Network version
Final size
Spreading success

References

୬९୯ 16 of 94

Social Contagion

Why do things spread?

- ▶ Because of properties of special individuals?
- ► Or system level properties?
- Is the match that lights the fire important?
- Yes. But only because we are narrative-making machines...
- ► We like to think things happened for reasons...
- Reasons for success are usually ascribed to intrinsic properties (e.g., Mona Lisa)
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

The Mona Lisa

Europe

- ▶ "Becoming Mona Lisa: The Making of a Global Icon"-David Sassoon
- ▶ Not the world's greatest painting from the start...
- ► Escalation through theft, vandalism, parody, ...

The completely unpredicted fall of Eastern

Timur Kuran: [17, 18] "Now Out of Never: The Element of

Surprise in the East European Revolution of 1989"

The dismal predictive powers of editors...

Social Contagion **Social Contagion**

Social Contagion Models Background

UNIVERSITY VERMONT

少 Q (~ 20 of 94

Social Contagion

Social Contagion Models

References

UNIVERSITY OF VERMONT

少 Q (~ 21 of 94

Social Contagion

Social Contagion

Background

References

References

Messing with social connections

- ► Ads based on message content (e.g., Google and email)
- ► BzzAgent (⊞)
- One of Facebook's early advertising attempts: Beacon (⊞)
- All of Facebook's advertising attempts.

Social Contagion

References

•9 q (~ 23 of 94

Social Contagion

Social Contagion Models

References

A very good book: 'Influence' [8] by Robert Cialdini (H)

Six modes of influence:

- 1. Reciprocation: The Old Give and Take... and Take; e.g., Free samples, Hare Krishnas.
- 2. Commitment and Consistency: Hobgoblins of the Mind; e.g., Hazing.
- 3. Social Proof: Truths Are Us; e.g., Jonestown (⊞), Kitty Genovese (⊞) (contested).
- 4. Liking: The Friendly Thief; e.g., Separation into groups is enough to cause problems.
- 5. Authority: Directed Deference; e.g., Milgram's obedience to authority experiment. (⊞)
- 6. Scarcity: The Rule of the Few; e.g., Prohibition.

•ാ < ← 24 of 94

Social Contagion

Social Contagion Background

References

Social contagion

- ▶ Cialdini's modes are heuristics that help up us get through life.
- ► Useful but can be leveraged...

Other acts of influence:

- ► Conspicuous Consumption (Veblen, 1912)
- ► Conspicuous Destruction (Potlatch)

UNIVERSITY OF VERMONT 少 q (~ 25 of 94

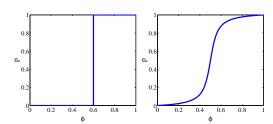
Social Contagion

Some important models:

- ► Tipping models—Schelling (1971) [19, 20, 21]
 - Simulation on checker boards
 - Idea of thresholds
 - ► Explore the Netlogo (⊞) online implementation (⊞) [26]
- ► Threshold models—Granovetter (1978) [13]
- ► Herding models—Bikhchandani, Hirschleifer, Welch $(1992)^{[2, 3]}$
 - Social learning theory, Informational cascades,...

Social Contagion

Social Contagion Models


Background

少 Q (~ 26 of 94

Threshold models—response functions

- ► Example threshold influence response functions: deterministic and stochastic
- ϕ = fraction of contacts 'on' (e.g., rioting)
- ► Two states: S and I.

Social Contagion

Social Contagior Models

Granovetter's mode

References

少 Q (~ 30 of 94

Social Contagion

Social contagion models

Thresholds

- ▶ Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- ▶ 'Others' may be everyone in a population, an individual's close friends, any reference group.
- ▶ Response can be probabilistic or deterministic.
- ► Individual thresholds can vary
- Assumption: order of others' adoption does not matter... (unrealistic).
- ▶ Assumption: level of influence per person is uniform (unrealistic).

