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H HOT theory

) » System robustness may result from comren
References 1. Evolutionary processes References

Robustness 2. Engineering/Design
HOT theory . -
Self-Organized Criticality » Idea: Explore systems optimized to perform under
COLD theory uncertain conditions.
Network robustness > The handle:
‘Highly Optimized Tolerance’ (HOT) [ 5 6, 10]
» The catchphrase: Robust yet Fragile
References » The people: Jean Carlson and John Doyle (H) .
» Great abstracts of the world #73: “There aren’t o Ji
any.”l’] ) ©F
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» Many complex systems are prone to cascading References Features of HOT systems:[® ¢l Reforences

catastrophic failure: exciting!!!

» High performance and robustness
» Blackouts

» Designed/evolved to handle known stochastic

» Disease outbreaks ; -

» Wildfires environmental variability

» Earthquakes » Fragile in the face of unpredicted environmental
» But complex systems also show persistent signals

robustness (not as exciting but important...)
» Robustness and Failure may be a power-law story...

» Highly specialized, low entropy configurations
» Power-law distributions appear (of course...)
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Robustness

HOT combines things we’ve seen:
Variable transformation
Constrained optimization

v

v

» Need power law transformation between variables:
(Y=X")

Recall PLIPLO is bad...

MIWO is good: Mild In, Wild Out

X has a characteristic size but Y does not

v

v

v

Robustness

Forest fire example: !
» Square N x N grid
» Sites contain a tree with probability p = density
» Sites are empty with probability 1 — p

» Fires start at location (i, j) according to some
distribution P;

» Fires spread from tree to tree (nearest neighbor only)
» Connected clusters of trees burn completely
» Empty sites block fire

» Best case scenario:
Build firebreaks to maximize average # trees left
intact given one spark

Robustness

Forest fire example: !
» Build a forest by adding one tree at a time
Test D ways of adding one tree
D = design parameter
» Average over P = spark probability
D = 1: random addition
D = NZ2: test all possibilities

v

v

v

v

Measure average area of forest left untouched
» f(c) = distribution of fire sizes ¢ (= cost)
> Yield=Y =p— (c)
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Robustness

Specifics:
| 4
Pl/ = Pi?«ax'bxljj?ayvby
where
Piap g [(i+a)/bP?
> In the original work, by, > by
» Distribution has more width in y direction.

Pj has a

©) (d)

[5]

» Optimized forests do well on average (robustness)
» But rare extreme events occur (fragility)

HOT Forests

o (b)
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3 log(p/(1-p)) \
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Density Density
FIG. 2. Yield vs density Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N (solid)
with N = 64, and (b) for D =2 and N = 2,22,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L = log[{f)/(1 — (f))], on a scale which more
clearly differentiates between the curves.
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HOT Forests:

» Y = ‘the average density of trees left unburned in a

Cumulative probability F(c)

3

10"

configuration after a single spark hits.’ (!

(b)

Cumulative probability F(c)
5

= 7

107 107
Event size ¢

10° 10°
Event size ¢

A

FIG. 3. Cumulative distributions of events F(c): (a) at peak
yield for D = 1, 2, N, and N? with N = 64, and (b) for D =
N2, and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).

Random Forests

D = 1: Random forests = Percolation!'"!

v

v

v

v
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Randomly add trees
Below critical density p¢, no fires take off

Above critical density p¢, percolating cluster of trees
burns

Only at pg, the critical density, is there a power-law
distribution of tree cluster sizes

Forest is random and featureless

HOT forests nutshell:

Highly structured

Power law distribution of tree cluster sizes for p > p¢
No specialness of p¢

Forest states are tolerant

Uncertainty is okay if well characterized

If Pj is characterized poorly, failure becomes highly
likely
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HOT forests—Real data:

“Complexity and Robustness,” Carlson & Dolye []

» PLR =

resource (barrier)
constraints:

C =3 pil

given

HOT theory:

The abstract story, using figurative forest fires:

» Given some measure of failure size y; and correlated

resource size x;. with relationship y; = x;,¢,
i= 17---7Nsites-

» Design system to minimize (y)
subject to a constraint on the x;.

