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Scalingarama

General observation:

Systems (complex or not)

that cross many spatial and temporal scales
often exhibit some form of scaling.

Outline—All about scaling:

v

v

v

v

v

Definitions.

Examples.

How to measure your power-law relationship.
Scaling in metabolism and river networks.
The Unsolved Allometry Theoricides.
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Definitions

A power law relates two variables x and y as follows:

y = cx“

» «is the scaling exponent (or just exponent)

» (« can be any number in principle but we will find
various restrictions.)

» cis the prefactor (which can be important!)

Scaling
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Definitions

» The prefactor ¢ must balance dimensions.

» Imagine the height ¢ and volume v of a family of
shapes are related as:

¢=cv'/*
» Using [-] to indicate dimension, then

[c] = [/IVY/4) = L/L3/% = L4,

Scaling
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Looking at data

v

v

v

v

Power-law relationships are linear in log-log space:
y =cx®

= log, y = alogy x + log, €

with slope equal to «, the scaling exponent.

Much searching for straight lines on log-log or
double-logarithmic plots.

Good practice: Always, always, always use base 10.
Talk only about orders of magnitude (powers of 10).

Scaling
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A beautiful, heart-warming example:

1cm

Puma

» G = volume of
gray matter:
‘computing
elements’

» W = volume of
white matter:
‘wiring’

> W~ CG1 .23
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» from Zhang & Sejnowski, PNAS (2000) |°*!



Why is a ~ 1.23?

Quantities (following Zhang and Sejnowski):

v

v

v

v

v

v

G = Volume of gray matter (cortex/processors)

W = Volume of white matter (wiring)

T = Cortical thickness (wiring)

S = Cortical surface area

L = Average length of white matter fibers

p = density of axons on white matter/cortex interface

A rough understanding:

>

>

>

v

G ~ ST (convolutions are okay)

W ~ IpSL

G ~ L% « this is a little sketchy...
Eliminate S and L to find W ~ G*/3/T
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Why is a ~ 1.23?

A rough understanding:
» We are here: W ~ G*3/T
» Observe weak scaling T oc G0-10+0.02,
» (Implies S «« G°%° — convolutions fill space.)
» = W x G4/3/T o (G1-2340.02
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Trickiness: Scaling

10
log,, G = (0.955 £ 0.002) log,  V+ (0.061 + 0.009)
106 r=0.9998 and Truthicide
fractions
10°

Gray Matter Volume G

White Matter Volume W

Volume in mm?
o

References

10 log,, W= (1.174 £ 0.007) log, | V'~ (1.40 £ 0.03)
r=0.9988
107‘ 1 2
10 10° 10° 10* 10° 10° 107

Total Volume V= G+ W(mm?)

» With V = G+ W, some power laws must be
approximations.
o Py B
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» Measuring exponents is a hairy business...
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Good scaling:

General rules of thumb:

» High quality: scaling persists over
three or more orders of magnitude
for each variable.

» Medium quality: scaling persists over
three or more orders of magnitude
for only one variable and at least one for the other.

» Very dubious: scaling ‘persists’ over
less than an order of magnitude
for both variables.
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Unconvincing scaling:

Ave

rage walking speed as a function of city

population:

0.8

0.6

0.4

0.2

0

LN[Walking Speed (m/s)]

-0.2

-0.4

>

$=0.093 R?=0.80

Two problems:
1. use of natural log, and

2. minute varation in
dependent variable.

6 8 10 12 14 16
LNI[N (population)]

from Bettencourt et al. (2007) [*!; otherwise very
interesting—see later.
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Definitions

Power laws are the signature of
scale invariance:

Scale invariant ‘objects’
look the ‘same’

when they are appropriately
rescaled.

» Objects = geometric shapes, time series, functions,
relationships, distributions,...

» ‘Same’ might be ‘statistically the same’

» To rescale means to change the units of
measurement for the relevant variables
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Scale invariance

Our friend y = cx:
» Ifwerescale xas x =rx’and y as y = r*y/,

» then
/

rey’ = e(rx')®
=y =cr'x'r

=y =cx'®

Scaling
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Scale invariance

Compare with y = ce -
» If we rescale x as x = rx’/, then

y = Ce—Arx’

» Original form cannot be recovered.
» Scale matters for the exponential.

More on y = ce
» Say xo = 1/ is the characteristic scale.

» For x > Xxp, y is small,
while for x < Xp, y is large.

Scaling
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Definitions:
Isometry:

» Dimensions scale linearly
with each other.

Allometry:

Dimensions scale nonlinearly.

» Refers to differential growth rates of the parts of a
living organism’s body part or process.

» First proposed by Huxley and Teissier, Nature, 1936
“Terminology of relative growth” 2% 4]
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Definitions

Isometry versus Allometry:
» Iso-metry = ‘same measure’
» Allo-metry = ‘other measure’

Confusingly, we use allometric scaling to refer to
both:

1. Nonlinear scaling of a dependent variable on an
independent one (e.g., ¥ x x'/3)

2. The relative scaling of correlated measures
(e.g., white and gray matter).
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A wonderful treatise on scaling:

"MbMahon and
Bonner, 1983 !

ON SIZE AND LIFE

THOMAS A. McMAHON AND JOHN TYLER BONNER
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The many scales of life:

The biggest living things (left). All the organ-
isms are drawn to the same scale. 7, The
largest flying bird (albatross); 2, the largest
known animal (the blue whale), 3, the larg-
est extinct land mammal (Baluchitherium)
with a human figure shown for scale; 4,
the tallest living land animal (giraffe); 5, Ty-
rannosaurus; 6, Diplodocus; 7, one of the
largest flying reptiles (Pteranodon); 8, the
largest extinct snake; 9, the length of
the largest tapeworm found in man; 70,

- the largest living reptile (West African croc-

~ odile); 77, the largest extinct lizard; 72, the
largest extinct bird (Aepyomnis); 13, the
largest jellyfish (Cyanea); 74, the largest liv-
ing lizard (Komodo dragon); 15, sheep; 76,
the largest bivalve mollusc (Tridacna); 17;
the largest fish (whale shark); 78, horse;
19, the largest crustacean (Japanese spider
crab); 20, the largest sea scorpion (Euryp-
terid); 27, large tarpon; 22, the largest lob-
ster; 23, the largest mollusc (deep-water
squid, Architeuthis); 24, ostrich; 25, the
lower 105 feet of the largest organism
(giant sequoia), with a 100-foot larch su-
perposed.

p. 2, McMahon and
Bonner [°1!