Social Contagion

Social Contagion Models

Social Contagion

Granovetter's Threshold model—definitions

- ϕ^* = threshold of an individual.
- $f(\phi_*)$ = distribution of thresholds in a population.
- ► $F(\phi_*)$ = cumulative distribution = $\int_{\phi'_*=0}^{\phi_*} f(\phi'_*) d\phi'_*$
- ϕ_t = fraction of people 'rioting' at time step t.
- ▶ At time t + 1, fraction rioting = fraction with $\phi_* \le \phi_t$.

$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

ightharpoonup \Rightarrow Iterative maps of the unit interval [0, 1].

Social Contagion

Social Contagio

References

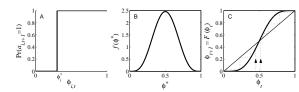
Social Contagion

Some possible origins of thresholds:

- ▶ Inherent, evolution-devised inclination to coordinate, to conform, to imitate. [1]
- ▶ Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
- ► Economics: Network effects or network externalities
 - Externalities = Effects on others not directly involved in a transaction
 - Examples: telephones, fax machine, Facebook, operating systems
 - An individual's utility increases with the adoption level among peers and the population in general

Social Contagion

UNIVERSITY OF


少 Q (~ 27 of 94

Social Contagion

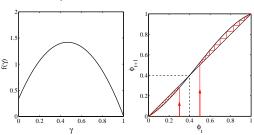
Background

Threshold models

Action based on perceived behavior of others:

- ► Two states: S and I.
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time update (strong assumption!)
- This is a Critical mass model

少 Q (~ 32 of 94



少 Q (~ 28 of 94

Threshold models

Another example of critical mass model:

Social Contagion

Social Contagion Models Granovetter's mode

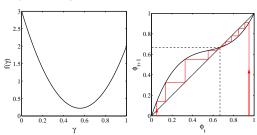
Threshold models—Nutshell

Social Contagior Models Granovetter's mode References

Implications for collective action theory:

- 2. Small individual changes ⇒ large global changes

Social Contagion



少 Q (~ 36 of 94

UNIVERSITY OF VERMONT

Threshold models

Example of single stable state model:

Social Contagion

UNIVERSITY OF VERMONT

少 Q (~ 33 of 94

Social Contagior Models

References

We'll also explore:

"Seed size strongly affects cascades on random networks" [12] Gleeson and Cahalane, Phys. Rev. E, 2007.

"A simple model of global cascades on random

 $\blacktriangleright \ \ \text{Mean field model} \to \text{network model}$

Many years after Granovetter and Soong's work: D. J. Watts. Proc. Natl. Acad. Sci., 2002 [23]

Individuals now have a limited view of the world

Formation" [24] Watts and Dodds, J. Cons. Res., 2007.

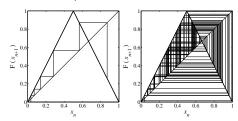
Social Contagion

References

networks"

- "Influentials, Networks, and Public Opinion
- "Threshold models of Social Influence" [25] Watts and Dodds, The Oxford Handbook of Analytical Sociology, 2009.

Social Contagion


Social Contagio

Network version

References

Threshold models

Chaotic behavior possible [15, 14]

- ▶ Period doubling arises as map amplitude *r* is increased.
- Synchronous update assumption is crucial

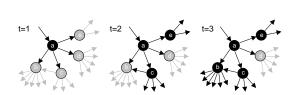
Social Contagion

UNIVERSITY VERMONT

少 Q (~ 34 of 94

Social Contagion

Threshold model on a network


- ► Interactions between individuals now represented by a network
- ► Network is sparse
- ▶ Individual *i* has *k_i* contacts
- ► Influence on each link is reciprocal and of unit weight
- ▶ Each individual *i* has a fixed threshold ϕ_i
- ► Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- ▶ Individual *i* becomes active when fraction of active contacts $\frac{a_i}{k} \geq \phi_i$
- Individuals remain active when switched (no recovery = SI model)

少 Q (~ 39 of 94

Threshold model on a network

▶ All nodes have threshold $\phi = 0.2$.

Social Contagion

Social Contagion Models Background Granovetter's model Network version Final size Spreading success Groups

Follow active links

Snowballing

- An active link is a link connected to an activated node.
- If an infected link leads to at least 1 more infected link, then activation spreads.
- We need to understand which nodes can be activated when only one of their neigbors becomes active.