» Minimize cost:

Nites

C=> Priy)yi
i=1

Subject to M x; = constant.

1. Cost: Expected size of fire:

Niites Neites

Cire X Z(piai)ai = Zp,'a,»2
i=1 i=1

» a; = area of jth site’s region
» p; = avg. prob. of fire at site in ith site’s region

2. Constraint: building and maintaining firewalls

Niites

1/2 1

Chirewalls E a;" a;
i=1

» We are assuming isometry.
» In d dimensions, 1/2 is replaced by (d — 1)/d

3. Insert question from assignment 5 (#) to find:

piox & = a; B9,

probability-loss-resource.
» Minimize cost subject to

=f(r)and Y r; <R.
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Avalanches of Sand and Rice...

SOC theory

SOC = Self-Organized Criticality

» Idea: natural dissipative systems exist at ‘critical
states’;

» Analogy: Ising model with temperature somehow
self-tuning;

» Power-law distributions of sizes and frequencies
arise ‘for free’;

» Introduced in 1987 by Bak, Tang, and
Weisenfeld [ 7 8l
“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987);

» Problem: Critical state is a very specific point;
» Self-tuning not always possible;
» Much criticism and arguing...

Per Bak’s Magnum Opus:

TR AL

POl “How Nature Works: the Science of

‘works

by Per Bak (1997).°)
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‘Sell-Organized Criicalty

N

feences HOT versus SOC
» Both produce power laws
» Optimization versus self-tuning

» HOT systems viable over a wide range of high
densities

» SOC systems have one special density
» HOT systems produce specialized structures
SOC systems produce generic structures
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tolerance I°!
Robustness

HOT theory

Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data
References 1 Internal Generic, Structured,
configuration homogeneous, heterogeneous,
self-similar self-dissimilar
2 Robustness Generic Robust, yet
fragile
3 Density and yield Low High
4 Max event size Infinitesimal Large
5 Large event shape Fractal Compact
6 Mechanism for Critical internal Robust
power laws fluctuations performance
7 Exponent « Small Large
8 a vs. dimension d a=(d-1)/10 a=1/d
9 DDOFs Small (1) Large (=)
10 Increase model No change New structures,
resolution new sensitivities
.L‘NIVER.SITY |o| N
o VERMONT 1" Response to Homogeneous Variable
Do 220036 forcing
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Robustness To read: ‘Complexity and Robustness’ ®!

Colloquium
bustness q

References

System
Robustness

Robustness

Self-Organized Criticality

References

72 O]
ﬁ UNIVERSITY Igl
A v virvONT O

D a > 240f 36

System
Robustness

Robustness
HOT theory

References

L o]
NIVERSITY |0|
ﬂ’ |/ VERMONT 1O}

D a > 250f36

System
Robustness

Robustness

Network robustness

ENIvERSITY |e|
4 VERMONT

Da 230f36

Reference:

72 O]
ﬁ UNIVERSITY Igl
A s virvONT Ol

D> 260f 36


http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/dp/038798738X/
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds

COLD forests

Avoidance of large-scale failures
» Constrained Optimization with Limited Deviations [°!
» Weight cost of larges losses more strongly
» Increases average cluster size of burned trees...

.. but reduces chances of catastrophe

Power law distribution of fire sizes is truncated

v

v

Cutoffs

Observed:
» Power law distributions often have an exponential
cutoff
P(x) ~ x 7@ X%
where X is the approximate cutoff scale.
» May be Weibull distributions:

P(x) ~ xe=ax "

Robustness

We'll return to this later on:
» network robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” ("]

» General contagion processes acting on complex
networks. ['3 21

» Similar robust-yet-fragile stories ...
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