The many scales of life:

Medium-sized creatures (above). 1, Dog; 2,
common herring; 3, the largest egg
(Aepyornis); 4, song thrush with egg; 5,
the smallest bird (hummingbird) with egg;
6, queen bee; 7, common cockroach; 8, the
largest stick insect; 9, the largest polyp
(Branchiocerianthus); 10, the smallest mam-

~ mal (flying shrew); 71, the smallest verte-
brate (a tropical frog); 72, the largest frog
(goliath frog); 13, common grass frog; 74,
house mouse; 75, the largest land snail
(Achatina) with egg; 16, common snail; 17,
the largest beetle (goliath beetle); 78,
human hand; 79, the largest starfish (Luidia);
20, the largest free-moving protozoan (an
extinct nummulite).

p. 3, McMahon and
Bonner ©1!




The many scales of life:

W7,

Small, “naked-eye" creatures (lower lef).
7, One of the smallest fishes (Trimmatom
nanus); 2, common brown hydra, ex-
panded; 3, housefly; 4, medium-sized ant;
5, the smallest vertebrate (a tropical frog,
the same as the one numbered 17 in the
figure above); 6, flea (Xenopsylla cheopis);
7, the smallest land snail; 8, common water
flea (Daphnia).

The smallest “naked-eye'" creatures and
some large microscopic animals and cells
(below right). 1, Vorticella, a clliate; 2, the
largest ciliate protozoan (Bursaria); 3, the
smallest many-celled animal (a rotifer); 4,
smallest flying insect (Elaphis); 5, another
ciliate (Paramecium); 6, cheese mite; 7,
human sperm; &, human ovum; 9, dysen-
tery amoeba; 10, human liver cell; 17, the
foreleg of the flea (numbered 6 in the fig-
ure to the Jeft).

3, McMahon and
Bonner [°1!
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Size range (in grams) and cell differentiation:
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Non-uniform growth:  Sealng
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Non-uniform growth—arm length versus
height:

Good example of a break in scaling:

T I

T TT1T

©w
=)
T

40|

Arm length (cm)

10 | [ | I [
10 20 30 40 50 60 80 100 200 300 400 500 700 900

Body height (cm)

A crossover in scaling occurs around a height of 1 metre.

p. 32, McMahon and Bonner 1°'!
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Scaling

Weightlifting: Myoriecora o M2/2
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References
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Log body weight

Idea: Power ~ cross-sectional area of isometric lifters.
31 Uvax RSITY |2|
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Titanothere horns: Lyom ~ L4,

400 -
200 |-

100

60 -

40

Horn length (mm)

20

400 600 800 1000
Basilar length of skull (mm)

p. 36, McMahon and Bonner 2']; a bit dubious.
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The allometry of nails:

Observed: Diameter oc Length?/3 or d o ¢2/3.

— T T T T

Since /d? x Volume v:
» Diameter oc Mass?/7 or d « v2/7.
» Length o« Mass®/7 or ¢ o< v3/7.

» Nails lengthen faster than they broaden (c.f. trees).

p. 58-59, McMahon and Bonner °'!
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The allometry of nails:

A buckling instability?:

>

Physics/Engineering result (H): Columns buckle

under a load which depends on a*/¢2.

To drive nails in, posit resistive force « nail
circumference = nd.

Match forces independent of nail size: d*//?  d.
Leads to d ~ (?/5.

Argument made by Galileo ™! in 1638 in “Discourses

Also see McMahon, “Size and Shape in Biology,”
Science, 1973. %9
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http://www.liberliber.it/biblioteca/g/galilei/discorsi_e_dimostrazioni_matematiche_intorno_a_due_nuove_etc/pdf/discor_p.pdf
http://en.wikipedia.org/wiki/Two_New_Sciences
http://en.wikipedia.org/wiki/Buckling

Rowing: Speed o (number of rowers)'/°

Shell dimensions and performances.

Time for 2000 m
Boat mass (min)
Modifying Beam, b per oarsman
(m) (m) (kg)

description 1 s v

592 5.82

642 648
Double scull
Pair-oared shell 5 X 692 695
Single scull 7. 0.293 . .. 7.25 7.28
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From further back: S

» Zipf action (we've been here already)

» Survey by Naroll and von Bertalanffy
“The principle of allometry in biology and the social
sciences”
General Systems, Vol 1, 1956.
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Scaling in Cities:

» “Growth, innovation, scaling, and the pace of life in
cities”
Bettencourt et al., PNAS, 2007. [*

» Quantified levels of

Infrastructure
Wealth

Crime levels
Disease

Energy consumption

as a function of city size N (population).

vV VY VY VY Y
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Scaling

a = a os Scaling-at-large
g = p=1.12 R?=097 06 Allometry
3 2 Examples
2 504 Metabolism and Truthicide
& 24 2
g & o2 Death by fractions
§ o3 g Measuring allometric
§‘ .—;u 0 exponents.
3 2 E River networks
0.2
% 2 Earlier theories
2 0.4 Geometric argument
6 8 10 12
10 1" 12 13 14 15 16 17 : “ e Blood networks
¥ LNIN (population)]
LN[Population] River networks
b ™ b g 65 —% Conclusion
- - 2.
g 45 115 R2=0.91 3 6 p=-0.247 R?=0.89
g b g References
2 12 < 55
2 2
< M [
3 H
g 10 2 45
2 §
s 9 T 4
g @ $35
3 =
z 7 . R
6 | 2 4 6 8 10 12 14 16

9 10 " 12 13 14 15 16 LNIN (@)] : |

LN[Population]
Po J Fig. 2. The pace of urban life increases with city size in contrast to the pace

Fig.1. Examples of scaling relationships. (a) Total wages per MSAin 2004 for  of biological life, which decreases with organism size. (a) Scaling of walking
the U.S. (blue points) vs. metropolitan population. (b) Supercreative employ-  speed vs. population for cities around the world. (b) Heart rate vs. the size
ment per MSA in 2003, for the U.S. (blue points) vs. metropolitan population.  (mass) of organisms.