Social Contagion

Social Contagion Models

Background

Granovetter's model

Network version

Final size

Spreading success

References

◆9 Q (~ 43 of 94

Social Contagion

Snowballing

First study random networks:

- ▶ Start with *N* nodes with a degree distribution *p_k*
- ► Nodes are randomly connected (carefully so)
- ▶ Aim: Figure out when activation will propagate
- ► Determine a cascade condition

The Cascade Condition:

- If one individual is initially activated, what is the probability that an activation will spread over a network?
- 2. What features of a network determine whether a cascade will occur or not?

 $\Omega_{crit} \subset \Omega_{trig}$; $\Omega_{crit} \subset \Omega_{final}$; and $\Omega_{trig}, \Omega_{final} \subset \Omega$.

UNIVERSITY VERMONT

少 Q (~ 40 of 94

Social Contagion

Final size Spreading success Groups

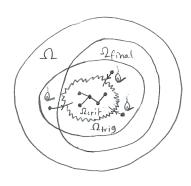
The most gullible

Vulnerables:

- We call individuals who can be activated by just one contact being active vulnerables
- ► The vulnerability condition for node *i*:

$$1/k_i \ge \phi_i$$

- ▶ Which means # contacts $k_i \leq |1/\phi_i|$
- ► For global cascades on random networks, must have a *global cluster of vulnerables* [23]
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.



Social Contagion

Social Contagio

Example random network structure:

- Ω_{crit} = Ω_{vuln} = critical mass = global vulnerable component
- $\begin{array}{ll} \bullet & \Omega_{trig} = \\ & triggering \\ & component \end{array}$
- Ω_{final} = potential extent of spread
- Ω = entire network

UNIVERSITY OF VERMONT

Social Contagion Models Background Granovetter's model Network version Final size Spreading success

UNIVERSITY OF VERMONT

少 Q (~ 41 of 94

Social Contagion

ng

©NIVERSITY Service No. 12 of 94

Back to following a link:

Cascade condition

- A randomly chosen link, traversed in a random direction, leads to a degree k node with probability \(kP_k. \)
- Follows from there being k ways to connect to a node with degree k.
- Normalization:

$$\sum_{k=0}^{\infty} k P_k = \langle k \rangle$$

▶ So

 $P(\text{linked node has degree } k) = \frac{kP_k}{\langle k \rangle}$

•9 q (~ 45 of 94

Cascade condition

Next: Vulnerability of linked node

▶ Linked node is vulnerable with probability

$$\beta_k = \int_{\phi'_*=0}^{1/k} f(\phi'_*) \mathrm{d}\phi'_*$$

- ▶ If linked node is vulnerable, it produces k − 1 new outgoing active links
- ► If linked node is not vulnerable, it produces no active links.

Social Contagion

Social Contagion Models Background Granovetter's model Network version Final size

Final size Spreading success Groups

References

少 Q (~ 46 of 94

Cascade condition

Two special cases:

▶ (1) Simple disease-like spreading succeeds: $\beta_k = \beta$

$$\beta \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \ge 1.$$

• (2) Giant component exists: $\beta = 1$

$$1 \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \ge 1.$$

Social Contagion

Social Contagion

少 Q (~ 49 of 94

Social Contagion

Cascade condition

Putting things together:

Expected number of active edges produced by an active edge:

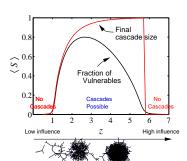
$$R = \sum_{k=1}^{\infty} \underbrace{\frac{(k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle}}_{\text{success}}} + \underbrace{0 \cdot (1-\beta_k) \cdot \frac{kP_k}{\langle k \rangle}}_{\text{failure}}$$

$$=\sum_{k=1}^{\infty}(k-1)\cdot\beta_k\cdot\frac{kP_k}{\langle k\rangle}$$

Social Contagion

Social Contagion Models Background Granovetter's model Network version Final size

Groups



少∢<a>◦ 47 of 94

Social Contagion

Cascades on random networks

 Cascades occur only if size of max vulnerable cluster
 0.

System may be 'robust-yet-fragile'.

