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Highly optimized tolerance (HOT) is a mechanism that relates evolving structure to power laws in

interconnected systems. HOT systems arise where design and evolution create complex systems sharing
common features, including (1) high efficiency, performance, and robustness to designed-for uncertain-
ties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3) nongeneric, specialized,
structured configurations, and (4) power laws. We study the impact of incorporating increasing levels of
design and find that even small amounts of design lead to HOT states in percolation.

PACS numbers: 05.65.+b, 05.45.–a, 64.60.Ak, 87.23.Kg

Recently we introduced a mechanism for power laws in
complex systems, which we refer to as highly optimized
tolerance (HOT) [1]. The name is intended to reflect sys-
tems designed for high performance in an uncertain envi-
ronment and operated at densities well above a standard
critical point. In this Letter, we focus particular attention
on properties associated with varying the level of design.
This is roughly analogous to varying the rate of mutation
in biological organisms or varying the extent to which al-
ternative prototypes are tested prior to implementation of
an incremental change in man made systems. We present
our results in the context of percolation. We find that even
algorithms which are restricted to local explorations of a
small fraction of the state space can lead to dramatic de-
partures from a conventional critical phenomenon.
Through design and evolution, HOT systems achieve

rare structured states which are robust to perturbations they
were designed to handle, yet fragile to unexpected pertur-
bations and design flaws. As the sophistication of these
systems is increased, engineers encounter a series of trade-
offs between greater productivity or throughput and the
possibility of catastrophic failure. Such robustness trade-
offs are central properties of the complex systems which
arise in biology and engineering. They also distinguish
HOT states from the generic ensembles typically studied
in statistical physics in the context of the “edge of chaos”
(EOC) [2] and self-organized criticality (SOC) [3].
To illustrate HOT, we construct the simplest possible

example. We begin with two-dimensional site percolation
[4] on an N 3 N square lattice. We focus on spatial fea-
tures, ignoring most aspects of the dynamics. We study
the development of a designed configuration (see Fig. 1)
as we incrementally increase the density by occupying sites
one at a time. We make a loose analogy with forest fires,
where occupied sites correspond to trees, and risk is asso-
ciated with fires. A key quantity is the yield Y , defined to
be the average density of trees left unburned in a configu-
ration after a single spark hits. If a spark hits an unoccu-
pied site, nothing burns. When the spark hits an occupied

site the fire burns every site in the connected cluster c of
nearest-neighbor occupied sites, where c is the number of
sites lost relative to the system size. At each density we
calculate Y for an ensemble of configurations, subject to a
probability distribution P!i, j" of sparks. We also obtain a
distribution of the loss in individual fires f!c" [the cumu-
lative distribution of events of size greater than or equal
to c is F!c"], such that Y ! r 2 #f$, where #f$ is com-
puted with respect to both the ensemble of configurations
and the distribution P!i, j". We increment the density by
adding one occupied site to the previous configuration in
its original state before a spark lands. Different levels of

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for N ! 64 and
varying values of the design parameter D, (a) the random case
D ! 1, (b) D ! 2, (c) D ! N , and (d) D ! N2. Unoccupied
sites are black, and occupied sites are white.
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Robustness

I Many complex systems are prone to cascading
catastrophic failure: exciting!!!

I Blackouts
I Disease outbreaks
I Wildfires
I Earthquakes

I But complex systems also show persistent
robustness (not as exciting but important...)

I Robustness and Failure may be a power-law story...
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Our emblem of Robust-Yet-Fragile:

“That’s no moon ...”
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Robustness

I System robustness may result from
1. Evolutionary processes
2. Engineering/Design

I Idea: Explore systems optimized to perform under
uncertain conditions.

I The handle:
‘Highly Optimized Tolerance’ (HOT) [4, 5, 6, 10]

I The catchphrase: Robust yet Fragile
I The people: Jean Carlson and John Doyle (�)
I Great abstracts of the world #73: “There aren’t

any.” [7]
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Robustness

Features of HOT systems: [5, 6]

I High performance and robustness
I Designed/evolved to handle known stochastic

environmental variability
I Fragile in the face of unpredicted environmental

signals
I Highly specialized, low entropy configurations
I Power-law distributions appear (of course...)
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Robustness

HOT combines things we’ve seen:
I Variable transformation
I Constrained optimization

I Need power law transformation between variables:
(Y = X−α)