Best-fit scaling relations are shown as solid lines.
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Scaling in Cities:  Sealng

Scaling-at-large
Allometry
Y B 95% CI Adj-R? Observations Country-year Examples
Met:

Table 1. Scaling exponents for urban indicators vs. city size

sm and Truthicide

New patents 1.27 [1.25,1.29] 0.72 331 U.S. 2001 I
Inventors 1.25  [1.22,1.27] 0.76 331 U.S. 2001 Mms“,;_u R
Private R&D employment 134 [1.29,1.39] 0.92 266 U.S. 2002 exponents
"Supercreative” employment 115 [1.11,1.18] 0.89 287 U.S. 2003 River networks
R&D establishments 1.19 [1.14,1.22] 0.77 287 U.S. 1997 Earlier theories
R&D employment 1.26  [1.18,1.43] 0.93 295 China 2002 Geometric argument
Total wages 1.12 [1.09,1.13] 0.96 361 U.S. 2002 Blood networks
Total bank deposits 1.08  [1.03,1.11] 0.91 267 U.S. 1996 Hiverneiworks
GDP 1.15  [1.06,1.23] 0.96 295 China 2002 Caneibch
GDP 1.26 [1.09,1.46] 0.64 196 EU 1999-2003 References
GDP 1.13 [1.03,1.23] 0.94 37 Germany 2003

Total electrical consumption 1.07  [1.03,1.11] 0.88 392 Germany 2002

New AIDS cases 123 [1.18,1.29] 0.76 93 U.S. 2002-2003

Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00  [0.99,1.01] 0.99 316 U.S. 1990

Total employment 1.01 [0.99,1.02] 0.98 331 U.S. 2001

Household electrical consumption 1.00  [0.94,1.06] 0.88 377 Germany 2002

Household electrical consumption 1.05 [0.89,1.22] 0.91 295 China 2002

Household water consumption 1.01 [0.89,1.11] 0.96 295 China 2002

Gasoline stations 0.77 [0.74,0.81] 0.93 318 U.S. 2001

Gasoline sales 0.79 [0.73,0.80] 0.94 318 U.S. 2001

Length of electrical cables 0.87 [0.82,0.92] 0.75 380 Germany 2002

Road surface 0.83  [0.74,0.92] 0.87 29 Germany 2002

Data sources are shown in S/ Text. Cl, confidence interval; Adj-R?, adjusted RZ; GDP, gross domestic product.
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Scaling in Cities:

Intriguing findings:

» Global supply costs scale sublinearly with N (8 < 1).
» Returns to scale for infrastructure.

» Total individual costs scale linearly with N (5 = 1)
» Individuals consume similar amounts independent of

city size.

» Social quantities scale superlinearly with N (5 > 1)

» Creativity (# patents), wealth, disease, crime, ...

Density doesn’t seem to matter...

» Surprising given that across the world, we observe
two orders of magnitude variation in area covered by
agglomerations (H) of fixed populations.
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Moore’s Law: (H)

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Scaling

Scaling laws for technology production:

» “Statistical Basis for Predicting Technological e
Progress °°!” Nagy et al., PLoS ONE, 2013. ety

> y; = stuff unit cost; x; = total amount of stuff made.

» Wright's Law, cost decreases exponentially with total stuff

made: [°°!

—-w
Y X X .

» Moore’s Law (H), framed as cost decrease connected with ...

doubling of transistor density every two years: [°°!

mt

Yroxer

» Sahal’s observation that Moore’s law gives rise to Wright’s
law if stuff production grows exponentially: ]

Xt oX egt.

. . . '('J‘f\llylzk.s‘l'r)j |2[
» Sahal + Moore gives Wright with w = m/g. RS VTRMONE O
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Scaling

H Allometry
1930 1940 1950 1960

Primary Magnesium - Primary Magnesium
g. 2
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io % .-} G Scaling-at-large
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Figure 3. Three examples showing the logarithm of price as a function of time in the left column and the logarithm of production as
a function of time in the right column, based on industry-wide data. We have chosen these examples to be representative: The top row I
contains an example with one of the worst fits, the second row an example with an intermediate goodness of fit, and the third row one of the best A
examples. The fourth row of the figure shows histograms of K2 values for fitting g and  for the 62 datasets.

doi10.1371/journal.pone.0052669.g003
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Figure 4. An ill ion that the ination of iall g production and ially decreasing cost are
equivalent to Wright's law. The value of the Wright parameter w is plotted against the prediction m/g based on the Sahal formula, where m is the
exponent of cost reduction and g the exponent of the increase in cumulative production.

doi:10.1371/journal.pone.0052669.9004




Scaling of Specialization:

“Scaling of Differentiation in Networks: Nervous Systems,
Organisms, Ant Colonies, Ecosystems, Businesses,
Universities, Cities, Electronic Circuits, and Legos”

M. A. Changizi, M. A. McDannald and D. Widders ®!

J. Theor. Biol., 2002.

300

y=85441x-102.12 o o
R2=0.7316
°
% 2 g 200
S =
3 o
£ 8
o
g :
51 2100
13 =
-
y=0.7092x +0.2706
R2=09029
0 0
0 1 2 3 4 0 1 2 3 4
Log # Lego pieces Log # Lego pieces

FiG. 3. Log-log (base 10) (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts
in Lego structures (n = 391). To help to distinguish the data points, logarithmic values were perturbed by adding a random
number in the interval [-0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval

=1, 1.