 'Ignorance' facilitates spreading.

Social Contagion

Cascade condition

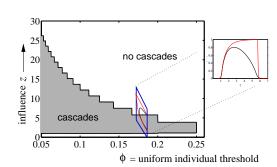
So... for random networks with fixed degree distributions, cacades take off when:

$$\sum_{k=1}^{\infty} (k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle} \ge 1.$$

- β_k = probability a degree k node is vulnerable.
- P_k = probability a node has degree k.

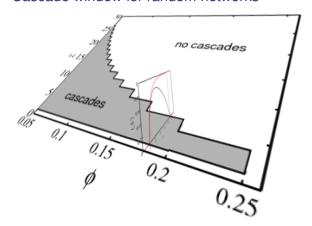
Social Contagion Models Background Granovetter's model

Network version
Final size
Spreading success
Groups


References

少 Q (~ 48 of 94

Cascade window for random networks


- 'Cascade window' widens as threshold ϕ decreases.
- Lower thresholds enable spreading.

少 q (~ 51 of 94

Cascade window for random networks

Social Contagion

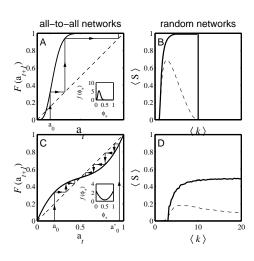
Social Contagion Models

Threshold contagion on random networks

- Next: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- Difficulty is in figuring out if and when nodes that $need \ge 2$ hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane:
 - "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [12]
- ▶ Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008. [11]

Social Contagion

Social Contagion Models Final size


References

少 Q (~ 56 of 94

All-to-all versus random networks

Social Contagion

Social Contagior Models

References

Social Contagion Network version

References

Expected size of spread

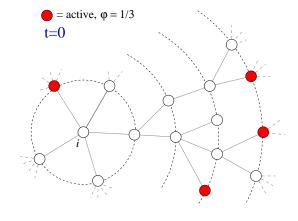
Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- ► Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = 2: enough of i's friends and friends-of-friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Social Contagion

Final size

References


Social Contagion

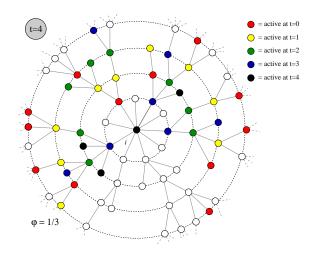
Social Contagion Cascade window—summary

For our simple model of a uniform threshold:

- 1. Low $\langle k \rangle$: No cascades in poorly connected networks. No global clusters of any kind.
- 2. High $\langle k \rangle$: Giant component exists but not enough vulnerables.
- 3. Intermediate $\langle k \rangle$: Global cluster of vulnerables exists. Cascades are possible in "Cascade window."

Expected size of spread

Social Contagio Final size

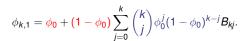

References

少 Q (~ 58 of 94

Expected size of spread

Social Contagion

Social Contagion Models



少 Q (~ 59 of 94

Social Contagion

Expected size of spread

- Notation:
 - $\phi_{k,t} = \mathbf{Pr}(\mathbf{a} \text{ degree } k \text{ node is active at time } t).$
- ▶ Notation: $B_{ki} = \mathbf{Pr}$ (a degree k node becomes active if *j* neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $\binom{k}{i} \phi_0^j (1 \phi_0)^{k-j} = \mathbf{Pr} (j \text{ of a degree } k \text{ node's})$ neighbors were seeded at time t = 0).
- Probability a degree k node was a seed at t=0 is ϕ_0 (as above).
- Probability a degree k node was not a seed at t = 0
- Combining everything, we have:

Social Contagion

Social Contagion

Models

•2 of 94

Social Contagion

Expected size of spread

Notes:

- Calculations are possible if nodes do not become inactive (strong restriction).
- ▶ Not just for threshold model—works for a wide range of contagion processes.
- ▶ We can analytically determine the entire time evolution, not just the final size.
- We can in fact determine **Pr**(node of degree k switching on at time t).
- Asynchronous updating can be handled too.