I Recall PLIPLO is bad...
I MIWO is good: Mild In, Wild Out
I X has a characteristic size but Y does not
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Robustness

Forest fire example: [5]

I Square N × N grid
I Sites contain a tree with probability ρ = density
I Sites are empty with probability 1− ρ
I Fires start at location (i , j) according to some

distribution Pij

I Fires spread from tree to tree (nearest neighbor only)
I Connected clusters of trees burn completely
I Empty sites block fire
I Best case scenario:

Build firebreaks to maximize average # trees left
intact given one spark
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Robustness

Forest fire example: [5]

I Build a forest by adding one tree at a time
I Test D ways of adding one tree
I D = design parameter
I Average over Pij = spark probability
I D = 1: random addition
I D = N 2: test all possibilities

Measure average area of forest left untouched
I f (c) = distribution of fire sizes c (= cost)
I Yield = Y = ρ− 〈c〉
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Robustness

Specifics:
I

Pij = Pi;ax ,bx Pj;ay ,by

where
Pi;a,b ∝ e−[(i+a)/b]2

I In the original work, by > bx

I Distribution has more width in y direction.
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HOT Forests
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Recently we introduced a mechanism for power laws in
complex systems, which we refer to as highly optimized
tolerance (HOT) [1]. The name is intended to reflect sys-
tems designed for high performance in an uncertain envi-
ronment and operated at densities well above a standard
critical point. In this Letter, we focus particular attention
on properties associated with varying the level of design.
This is roughly analogous to varying the rate of mutation
in biological organisms or varying the extent to which al-
ternative prototypes are tested prior to implementation of
an incremental change in man made systems. We present
our results in the context of percolation. We find that even
algorithms which are restricted to local explorations of a
small fraction of the state space can lead to dramatic de-
partures from a conventional critical phenomenon.
Through design and evolution, HOT systems achieve

rare structured states which are robust to perturbations they
were designed to handle, yet fragile to unexpected pertur-
bations and design flaws. As the sophistication of these
systems is increased, engineers encounter a series of trade-
offs between greater productivity or throughput and the
possibility of catastrophic failure. Such robustness trade-
offs are central properties of the complex systems which
arise in biology and engineering. They also distinguish
HOT states from the generic ensembles typically studied
in statistical physics in the context of the “edge of chaos”
(EOC) [2] and self-organized criticality (SOC) [3].
To illustrate HOT, we construct the simplest possible

example. We begin with two-dimensional site percolation
[4] on an N 3 N square lattice. We focus on spatial fea-
tures, ignoring most aspects of the dynamics. We study
the development of a designed configuration (see Fig. 1)
as we incrementally increase the density by occupying sites
one at a time. We make a loose analogy with forest fires,
where occupied sites correspond to trees, and risk is asso-
ciated with fires. A key quantity is the yield Y , defined to
be the average density of trees left unburned in a configu-
ration after a single spark hits. If a spark hits an unoccu-
pied site, nothing burns. When the spark hits an occupied

site the fire burns every site in the connected cluster c of
nearest-neighbor occupied sites, where c is the number of
sites lost relative to the system size. At each density we
calculate Y for an ensemble of configurations, subject to a
probability distribution P!i, j" of sparks. We also obtain a
distribution of the loss in individual fires f!c" [the cumu-
lative distribution of events of size greater than or equal
to c is F!c"], such that Y ! r 2 #f$, where #f$ is com-
puted with respect to both the ensemble of configurations
and the distribution P!i, j". We increment the density by
adding one occupied site to the previous configuration in
its original state before a spark lands. Different levels of

(b)

(c) (d)

(a)

FIG. 1. Sample configurations at peak yield for N ! 64 and
varying values of the design parameter D, (a) the random case
D ! 1, (b) D ! 2, (c) D ! N , and (d) D ! N2. Unoccupied
sites are black, and occupied sites are white.
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[5]

N = 64

(a) D = 1
(b) D = 2
(c) D = N
(d) D = N2

Pij has a
Gaussian decay

I Optimized forests do well on average (robustness)
I But rare extreme events occur (fragility)
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HOT Forests
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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HOT Forests:

I Y = ‘the average density of trees left unburned in a
configuration after a single spark hits.’ [5]
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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Random Forests

D = 1: Random forests = Percolation [11]