» Nice 2012 wired.com write-up (H)

Scaling

Scaling-at-large
Allometry

Examples

ism and Truthicide

References

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

D Q> 43 0f 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.wired.com/wiredscience/2012/01/the-mathematics-of-lego/

Scaling

C~ N4 d>1:
» C = network differentiation = # node types.
» N = network size = # nodes.
» d = combinatorial degree.
» Low d: strongly specialized parts.

» High d: strongly combinatorial in nature, parts are
reused.

» Claim: Natural selection produces high d systems.
» Claim: Engineering/brains produces low d systems.
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TABLE 1
Summary of results*
Network Node No.data  Rangeof  LoglogR® Semi-logR> ppover/py ~ Relationship  Comb. Exponent v Figure
points log N between € degree for type-net in text
and N scaling

Selected networks

lectron its Component 373 212 0.747 0.602 0.05/4e—5  Powerlaw 229 092 2
Legos™ Piece 391 265 0903 0.732 0.09/le~7  Powerlaw 141 3
Businesses

military vessels Employee 13 188 0971 0832 Power law 160 - 4

mmm Employee ~ § 159 0.964 0.789 Increasing 113 — 4

es Employee 9 155 0.786 0.749 Increasing  1.37 - 4

insurance co. Employee 52 230 0.748 0.685 Increasing  3.04 — 4
Universities

across schools Faculty 112 272 0.695 0.549 Power law 181 5

history of Duke Faculty 46 094 0921 0.892 Increasing  2.07 - 5
Ant colonies

caste = type Ant 46 6.00 0481 0.454 011/0.04  Powerlaw 816 — 6

size range =type Ant 2 524 0.658 0.548 0.17/0.04  Powerlaw 800 - 6
Organisms Cell 134 12.40 0249 0.165 008/0.02  Powerlaw  17.73 7
Neocortex Neuron 10 085 0520 0.584 016/0.16  Increasing 4.6 — 9
Competitive networks
Biotas Organism ~ — - — - - Powerlaw  x3 031010  —
Cities Business 82 244 0985 0.832 008/8e-8  Powerlaw  1.56 10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.¢. 10g(Npax/Nyu). (5) the log-log.
correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-it relationship
between differentiation C and organization size N (if one of the two models can be refuted with p<0.05; otherwise we just write “increasing” to denote that neither model can be rejected), (9)
the combinatorial degree (i.¢. the inverse of the best-fit slope of a log-log plot of C versus N). (10) the scaling exponent for how quickly the edge-degree & scales with type-network size C
(in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the lterature.
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Ecology—Species-area law: (/) e

Scaling-at-large
Allometry

Metabolism and Truthicide
Death by fractions

Measuring allometric
exponents

River networks

Allegedly (data is messy): [°% 8]

Geometric argument
> Blood networks

River networks

Conclusion
Nspecies X AP

References
» Onislands: 5~ 1/4.
» On continuous land: g ~ 1/8.
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Law and Order, Special Science Edition: Truthicide
Department

“In the scientific integrity system known as peer review,
the people are represented by two highly overlapping yet
equally important groups: the independent scientists who
review papers and the scientists who punish those who
publish garbage. This is one of their stories.”

Scaling

Scaling-at-large

References

m 1 Hmluuhﬁf

IH 1k|) MW“ '\ (

) E (o]
l INIVERSITY |§
ﬁ ¥ VERMONT 10!

Q> 48 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Animal power

Fundamental biological and ecological constraint:

P = basal metabolic rate

M = organismal body mass
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Scaling

F— oM

Scaling-at-large

Prefactor ¢ depends on body plan and body temperature:

Birds 39-41°C

Eutherian Mammals 36-38°C
Marsupials 34-36°C
Monotremes 30-31°C
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What one might expect:

a = 2/3 because . ..

» Dimensional analysis suggests
an energy balance surface law:

Pox S o V38 o M2/3

» Assumes isometric scaling (not quite the spherical
cow).

» Lognormal fluctuations:
Gaussian fluctuations in log P around log cM®.

» Stefan-Boltzmann law () for radiated energy:

dE
= T4
i 0eST " x S
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The prevailing belief of the Church of
Quarterology:

P o M3/4

Huh?
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The prevailing belief of the Church of
Quarterology:

Most obvious concern:

3/4-2/3=1/12

» An exponent higher than 2/3 points suggests a
fundamental inefficiency in biology.

» Organisms must somehow be running ‘hotter’ than
they need to balance heat loss.
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Related putative scalings:

Wait! There’s more!:

>

>

v

v

v

number of capillaries oc M3/4

time to reproductive maturity oc M /4
heart rate oc M—1/4

cross-sectional area of aorta oc M3/4
population density oc M —3/4
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The great ‘law’ of heartbeats:

Assuming:
» Average lifespan oc M”?
» Average heart rate o« M~
» Irrelevant but perhaps g = 1/4.

Then:
» Average number of heart beats in a lifespan
~ (Average lifespan) x (Average heart rate)
x MB—8
x MO
» Number of heartbeats per life time is independent of
organism size!
» =~ 1.5 billion....
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A theory is born:

1840’s: Sarrus and Rameaux “°! first suggested o = 2/3.
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Scaling

A theory grows:
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1883: Rubner "' found o ~ 2/3. |
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Theory meets a different ‘truth’:

1930's: Brody, Benedict study mammals. "

Found o ~ 0.73 (standard).
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Scaling

Our hero faces a shadowy cabal:

' e e ' : Scaling-at-large
LT LTt e or
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» 1932: Kleiber analyzed 13 mammals. **

» Found a = 0.76 and suggested o = 3/4.