Expected size of spread

- For general t, we need to know the probability an edge coming into a degree k node at time t is active.
- ▶ Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case. For node i:

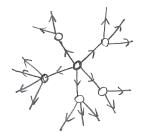
$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{i=0}^{k_i} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

• Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

▶ So we need to compute θ_t ... massive excitement...

ൗ < രം 63 of 94 Social Contagion


References

UNIVERSITY VERMONT

Expected size of spread

Pleasantness:

- ► Taking off from a single seed story is about expansion away from a node.
- ► Extent of spreading story is about contraction at a node.

UNIVERSITY VERMONT

◆9 a 0 € 60 of 94

Social Contagion

References

•9 α (~ 61 of 94

Expected size of spread

First connect θ_0 to θ_1 :

• $\theta_1 = \phi_0 +$

$$(1 - \phi_0) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{i=0}^{k-1} {k-1 \choose j} \theta_0^j (1 - \theta_0)^{k-1-j} B_{kj}$$

- $\triangleright \frac{kP_k}{(k)} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- $ightharpoonup \sum_{i=0}^{k-1}$ piece gives **Pr**(degree node *k* activates) of its neighbors k-1 incoming neighbors are active.
- ϕ_0 and $(1 \phi_0)$ terms account for state of node at
- ▶ See this all generalizes to give θ_{t+1} in terms of θ_t ...

少 Q (~ 64 of 94

Expected size of spread

Two pieces: edges first, and then nodes

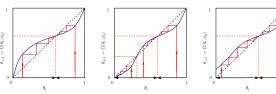
1.
$$\theta_{t+1} = \underbrace{\phi_0}_{\text{exogenous}}$$

$$+(1-\phi_0)\underbrace{\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{j}(1-\theta_t)^{k-1-j}B_{kj}}_{\text{social effects}}$$

with
$$\theta_0 = \phi_0$$
.

2.
$$\phi_{t+1} =$$

$$\underbrace{\frac{\phi_0}{\phi_0}}_{\text{exogenous}} + (1 - \phi_0) \underbrace{\sum_{k=0}^{\infty} P_k \sum_{j=0}^k \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}}_{\text{social effects}}.$$


Social Contagion

Social Contagion Models Final size

General fixed point story:

- Given $\theta_0(=\phi_0)$, θ_∞ will be the nearest stable fixed point, either above or below.
- ▶ n.b., adjacent fixed points must have opposite stability types.
- ▶ Important: Actual form of G depends on ϕ_0 .
- So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.

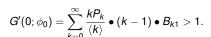
Social Contagion

Social Contagion

Models

Final size

少 Q (~ 68 of 94


Expected size of spread:

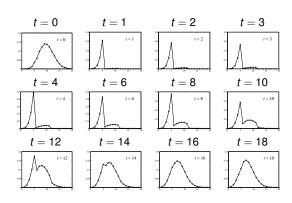
- ▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \to 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- ▶ First: if self-starters are present, some activation is assured:

$$G(0;\phi_0)=\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\bullet B_{k0}>0.$$

meaning $B_{k0} > 0$ for at least one value of $k \ge 1$.

▶ If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs if

Social Contagion


Social Contagion Models

◆9 Q C 66 of 94

Early adopters—degree distributions

 $P_{k,t}$ versus k

Social Contagion

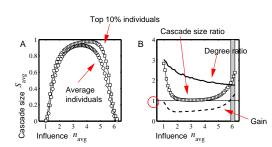
Expected size of spread:

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- ▶ If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

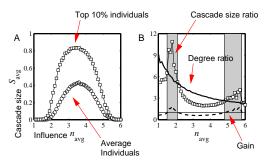
- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- ▶ If G has a stable fixed point at $\theta = 0$, and an unstable fixed point for some $0 < \theta_* < 1$, then for $\theta_0 > \theta_*$, spreading takes off.
- ▶ Tricky point: *G* depends on ϕ_0 , so as we change ϕ_0 , we also change G.


Social Contagion

Social Contagion Final size

The multiplier effect:

- Fairly uniform levels of individual influence.
- Multiplier effect is mostly below 1.