I Randomly add trees
I Below critical density ρc , no fires take off
I Above critical density ρc , percolating cluster of trees

burns
I Only at ρc , the critical density, is there a power-law

distribution of tree cluster sizes
I Forest is random and featureless
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HOT forests nutshell:

I Highly structured
I Power law distribution of tree cluster sizes for ρ > ρc

I No specialness of ρc

I Forest states are tolerant
I Uncertainty is okay if well characterized
I If Pij is characterized poorly, failure becomes highly

likely
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HOT forests—Real data:

“Complexity and Robustness,” Carlson & Dolye [6]

across long distances as an adaptive, emergent, self-organizing,
far-from-equilibrium, nonlinear phenomenon. What is both an
attraction and a potential weakness of this perspective is that it
could be applied to a tornado as well. The HOT view is quite
different. Our examples all have high performances and yields
and high densities of interconnection (Table 1.3), as well as
robustness and reliability. We want to sharpen the distinction not
only between the likely short and fatal ride of a tornado with the
much faster but relatively boring 777 experience but, more
importantly between the 777 design and alternatives that might
have worse, or even better, performance, robustness, and
reliability.

Are All These Features of Complexity Necessary? That is, must
systems be broadly robust if they are to successfully function and
persist, must this robustness entail highly structured internal com-
plexity, and is fragility a necessary risk? In this sense, is complexity
in engineering and biological systems qualitatively the same? We
believe that the answer to these questions is largely affirmative, and
the examples briefly examined in this section support this, as do
numerous other studies of this issue (e.g., see ref. 10). The remain-
der of this paper offers a thin slice through the HOT theoretical
framework that is emerging to systematically address these ques-
tions. The concept of HOT was introduced to focus attention on
exactly these issues. Tolerance emphasizes that robustness in com-
plex systems is a constrained and limited quantity that must be
carefully managed and protected. Highly optimized emphasizes that
this is achieved by highly structured, rare, nongeneric configura-
tions that are products either of deliberate design or evolution. The
characteristics of HOT systems are high performance, highly struc-
tured internal complexity, and apparently simple and robust exter-
nal behavior, with the risk of hopefully rare but potentially cata-
strophic cascading failure events initiated by possibly quite small
perturbations.

Power Laws and Complexity
Recently a great deal of attention has been given to the fact that
statistics of events in many complex interconnected systems
share a common attribute: the distributions of sizes are described
by power laws. Several examples are illustrated in Fig. 1, where
we plot the cumulative probability !(l!li) of events greater than
or equal to a given size li. Power laws !(l ! li) ! {li}"" are
associated with straight lines of slope "" in a log(!) vs. log(l)
plot, and describe all of the data sets reasonably well, with the
exception of data compression (DC), which is exponential.
Whether the other distributions are power laws exactly we will
not attempt to resolve, because this is not important for HOT.
What is clear is that these distributions have heavy tails and are
far from exponential or Gaussian.

In this regard, the 777 has boring but fortunate statistics, as
there have been no crashes or fatalities so far. More generally,
the deaths and dollars lost in all disasters from either techno-
logical or natural causes is a power law with " # 1. Forest fires
and power outages have among the most striking and well-kept
statistics, but similar, although less heavy tailed, plots can be
made for species extinction, social conflict, automotive traffic
jams, air traffic delays, and financial market volatility. Other
examples that are not event sizes per se involve Web and Internet
traffic and various bibliometric statistics.

Although power law statistics is one of many characteristics we
might consider, our focus on this property provides a meaningful
quantitative point of departure for contrasting HOT with SOC. Of
course, SOC and HOT are two of many possible mechanisms for
power laws. Statistics alone can be responsible (11). What differ-
entiates SOC and HOT from statistical mechanisms are their
broader claims suggesting links between power laws and internal
structure, as summarized in Table 1. If SOC were the underlying
mechanism leading to complexity in a given system, power laws

would be one signature of an internal self-sustaining critical state.
The details associated with the initiation of events would be a
statistically inconsequential factor in determining their size. Large
events would be the result of chance random internal fluctuations
characteristic of the self-similar onset of systemwide connectivity at
the critical state. In contrast, for HOT power law, statistics are just
one symptom of ‘‘robust, yet fragile,’’ which we suggest is central to
complexity. Heavy tails reflect tradeoffs in systems characterized by
high densities and throughputs, where many internal variables have
been tuned to favor small losses in common events, at the expense
of large losses when subject to rare or unexpected perturbations,
even if the perturbations are infinitesimal.