» Scaling law of Metabolism became known as T
Kleiber's Law (i) (2011 Wikipedia entry is i
embarrassing). }'”' "‘552 i ‘43"“.5

» 1961 book: “The Fire of Life. An Introduction to e
Animal Energetics”. | -~
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Scaling

When a cult becomes a religion:

1950/1960: Hemmingsen Deain by ratons
Extension to unicellular organisms.
a = 3/4 assumed true.
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Quarterology spreads throughout the land ...

The Cabal assassinates 2/3-scaling:

v

v

v

v

v

1964: Troon, Scotland.
3rd Symposium on Energy Metabolism.

a = 3/4 made official ... ...29to zip.

=

But the Cabal slipped up by publishing the
conference proceedings . ..

“Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964, Ed.
Sir Kenneth Blaxter °!
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An unsolved truthicide:

So many questions ...

>

Did the truth kill a theory? Or did a theory kill the
truth?

Or was the truth killed by just a lone, lowly
hynpothesis?

Does this go all the way to the top?

To the National Academies of Science?

Is 2/3-scaling really dead?
Could 2/3-scaling have faked its own death?
What kind of people would vote on scientific facts?
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Modern Quarterology, Post Truthicide

» 3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and
the Unity of Nature—by John Whitfield

» But: much controversy ...

» See ‘Re-examination of the “3/4-law” of metabolism’
by the Heretical Unbelievers Dodds, Rothman, and
Weitz"®!| and ensuing madness...
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Some data on metabolic rates sesling

Scaling-at-large
Allometry

) » Heusner’s 7
data
(1991)[22]
References
» 391 Mammals
» blue line: 2/3
» red line: 3/4.
¢ T [T T 8
-1.5 ° [10-Dec-2001 peter dodds] > (B = P) Om%mm(;miol 186
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Some data on metabolic rates

B = 0.041 M®-664

1 » Bennett and
Harvey’s data
= (1987)y (3]
= 0 > 398 birds
-0.9 » blue line: 2/3
i » red line: 3/4.
» (B=P)
13 1 2 3 4 5

IogloM

» Passerine vs. non-passerine issue...
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Linear regression

Important:

» Ordinary Least Squares (OLS) Linear regression is
only appropriate for analyzing a dataset {(x;, yi;)}
when we know the x; are measured without error.

» Here we assume that measurements of mass M
have less error than measurements of metabolic rate
B.

» Linear regression assumes Gaussian errors.
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Measuring exponents

More on regression:
If (2) we don’t know what the errors of either variable are,

or (b) no variable can be considered independent,

then we need to use
Standardized Major Axis Linear Regression. 1% 7

(aka Reduced Major Axis = RMA.)

Scaling

Scaling-at-large

References

) B O]
UNIVERSITY |§|
¥-¥ vervont 18]

A 69of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Scaling

Measuring exponents

Scaling-at-large

For Standardized Major Axis Linear Regression:

standard deviation of y data

slopeg,,, = —
PCsun standard deviation of x data

References

» Very simple!

» Scale invariant.
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Measuring exponents

Relationship to ordinary least squares regression is
simple:

1
slopegy, = " xslopegy yonx
= X SIopeOLS xony

where r = standard correlation coefficient:
_ >t (Xi = X)(yi — ¥)
V(= X2 /S (i - 7)?
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Heusner’s data, 1991 (391 Mammals)

A

rangeof M | N &
<0.1kg | 167 | 0.678 +0.038
<1kg 276 | 0.662 + 0.032
<10kg | 357 | 0.668 £0.019
<25kg | 366 | 0.669 +£0.018
<35kg | 371 | 0.675+0.018
<350kg | 389 | 0.706 +£0.016
<3670 kg | 391 | 0.710 + 0.021
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Bennett and Harvey, 1987 (398 birds)

Mimax N &
<0.032 | 162 | 0.636 £ 0.103
<0.1 | 236 | 0.602 £ 0.060
<0.32 | 290 | 0.607 £ 0.039
<A1 334 | 0.652 +0.030
<3.2 | 371 | 0.655+0.023
<10 | 391 | 0.664 +0.020
<32 | 396 | 0.665+0.019
<100 | 398 | 0.664 +0.019
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Hypothesis testing

Test to see if o is consistent with our data {(M;, B;)}:
Hy:ao=d' and Hy : a # .

» Assume each B; (now a random variable) is normally
distributed about o’ logyy M; + logy, c.

» Follows that the measured « for one realization
obeys a t distribution with N — 2 degrees of freedom.

» Calculate a p-value: probability that the measured «
is as least as different to our hypothesized o’ as we
observe.

» See, for example, DeGroot and Scherish, “Probability
and Statistics.”!'%!
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Revisiting the past—mammals

Full mass range:
N

>

P2/3 P3/a

Kleiber 13 0.738 <10°® 0.11
Brody 35 0718 <104 <102
Heusner 391 0.710 <10% <10°°

Bennett 398 0.664 069 <10°1°
and Harvey
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Revisiting the past—mammals

M <10 kg:
N a P23 P3/a

Kleiber 5 0.667 0.99 0.088
Brody 26 0709 <103 <1073
Heusner 357 0.668  0.91 <101

M > 10 kg:
N a P2/3 P3/4

Kleiber 8 0.754 <10~ 0.66
Brody 9 0760 <1073 0.56

Heusner 34 0.877 <1072 <1077
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Fluctuations—Things look normal...

[07-Nov-1999 peter dodds]

3.5 20 bins °

P( log, jB/M *%)

0
IoglOB/M 213

» P(B|M) = 1/M?/3f(B/M?/3)
» Use a Kolmogorov-Smirnov test.