References

少 Q (~ 71 of 94

The multiplier effect:

▶ Skewed influence distribution example.

Social Contagion

Social Contagion Models

Spreading success

References

Extensions

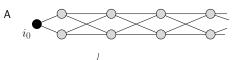
- Assumption of sparse interactions is good
- ▶ Degree distribution is (generally) key to a network's function
- ▶ Still, random networks don't represent all networks
- ► Major element missing: group structure

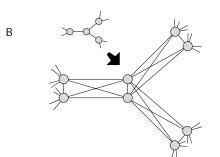
Social Contagion

Social Contagion Models

References

少 Q (→ 76 of 94


Social Contagion


Social Contagion Models

Groups

References

Special subnetworks can act as triggers

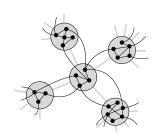
 $ightharpoonup \phi = 1/3$ for all nodes

Social Contagion

UNIVERSITY OF VERMONT

少 Q (~ 72 of 94

Social Contagion Models



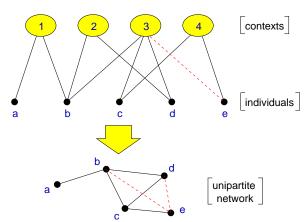
Social Contagion

Social Contagion

Group structure—Ramified random networks

p = intergroup connection probabilityq = intragroup connection probability.

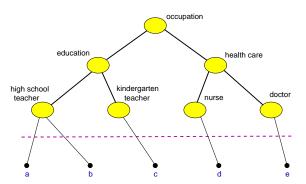
少 Q (~ 77 of 94


Social Contagion

The power of groups...

"A few harmless flakes working together can unleash an avalanche of destruction."

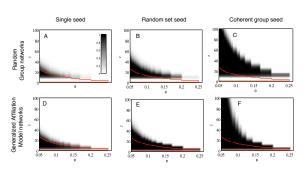
Bipartite networks


少 Q (~ 78 of 94

少 Q (~ 75 of 94

Context distance

Social Contagion

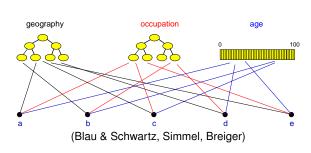

Social Contagion Models Groups References

少 Q (~ 79 of 94

Cascade windows for group-based networks

Social Contagion

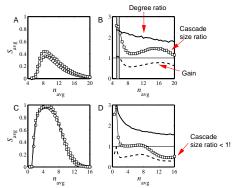
Social Contagion Models



夕 Q ← 82 of 94

Social Contagion

Generalized affiliation model


Social Contagion

Social Contagion Models Groups References

Multiplier effect for group-based networks:

Multiplier almost always below 1.

Social Contagion

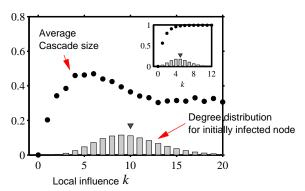
Social Contagion

Generalized affiliation model networks with triadic closure

- ▶ Connect nodes with probability $\propto \exp^{-\alpha d}$ where α = homophily parameter and
- d = distance between nodes (height of lowest)common ancestor) • τ_1 = intergroup probability of friend-of-friend
- τ_2 = intragroup probability of friend-of-friend connection

connection

Social Contagion


少 Q ← 80 of 94

Social Contagion Models Background Granovetter's model Network version Final size Spreading success References

Assortativity in group-based networks

- ▶ The most connected nodes aren't always the most 'influential.'
- ▶ Degree assortativity is the reason.

References

Social contagion

Summary

- 'Influential vulnerables' are key to spread.
- ► Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- ▶ Groups may greatly facilitate spread.
- ▶ Seems that cascade condition is a global one.
- Most extreme/unexpected cascades occur in highly connected networks
- 'Influentials' are posterior constructs.
- Many potential influentials exist.

Social Contagion

Social Contagion Models Groups

References

References II

J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems.

Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network over

New England Journal of Medicine, 357:370-379, 2007. pdf (⊞)

Social Contagion

References

•୨५୯ 88 of 94

Social contagion

Implications

- Focus on the influential vulnerables.
- ► Create entities that can be transmitted successfully through many individuals rather than broadcast from one 'influential.'
- ▶ Only simple ideas can spread by word-of-mouth. (Idea of opinion leaders spreads well...)
- ▶ Want enough individuals who will adopt and display.
- ► Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Entities can be novel or designed to combine with others, e.g. block another one.

UNIVERSITY OF 少 Q (~ 85 of 94

Social Contagion

Social Contagion Models

Groups

References

References III

N. A. Christakis and J. H. Fowler. The collective dynamics of smoking in a large social

New England Journal of Medicine, 358:2249-2258, 2008. pdf (⊞)

R. B. Cialdini. [8] Influence: Science and Practice. Allyn and Bacon, Boston, MA, 4th edition, 2000.

J. H. Fowler and N. A. Christakis. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study.

BMJ, 337:article #2338, 2008. pdf (⊞)

Social Contagion

Social Contagion Models

References

Social Contagion

References I

[1] A. Bentley, M. Earls, and M. J. O'Brien. I'll Have What She's Having: Mapping Social Behavior.

MIT Press, Cambridge, MA, 2011.

- S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ., 100:992-1026, 1992
- S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)

Social Contagion

UNIVERSITY OF VERMONT

少 Q (~ 86 of 94

Social Contagion

References

References IV

[10] M. Gladwell. The Tipping Point. Little, Brown and Company, New York, 2000.

[11] J. P. Gleeson. Cascades on correlated and modular random networks. Phys. Rev. E, 77:046117, 2008. pdf (⊞)

[12] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks.

Phys. Rev. E, 75:056103, 2007. pdf (⊞)

[13] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf (⊞) Social Contagion

References

少 Q (~ 90 of 94

References V

[14] M. Granovetter and R. Soong. Threshold models of diversity: Chinese restaurants, residential segregation, and the spiral of silence.

Sociological Methodology, 18:69–104, 1988. pdf (⊞)

[15] M. S. Granovetter and R. Soong.

Threshold models of interpersonal effects in consumer demand.

J. Econ. Behav. Organ., 7:83-99, 1986. pdf (⊞)

[16] E. Katz and P. F. Lazarsfeld.

Personal Influence.

The Free Press, New York, 1955.

[17] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989.

World Politics, 44:7–48, 1991. pdf (⊞)

Social Contagion

Social Contagion

Models

References

少 Q (~ 91 of 94

Social Contagion

Social Contagion Models

References

References VI

[18] T. Kuran.

Private Truths, Public Lies: The Social Consequences of Preference Falsification.

Harvard University Press, Cambridge, MA, Reprint edition, 1997.

[19] T. C. Schelling.

Dynamic models of segregation.

<u>J. Math. Sociol.</u>, 1:143–186, 1971. pdf (⊞)

[20] T. C. Schelling.

Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf (⊞)

[21] T. C. Schelling.

Micromotives and Macrobehavior.

Norton, New York, 1978.

少 Q (~ 92 of 94

References VII

[22] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

[23] D. J. Watts.

A simple model of global cascades on random networks.

<u>Proc. Natl. Acad. Sci.</u>, 99(9):5766–5771, 2002. pdf (⊞)

[24] D. J. Watts and P. S. Dodds.

Influentials, networks, and public opinion formation. $\underline{\text{Journal of Consumer Research}}$, 34:441–458, 2007. $\underline{\text{pdf}}$ ($\underline{\boxplus}$)

Social Contagion Models

Social Contagion

Granovetter's model
Network version
Final size
Spreading success

References

少 Q (~ 93 of 94

References VIII

[25] D. J. Watts and P. S. Dodds.

Threshold models of social influence.

In P. Hedström and P. Bearman, editors, <u>The Oxford Handbook of Analytical Sociology</u>, chapter 20, pages 475–497. Oxford University Press, Oxford, UK, 2009. pdf (⊞)

[26] U. Wilensky.

Netlogo segregation model.

http://ccl.northwestern.edu/netlogo/models/Segregation. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL., 1998.

Social Contagion Models Background Granovetter's model Network version Final size

References

少 Q (~ 94 of 94