The Forest Fire Models
In this section, we review the lattice models that have served as
the primary template for introducing SOC and HOT. Our story
begins with percolation (12), the simplest model in statistical
mechanics, which exhibits a critical phase transition. We focus on
site percolation on a two-dimensional N $ N square lattice.
Individual sites are independently occupied with probability #
and vacant with probability (1 " #). Properties of the system are
determined by ensemble averages in which all configurations at
density # are equally likely. Contiguous sets of nearest-neighbor
occupied sites define connected clusters. The percolation forest
fire model includes a coupling to external disturbances repre-
sented by ‘‘sparks’’ that impact individual sites on the lattice.
Sparks initiate ‘‘fires’’ when they hit an occupied site, burning
through the associated connected cluster. Fires are the rapid
cascading failure events analogous to individual events, which
comprise the statistical distributions in the previous section.

Sparks are all of equal size (one lattice site) but may initiate
fires of a wide range of sizes, depending on the configuration and
the site that is hit. The impact site (i, j) is drawn from a
probability distribution P(i, j). The most realistic cases involve
variable risk, where ignitions are common in some regions and
rare in others and are represented by P(i, j)s that are skewed. In

Fig. 1. Log–log (base 10) comparison of DC, WWW, CF, and FF data (symbols)
with PLR models (solid lines) (for $ % 0, 0.9, 0.9, 1.85, or " % 1!$ % &, 1.1,1.1, 0.054,
respectively) and the SOC FF model (" % 0.15, dashed). Reference lines of " % 0.5,
1 (dashed) are included. The cumulative distributions of frequencies !(l ! li) vs. li
describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the
U.S. Fish and Wildlife Service Lands (FF) (17), the '10,000 largest California
brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston
University during 1994 and 1995 (WWW) (19), and code words from DC. The size
units [1,000 km2 (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-
rithmic decimation of the data are chosen for visualization.

2540 " www.pnas.org!cgi!doi!10.1073!pnas.012582499 Carlson and Doyle

I PLR =
probability-loss-resource.

I Minimize cost subject to
resource (barrier)
constraints:
C =

∑
i pi li

given
li = f (ri) and

∑
ri ≤ R.
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HOT theory:

The abstract story, using figurative forest fires:
I Given some measure of failure size yi and correlated

resource size xi . with relationship yi = x−α
i ,

i = 1, . . . ,Nsites.
I Design system to minimize 〈y〉

subject to a constraint on the xi .
I Minimize cost:

C =

Nsites∑
i=1

Pr(yi)yi

Subject to
∑Nsites

i=1 xi = constant.
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1. Cost: Expected size of fire:

Cfire ∝
Nsites∑
i=1

(piai)ai =

Nsites∑
i=1

pia 2
i

I ai = area of i th site’s region
I pi = avg. prob. of fire at site in i th site’s region

2. Constraint: building and maintaining firewalls

Cfirewalls ∝
Nsites∑
i=1

a1/2
i a−1

i

I We are assuming isometry.
I In d dimensions, 1/2 is replaced by (d − 1)/d

3. Insert question from assignment 5 (�) to find:

pi ∝ a−γ
i = a−(2+1/d)

i .

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300/docs/{2013-01UVM-300}assignment5.pdf


System
Robustness

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

21 of 36

Avalanches of Sand and Rice...
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SOC theory

SOC = Self-Organized Criticality
I Idea: natural dissipative systems exist at ‘critical

states’;
I Analogy: Ising model with temperature somehow

self-tuning;
I Power-law distributions of sizes and frequencies

arise ‘for free’;
I Introduced in 1987 by Bak, Tang, and

Weisenfeld [3, ?, 8]:
“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987);

I Problem: Critical state is a very specific point;
I Self-tuning not always possible;
I Much criticism and arguing...
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Per Bak’s Magnum Opus:

“How Nature Works: the Science of
Self-Organized Criticality” (�)
by Per Bak (1997). [2]

System
Robustness

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

24 of 36

Robustness

HOT versus SOC
I Both produce power laws
I Optimization versus self-tuning
I HOT systems viable over a wide range of high

densities
I SOC systems have one special density
I HOT systems produce specialized structures
I SOC systems produce generic structures
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HOT theory—Summary of designed
tolerance [6]