Scaling

Scaling-at-large
Allometry

References

=

T A 11 A T
0 70 80 90 10
(AT,
0 50 IC

T
0
I
0

-3

|5

|

— O

1l
|

| e | -2

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

D Q> 77 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Analysis of residuals

1. Presume an exponent of your choice: 2/3 or 3/4.

2. Fit the prefactor (logy, ¢) and then examine the
residuals:

ri = 10g49 B; — (o logy9 M; — logy ©).

3. Hp: residuals are uncorrelated
H;: residuals are correlated.

4. Measure the correlations in the residuals and
compute a p-value.
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Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation
Cofficient (H)

Basic idea:
» Given {(x;, yi)}, rank the {x;} and {y;} separately

from smallest to largest. Call these ranks R; and S;.

» Now calculate correlation coefficient for ranks, rs:
| 2

SR~ R)(S - §)
LR RESL(S - B

» Perfect correlation: x;’s and y;’s both increase
monotonically.
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Analysis of residuals

We assume all rank orderings are equally likely:

>

rs is distributed according to a Student’s

Excellent feature: Non-parametric—real distribution
of x’s and y’s doesn’t matter.

Bonus: works for non-linear monotonic relationships
as well.

See Numerical Recipes in C/Fortran (/) which

contains many good things. [°’!
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Analysis of residuals—mammals

.6

.8

0.6 2/30.7 3/4 0.8 0.6

a

2/30.7 3/4 0.8

(a) M < 3.2kg,
(b) M <10 kg,
(c) M < 32kg,
(d) all

mammals.
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Analysis of residuals—birds

C 1

B ' (@ (b)
e !

_4 :

0.6 2/30.7 3/4 0.8 0.6

0 , 0

P @

_2 (R N N JI___ _2 -

-3 ! -3

-4 ! -4

0.6 2/30.7 3/4 0.8 0.6 2/30.7 3/4 0.8

a

a
b
c
d

M < 0.1 kg,
M < 1 kg,
M < 10 kg,
all birds.

~_~ o~~~
—_ — — —
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Scaling

Scaling-at-large

Other approaches to measuring exponents:
» Clauset, Shalizi, Newman: “Power-law distributions

in empirical data” !
SIAM Review, 2009.

References
> See Clauset's page on measuring power law
exponents () (code, other goodies).
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Recap:

» So: The exponent a = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime

» Possible connection?: Economos (1983)—limb
length break in scaling around 20 kg

» But see later: non-isometric growth leads to lower
metabolic scaling. Oops.
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The widening gyre:

Now we're really confused (empirically):

» White and Seymour, 2005: unhappy with large
herbivore measurements °'l. Pro 2/3: Find
o~ 0.686 + 0.014.

» Glazier, BioScience (2006) ['®l: “The 3/4-Power Law
Is Not Universal: Evolution of Isometric, Ontogenetic
Metabolic Scaling in Pelagic Animals.”

» Glazier, Biol. Rev. (2005)!""!: “Beyond the 3/4-power
law’: variation in the intra- and interspecific scaling of
metabolic rate in animals.”

» Savage et al., PLoS Biology (2008) “* “Sizing up
allometric scaling theory” Pro 3/4: problems claimed
to be finite-size scaling.
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Scaling

Basic basin quantities: a, /, L, L, :

Scaling-at-large

\
» a=drainage
basin area
» ( = length of
. References
longest (main)
stream
| 2 L — LH =
longitudinal length i oot
. 0 70 §0 90 100
of basin T |
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River networks

v

v

v

v

v

1957: J. T. Hack ['°]
“Studies of Longitudinal Stream Profiles in Virginia
and Maryland”

(~ah

h~ 0.6
Anomalous scaling: we would expect h=1/2...
Subsequent studies: 0.5 < h < 0.6

Another quest to find universality/god...
A catch: studies done on small scales.
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Large-scale networks:

(1992) Montgomery and Dietrich [*2:

Basin length (m)

10‘101 32 16 108 105 108 107 108 10° 100 10 102 103

Drainage area (m?)

Composite data set: includes everything from

unchanneled valleys up to world’s largest rivers.

Estimated fit:
L~ 1783049

Mixture of basin and main stream lengths.
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World'’s largest rivers only:

main stream length { (mi)

10*
& °
e /cc))/o/oo
oo
3 o P [©e}
10 0.8
.8
_<0 o0
o
2
10
10" 10° 10° 10

area a (sq mi)

» Data from Leopold (1994)[?7 12

» Estimate of Hack exponent: / = 0.50 + 0.06
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Earlier theories

Building on the surface area idea...

» Blum (1977) %! speculates on four-dimensional
biology:
P o M(@=1)/d
» d=3givesa=2/3
» d=4givesa =3/4
So we need another dimension...
Obviously, a bit silly. .. [“]

v

v
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Earlier theories

Building on the surface area idea:

» McMahon (70’s, 80’s): Elastic Similarity [ ']
» Idea is that organismal shapes scale allometrically
with 1/4 powers (like trees...)

» Appears to be true for ungulate legs... "]
» Metabolism and shape never properly connected.
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Nutrient delivering networks:

» 1960’s: Rashevsky considers blood networks and

finds a 2/3 scaling.

» 1997: West et al.*°! use a network story to find 3/4

scaling.

\Y
" 2

Mammal /R

Model Parameters
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Scaling
‘Tattooed Guy’ Was Pivotal in Armstrong Case

Scaling-at-large
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Nutrient delivering networks:

West et al.'s assumptions:
1. hierarchical network
2. capillaries (delivery units) invariant
3. network impedance is minimized via evolution

Claims:
> Poc M3/4
» networks are fractal
» quarter powers everywhere
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Impedance measures:

v

v

v

v

v

8,uN
zZ =

Poiseuille flow (outer branches):

Lk
I’;("Nk

Pulsatile flow (main branches):

Wheel out Lagrange multipliers . ..
Poiseuille gives P o« M" with a logarithmic correction.
Pulsatile calculation explodes into flames.