Colloquium

Complexity and robustness
J. M. Carlson*† and John Doyle‡

*Department of Physics, University of California, Santa Barbara, CA 93106; and ‡Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125

Highly optimized tolerance (HOT) was recently introduced as a
conceptual framework to study fundamental aspects of complex-
ity. HOT is motivated primarily by systems from biology and
engineering and emphasizes, (i) highly structured, nongeneric,
self-dissimilar internal configurations, and (ii) robust yet fragile
external behavior. HOT claims these are the most important fea-
tures of complexity and not accidents of evolution or artifices of
engineering design but are inevitably intertwined and mutually
reinforcing. In the spirit of this collection, our paper contrasts HOT
with alternative perspectives on complexity, drawing on real-
world examples and also model systems, particularly those from
self-organized criticality.

A vision shared by most researchers in complex systems is that
certain intrinsic, perhaps even universal, features capture

fundamental aspects of complexity in a manner that transcends
specific domains. It is in identifying these features that sharp
differences arise. In disciplines such as biology, engineering,
sociology, economics, and ecology, individual complex systems
are necessarily the objects of study, but there often appears to be
little common ground between their models, abstractions, and
methods. Highly optimized tolerance (HOT) (1–6) is one recent
attempt, in a long history of efforts, to develop a general
framework for studying complexity. The HOT view is motivated
by examples from biology and engineering. Theoretically, it
builds on mathematics and abstractions from control, commu-
nications, and computing. In this paper, we retain the motivating
examples but avoid theories and mathematics that may be
unfamiliar to a nonengineering audience. Instead, we aim to
make contact with the models, concepts, and abstractions that
have been loosely collected under the rubric of a ‘‘new science
of complexity’’ (NSOC) (7) or ‘‘complex adaptive systems’’ (CAS),
and particularly the concept of self-organized criticality (SOC)
(8, 9). SOC is only one element of NSOC!CAS but is a useful
representative, because it has a well-developed theory and broad
range of claimed applications.

In Table 1, we contrast HOT’s emphasis on design and rare
configurations with the perspective provided by NSOC!CAS!
SOC, which emphasizes structural complexity as ‘‘emerging
between order and disorder,’’ (i) at a bifurcation or phase
transition in an interconnection of components that is (ii)
otherwise largely random. Advocates of NSOC!CAS!SOC are
inspired by critical phenomena, fractals, self-similarity, pattern
formation, and self-organization in statistical physics, and bifur-
cations and deterministic chaos from dynamical systems. Moti-
vating examples vary from equilibrium statistical mechanics of
interacting spins on a lattice to the spontaneous formation of
spatial patterns in systems far from equilibrium. This approach
suggests a unity from apparently wildly different examples,
because details of component behavior and their interconnec-
tion are seen as largely irrelevant to system-wide behavior.

Table 1 shows that SOC and HOT predict not just different but
exactly opposite features of complex systems. HOT suggests that
random interconnections of components say little about the
complexity of real systems, that the details can matter enor-

mously, and that generic (e.g., low codimension) bifurcations and
phase transitions play a peripheral role. In principle, Table 1
could have a separate column for Data, by which we mean the
observable features of real systems. Because HOT and Data turn
out to be identical for these features, we can collapse the table
as shown. This is a strong claim, and the remainder of this paper
is devoted to justifying it in as much detail as space permits.

What Do We Mean By Complexity?
To motivate the theoretical discussion of complex systems, we
briefly discuss concrete and hopefully reasonably familiar ex-
amples and begin to fill in the ‘‘Data’’ part of Table 1. We start
with biological cells and their modern technological counterparts
such as very large-scale integrated central processing unit (CPU)
chips. Each is a complex system, composed of many components,
but is also itself a component in a larger system of organs or
laptop or desktop personal computers or embedded in control
systems of vehicles such as automobiles or commercial jet
aircraft like the Boeing 777. These are again components of the
even larger networks that make up organisms and ecosystems,

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Self-Organized Complexity in the Physical, Biological, and Social Sciences,’’ held
March 23–24, 2001, at the Arnold and Mabel Beckman Center of the National Academies
of Science and Engineering in Irvine, CA.

Abbreviations: NSOC, new science of complexity; CAS, complex adaptive systems; SOC,
self-organized criticality; HOT, highly optimized tolerance; CPU, central processing unit;
DC, data compression; DDOF, design degree of freedom; CF, California brushfires; FF, U.S.
Fish and Wildlife Service land fires; PLR, probability-loss-resource; WWW, World Wide Web.
†To whom reprint requests should be addressed. E-mail: carlson@physics.ucsb.edu.

Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data

1 Internal
configuration

Generic,
homogeneous,

self-similar

Structured,
heterogeneous,
self-dissimilar

2 Robustness Generic Robust, yet
fragile

3 Density and yield Low High

4 Max event size Infinitesimal Large

5 Large event shape Fractal Compact

6 Mechanism for
power laws

Critical internal
fluctuations

Robust
performance

7 Exponent ! Small Large

8 ! vs. dimension d ! ! (d " 1)!10 ! ! 1!d

9 DDOFs Small (1) Large (#)

10 Increase model
resolution

No change New structures,
new sensitivities

11 Response to
forcing

Homogeneous Variable

2538–2545 " PNAS " February 19, 2002 " vol. 99 " suppl. 1 www.pnas.org!cgi!doi!10.1073!pnas.012582499

System
Robustness

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

26 of 36

To read: ‘Complexity and Robustness’ [6]

Colloquium

Complexity and robustness
J. M. Carlson*† and John Doyle‡

*Department of Physics, University of California, Santa Barbara, CA 93106; and ‡Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125

Highly optimized tolerance (HOT) was recently introduced as a
conceptual framework to study fundamental aspects of complex-
ity. HOT is motivated primarily by systems from biology and
engineering and emphasizes, (i) highly structured, nongeneric,
self-dissimilar internal configurations, and (ii) robust yet fragile
external behavior. HOT claims these are the most important fea-
tures of complexity and not accidents of evolution or artifices of
engineering design but are inevitably intertwined and mutually
reinforcing. In the spirit of this collection, our paper contrasts HOT
with alternative perspectives on complexity, drawing on real-
world examples and also model systems, particularly those from
self-organized criticality.

A vision shared by most researchers in complex systems is that
certain intrinsic, perhaps even universal, features capture

fundamental aspects of complexity in a manner that transcends
specific domains. It is in identifying these features that sharp
differences arise. In disciplines such as biology, engineering,
sociology, economics, and ecology, individual complex systems
are necessarily the objects of study, but there often appears to be
little common ground between their models, abstractions, and
methods. Highly optimized tolerance (HOT) (1–6) is one recent
attempt, in a long history of efforts, to develop a general
framework for studying complexity. The HOT view is motivated
by examples from biology and engineering. Theoretically, it
builds on mathematics and abstractions from control, commu-
nications, and computing. In this paper, we retain the motivating
examples but avoid theories and mathematics that may be
unfamiliar to a nonengineering audience. Instead, we aim to
make contact with the models, concepts, and abstractions that
have been loosely collected under the rubric of a ‘‘new science
of complexity’’ (NSOC) (7) or ‘‘complex adaptive systems’’ (CAS),
and particularly the concept of self-organized criticality (SOC)
(8, 9). SOC is only one element of NSOC!CAS but is a useful
representative, because it has a well-developed theory and broad
range of claimed applications.

In Table 1, we contrast HOT’s emphasis on design and rare
configurations with the perspective provided by NSOC!CAS!
SOC, which emphasizes structural complexity as ‘‘emerging
between order and disorder,’’ (i) at a bifurcation or phase
transition in an interconnection of components that is (ii)
otherwise largely random. Advocates of NSOC!CAS!SOC are
inspired by critical phenomena, fractals, self-similarity, pattern
formation, and self-organization in statistical physics, and bifur-
cations and deterministic chaos from dynamical systems. Moti-
vating examples vary from equilibrium statistical mechanics of
interacting spins on a lattice to the spontaneous formation of
spatial patterns in systems far from equilibrium. This approach
suggests a unity from apparently wildly different examples,
because details of component behavior and their interconnec-
tion are seen as largely irrelevant to system-wide behavior.

Table 1 shows that SOC and HOT predict not just different but
exactly opposite features of complex systems. HOT suggests that
random interconnections of components say little about the
complexity of real systems, that the details can matter enor-

mously, and that generic (e.g., low codimension) bifurcations and
phase transitions play a peripheral role. In principle, Table 1
could have a separate column for Data, by which we mean the
observable features of real systems. Because HOT and Data turn
out to be identical for these features, we can collapse the table
as shown. This is a strong claim, and the remainder of this paper
is devoted to justifying it in as much detail as space permits.