Scaling

Scaling-at-large

References

) B O]
UNIVERSITY |gl
¥-¥ vervont 18]

Q> 97 of 145

N)


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Not so fast ...

Actually, model shows:
» P o M3/* does not follow for pulsatile flow
» networks are not necessarily fractal.

Do find:
» Murray’s cube law (1927) for outer branches: [**!

3_ 3,3
g=1r+r

» Impedance is distributed evenly.
» Can still assume networks are fractal.
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Scaling

Connecting network structure to o

1. Ratios of network parameters:

Scaling-at-large

Nk 41 Criq Tk 41
Rﬂ = 9 R@ = ) RI’ =

Ny Uk Ik

2. Number of capillaries < P o< M“.

In R,
- |n ng R@ References

(also problematic due to prefactor issues)

=

:

. T B 1 1 AT

Obliviously soldiering on, we could assert: f—jﬁj—["”‘? Ao
(’)IH lHl(I)IHHlO,I \(
b 15 14 1-3

1-2
I e o)

» area-preservingness:
—-1/2
R =R," = a=23/4

» space-fillingness: R, = R, '/*

1he O]
UNIVERSITY |§|
o VERMONT 1O

Da > 99 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Data from real networks:

Network Rn R R|-pE -pE| a
West et al. — - — 1/2 1/3 3/4
rat (PAT) 276 158 1.60 | 0.45 0.46 | 0.73
cat (PAT) 3.67 171 1.78 | 0.41 0.44 | 0.79
(Turcotte et al. [49])
dog (PAT) 3.69 167 152 | 0.39 0.32 | 0.90
pig (LCX) 3.57 1.89 220 | 0.50 0.62 | 0.62
pig (RCA) 350 1.81 212 | 047 0.60 | 0.65
pig (LAD) 351 184 2.02 | 049 0.56 | 0.65
human (PAT) | 3.03 1.60 49 | 042 0.36 | 0.83
human (PAT) | 3.36 1.56 49 | 0.37 0.33 | 0.94
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Some people understand it’s truly a disaster:

by Nick Lane (2005). #°!

“As so often happens in science, the apparently solid
foundations of a field turned to rubble on closer
inspection.”
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Scaling

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses - bt
the problem:

» J. Kozlowski, M. Konrzewski (2004). “Is West, Brown
and Enquist’s model of allometric scaling
mathematically correct and biologically relevant?”
Functional Ecology 18: 283—9, 2004.

» J. H. Brown, G. B. West, and B. J. Enquist. “Yes,
West, Brown and Enquist’s model of allometric
scaling is both mathematically correct and
biologically relevant.” Functional Ecology 19:

735—738, 2005. [T A TV 1 A T

0 70 §0 90 100

» J. Kozlowski, M. Konarzewski (2005). “West, Brown (IR

and Enquist’s model of allometric scaling again: the ;‘)‘_'f 5?; \;5
same questions remain.” Functional Ecology 19:

739-743, 2005. Yy [
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Simple supply networks

Banavar et al.,
Nature,

(1999) ']

Flow rate
argument

Ignore
impedance

Very general
attempt to find
most efficient
transportation
networks
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Simple supply networks

v

v

v

v

Banavar et al. find ‘most efficient’ networks with

P Md/(d+1)

... but also find
Vnetwork X M(d+1)/d
d=3:
Vilooa 0c M4/3
Consider a 3 g shrew with Vyjo0q = 0.1 Viody

= 3000 kg elephant with V404 = 10 Vioay

Scaling

Scaling-at-large
Allo

References

=

T
0 70 80 90 100
IEPLEEEEEEEEpLE |
IlH H\I ||Hi\ fl |
0 50 0 IC

6 |i5 |‘|4 !i}

‘,
1:

\O!

112
|

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Q> 104 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Simple supply networks

Such a pachyderm would be rather miserable:
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Geometric argument

» “Optimal Form of Branching Supply and Collection
Networks.” Dodds, Phys. Rev. Lett., 2010.!""!

» Consider one source supplying many sinks in a
d-dim. volume in a D-dim. ambient space.

» Assume sinks are invariant.

» Assume sink density p = p( V).

» Assume some cap on flow speed of material.
» See network as a bundle of virtual vessels:

Scaling

Scaling-at-large

References

B

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Q> 107 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Geometric argument

» Q: how does the number of sustainable sinks Ninis
scale with volume V for the most efficient network
design?

» Or: what is the highest « for Njis o< V*?
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Geometric argument

» Allometrically growing regions:

Q)

L,

» Have d length scales which scale as
Lix VViwhere vy +7y2+...+vg=1.

» For isometric growth, ~; = 1/d.

» For allometric growth, we must have at least two of
the {~,} being different
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Scaling

Scaling-at-large

Spherical cows and pancake cows:

» Question: How does the surface area S, of ourtwo 000
types of cows scale with cow volume V. ? Insert G
question from assignment 10 (H)

» Question: For general families of regions, how does it
surface area S scale with volume V? Insert question
from assignment 10 (E)

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

A 110 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment10.pdf

Geometric argument Scaling
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» Best and worst configurations (Banavar et al.)

cide

Ear

cories
Geometric argument
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» Rather obviously:
min Vqe o< Y distances from source to sinks.

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

A 111 of 145


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Minimal network volume: Scaling

Scaling-at-large
Allometry

Real supply networks are close to optimal:

and Truthicide

() (©) (d)

References

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

Gas

and Newman (2006): “Shape and efficiency in spatial
distribution networks” ['6]
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Minimal network volume:

Approximate network volume by integral over region:

min Vnetoc/ p|1X|| dX
a,0(V)

Ly Vi / (R + ...+ Ru2)'2di
Q4,p(C)

Insert question from assignment 10 (H)
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Geometric argument

» General result:

Min Vier o< p V1 max

» If scaling is isometric, we have ymax = 1/d:
min Vnet/iso e pv1+1/d _ pv(d+‘|)/d

» If scaling is allometric, we have ymax = Yano > 1/d:
and
i 1 allo
min Vnet/allo X pV G

» Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

. —0asV —
min Vnet/allo
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Blood networks

v

v

v

v

v

Material costly = expect lower optimal bound of
Voer x pV(@t1)/9 10 be followed closely.

For cardiovascular networks, d = D = 3.

Blood volume scales linearly with body volume 7],
Vnet o V.

Sink density must .-. decrease as volume increases:
poc V174,

Density of suppliable sinks decreases with organism
size.
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Blood networks

» Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpVoxpMx M@-1)/d

» For d = 3 dimensional organisms, we have
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Prefactor:

Stefan-Boltzmann law: (H)

((15 = oST*
where S is surface and T is temperature.
» Very rough estimate of prefactor based on scaling of
normal mammalian body temperature and surface
area S:

B ~ 10°M?/3erg/sec.
» Measured for M < 10 kg:

B = 2.57 x 10°M?/3erg/sec.
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River networks

» View river networks as collection networks.
» Many sources and one sink.
» Assume p is constant over time:

Vier < pV1+1)/d — constant x V3/2

» Network volume grows faster than basin ‘volume’
(really area).

» It’'s all okay:
Landscapes are d=2 surfaces living in D=3
dimensions.

» Streams can grow not just in width but in depth...
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Hack’s law S

» Volume of water in river network can be calculated by
adding up basin areas

Flows sum in such a way that

Vnet = Z apixeli

all pixels

Scaling-at-large
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v

v

Hack’s law again:

h References

!~ a

v

Can argue
V1 +h _ 1+h

Vet o basin pasin

where his Hack’s exponent.
.. minimal volume calculations gives

h= 1/ 2 9&1v13k.s‘|'1'\' |2|
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Real data:

v

Banavar et al’s
approach 'l is
okay because p
really is constant.

The irony: shows
optimal basins are
isometric

Optimal Hack’s
law: ¢ ~ a" with
h=1/2

(Zzzzz)
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Even better—prefactors match up:

Iog10 water volume V [m3]

20
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18f
17
16
15
14
13f
12
11f
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Mississippi
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The Cabal strikes back: Scaling

Scaling-at-large

Example:
Metabol
Death by fractions

Measuring allometric

» Banavar et al., 2010, PNAS:
“A general basis for quarter-power scaling in e e
animals.”?! S i

» “It has been known for decades that the metabolic
rate of animals scales with body mass with an
exponent that is almost always < 1, > 2/3, and often
very close to 3/4”

» Cough, cough, cough, hack, wheeze, cough.
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Some people understand it’s truly a disaster: (/)

HARNESSED

Peter Sheridan Dodds, Theoretical Biology's Buzzkill

By Mark Changizi | February 9th 2010 03:24 PM | 1 comment | & Print | B E-mail | Track Comments

[ nss | Share/Save El € @ ... |WTweet| Elike

There is an apocryphal story about a

| graduate mathematics student at the

| University of Virginia studying the properties
of certain mathematical objects. In his fifth
year some killjoy bastard elsewhere
published a paper proving that there are no

Mark Changizi

["Search This Blog such mathematical objects. He dropped out
' of the program, and | never did hear where
he is today. He's probably making my cappuccino right now.

This week, a professor named Peter Sheridan Dodds i a

Mark Changizi

MORE ARTICLES

o The Ravenous Color-Blind:
New Developments For
Color-Deficients

® Don’t Hold Your Breath
Waiting For Artificial Brains

* Welcome To Humans,
Version 3.0

new paper in Physical Review Letters further fleshing out a theory
concerning why a 2/3 power law may apply for metabolic rate. The
2/3 law says that metabolic rate in animals rises as the 2/3 power
of body mass. It was in a 2001 Journal of Theoretical Biology paper
that he first argued that perhaps a 2/3 law applies, and that paper -
- along with others such as the one that just appeared -- is what
has put him in the Killjoy Hall of Fame. The University of Virginia's
killjoy was a mere amateur.

ABOUT MARK

Mark Changizi is Director of
Human Cognition at 2Al, and
the author of The Vision
Revolution (Benbella 2009)
and Harnessed: How...
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The unnecessary bafflement continues:

“Testing the metabolic theory of ecology” ¢!

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D.

Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K.
McCulloh, K. Niklas, H. Olff, and N. Swenson
Ecology Letters, 15, 1465-1474, 2012.
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Artisanal, handcrafted stupidity:

“Critical truths about power laws” [“]
Stumpf and Porter, Science, 2012

Statistical support

!

@—Zipf's Law

S. cerevisiae protein interaction network

Allometric scaling—@

C. elegans nervous system

Mechanistic sophistication

How good is your power law? The chart reflects
the level of statistical support—as measured in (16,
21)—and our opinion about the mechanistic sophis-
tication underlying hypothetical generative models
for various reported power laws. Some relation-
ships are identified by name; the others reflect the
general characteristics of a wide range of reported
power laws. Allometric scaling stands out from the
other power laws reported for complex systems.

» Call generalization of Central Limit Theorem, stable

distributions. Also: PLIPLO action.

» Summary: Wow.
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Conclusion

Supply network story consistent with dimensional
analysis.

Isometrically growing regions can be more efficiently
supplied than allometrically growing ones.

Ambient and region dimensions matter
(D = dversus D > d).

Deviations from optimal scaling suggest inefficiency
(e.g., gravity for organisms, geological boundaries).

Actual details of branching networks not that
important.

Exact nature of self-similarity varies.
2/3-scaling lives on, largely in hiding.
3/4-scaling? Jury ruled a mistrial.
The truth will out.
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