What Do We Mean By Complexity?
To motivate the theoretical discussion of complex systems, we
briefly discuss concrete and hopefully reasonably familiar ex-
amples and begin to fill in the ‘‘Data’’ part of Table 1. We start
with biological cells and their modern technological counterparts
such as very large-scale integrated central processing unit (CPU)
chips. Each is a complex system, composed of many components,
but is also itself a component in a larger system of organs or
laptop or desktop personal computers or embedded in control
systems of vehicles such as automobiles or commercial jet
aircraft like the Boeing 777. These are again components of the
even larger networks that make up organisms and ecosystems,
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Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data

1 Internal
configuration

Generic,
homogeneous,

self-similar

Structured,
heterogeneous,
self-dissimilar

2 Robustness Generic Robust, yet
fragile

3 Density and yield Low High

4 Max event size Infinitesimal Large

5 Large event shape Fractal Compact

6 Mechanism for
power laws

Critical internal
fluctuations

Robust
performance

7 Exponent ! Small Large

8 ! vs. dimension d ! ! (d " 1)!10 ! ! 1!d

9 DDOFs Small (1) Large (#)

10 Increase model
resolution

No change New structures,
new sensitivities

11 Response to
forcing

Homogeneous Variable
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computer networks, and air and ground transportation. Al-
though extremely complex, these systems have available reason-
ably complete descriptions and thus make good starting exam-
ples. Engineering systems are obviously better understood than
biological systems, but the gap is closing. Engineers now build
systems of almost bewildering levels of complexity, and biolo-
gists are beginning to move beyond the components to charac-
terizing the networks they create. Although no one person
understands in complete detail how all these systems work, there
is now a rich variety of accessible introductory material in each
area that gives additional details well beyond what is discussed
here. In each of the following paragraphs, we consider a critical
question about complexity and the answers that these example
systems suggest.

What Distinguishes the Internal Configurations of Systems as Com-
plex? It is not the mere number of component parts. Any macro-
scopic material has a huge number of molecules. It is the extreme
heterogeneity of the parts and their organization into intricate and
highly structured networks, with hierarchies and multiple scales
(Table 1.1). (Some researchers have suggested that ‘‘complicated’’
be used to describe this feature.) Even bacterial cells have thou-
sands of genes, most coding for proteins that form elaborate
regulatory networks. A modern CPU has millions of transistors and
millions of supporting circuit elements; many computers have
billions of transistors, and the Internet will soon have billions of
nodes. The 777 is fully ‘‘fly-by-wire,’’ with 150,000 different sub-
systems, many of them quite complex, including roughly 1,000
CPUs that operate and automate all vehicle functions. Even
automobiles have dozens of CPUs performing a variety of control
functions. If self-similarity describes multiscale systems with similar
structure at different scales, then these systems could be described
as highly self-dissimilar, that is, extremely different at different
scales and levels of abstraction. Just the design and manufacture of
the 777 involved a global software and computing infrastructure
with roughly 10,000 work stations, terabytes of data, and a one
billion dollar price tag.

What Does This Complexity Achieve? In each example, it is possible
to build similar systems with orders of magnitude fewer com-
ponents and much less internal complexity. The simplest bacteria
have hundreds of genes. Much simpler CPUs, computers, net-
works, jets, and cars can be and have been built. What is lost in
these simpler systems is not their basic functionality but their
robustness. By robustness, we mean the maintenance of some
desired system characteristics despite fluctuations in the behav-
ior of its component parts or its environment. Although we can
loosely speak of robustness without reference to particular
systems characteristics, or particular component or environmen-
tal uncertainties, this can often be misleading, as we will see. All
of our motivating examples illustrate this tradeoff between
robustness and internal simplicity. Although it has become a
cliche that greater complexity creates unreliability, the actual
story is more complicated.

What Robustness Would Be Lost in Simpler Systems? Simple bacteria
with several hundred genes, like mycoplasma, require carefully
controlled environments, whereas Escherichia coli, with almost 10
times the number of genes, can survive in highly fluctuating
environments. Large internetworks do not change the basic capa-
bilities of computers but instead improve their responsiveness to
variations in a user’s needs and failures of individual computers. A
jet with many fewer components and no very large-scale integrated
chips or CPUs could be built with the same speed and payload as
a 777, but it would be much less robust to component variations,
failures, or fluctuations such as payload size and distribution or
atmospheric conditions. Whereas older automobiles were simpler,
new vehicles have elaborate control systems for air bags, ride

control, antilock braking, antiskid turning, cruise control, satellite
navigation, emergency notification, cabin temperature regulation,
and automatic tuning of radios. At the same size and efficiency, they
are safer, more robust, and require less maintenance. Thus robust-
ness drives internal complexity and is the most striking feature of
these complex systems.

What Is the Price Paid for These Highly Structured Internal Configu-
rations and the Resulting Robustness? Although there is the ex-
pense of additional components, this is usually more than made
up for by increased efficiency, manufacturability, evolvability of
the system, and the ability to use sloppier and hence cheaper
components. It is far more serious that these systems can be
catastrophically disabled by cascading failures initiated by tiny
perturbations. They are ‘‘robust, yet fragile,’’ that is, robust to
what is common or anticipated but potentially fragile to what is
rare or unanticipated and also to flaws in design, manufacturing,
or maintenance (Table 1.2). Because robustness is achieved by
very specific internal structures, when any of these systems is
disassembled, there is very little latitude in reassembly if a
working system is expected. Although large variations or even
failures in components can be tolerated if they are designed for
through redundancy and feedback regulation, what is rarely
tolerated, because it is rarely a design requirement, is nontrivial
rearrangements of the interconnection of internal parts. The
fraction of all possible amino acid sequences or complementary
metal oxide semiconductor circuits that yield functioning pro-
teins or chips is vanishingly small. Portions of macromolecular
networks as well as whole cells of advanced organisms can
function in vitro, but we do not yet know how to reassemble them
into fully functional cells and organisms. In contrast, when
arbitrary interconnection is a specific design requirement, such
as in routers in an internet protocol network, then this can be
robustly designed for but with some added expense in resources.

How Does ‘‘Robust, Yet Fragile’’ Manifest Itself in the Example
Systems? Biological organisms are highly robust to uncertainty in
their environments and component parts yet can be catastrophically
disabled by tiny perturbations to genes or the presence of micro-
scopic pathogens or trace amounts of toxins that disrupt structural
elements or regulatory control networks. The 777 is robust to
large-scale atmospheric disturbances, variations in cargo loads and
fuels, turbulent boundary layers, and inhomogeneities and aging of
materials, but could be catastrophically disabled by microscopic
alterations in a handful of very large-scale integrated chips or by
software failures. (Such a vulnerability is completely absent from a
hypothetical simpler vehicle.) This scenario fortunately is vanish-
ingly unlikely but illustrates the issue that this complexity can
amplify small perturbations, and the design engineer must ensure
that such perturbations are extremely rare. The 777 is merely a
component in a large, highly efficient, and inexpensive air traffic
network, but also one that can have huge cascading delays. Pro-
cessor chips are similarly robust to large variations in the analog
behavior of their CMOS circuit elements and can perform a literally
‘‘universal’’ array of computations but can fail completely if an
element is removed or the circuit rearranged. Processor, memory,
and other chips can be organized into highly fault-tolerant com-
puters and networks, creating platforms for complex software
systems with their own hierarchies of components. These software
systems can perform a broad range of functions primarily limited
only by the programmer’s imagination but can crash from a single
line of faulty code.

How Does NSOC!CAS Differ from HOT with Respect to the Complexity
of the Example Systems? As a specific, if somewhat whimsical,
example, note that a 777 is sufficiently automated that it can fly
without pilots, so we could quite fairly describe the mechanism
by which it can transport people and material through the air
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COLD forests

Avoidance of large-scale failures
I Constrained Optimization with Limited Deviations [9]

I Weight cost of larges losses more strongly
I Increases average cluster size of burned trees...
I ... but reduces chances of catastrophe
I Power law distribution of fire sizes is truncated
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Cutoffs

Observed:
I Power law distributions often have an exponential

cutoff
P(x) ∼ x−γe−x/xc

where xc is the approximate cutoff scale.
I May be Weibull distributions:

P(x) ∼ x−γe−ax−γ+1
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Robustness

We’ll return to this later on:
I network robustness.
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [1]

I General contagion processes acting on complex
networks. [13, 12]

I Similar robust-yet-fragile stories ...
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