Herbert Simon (\boxplus) (1916-2001):

- Political scientist
- Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology
- Coined 'bounded rationality' and 'satisficing'
- Nearly 1000 publications
- An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.
- Nobel Laureate in Economics

Growth Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Herbert Simon (\boxplus) (1916-2001):

- Political scientist
- Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology
- Coined 'bounded rationality' and 'satisficing'
- Nearly 1000 publications
- An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.
- Nobel Laureate in Economics

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is. . ?

Herbert Simon (\boxplus) (1916-2001):

- Political scientist
- Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology
- Coined 'bounded rationality' and 'satisficing'

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

- Nearly 1000 publications
- An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.
- Nobel Laureate in Economics

Herbert Simon (\boxplus)（1916－2001）：

－Political scientist
－Involved in Cognitive Psychology，Computer Science， Public Administration，Economics，Management， Sociology
－Coined＇bounded rationality＇and＇satisficing＇
－Nearly 1000 publications
－An early leader in Artificial Intelligence，Information
Processing，Decision－Making，Problem－Solving， Attention Economics，Organization Theory，Complex Systems，And Computer Simulation Of Scientific Discovery．
－Nobel Laureate in Economics

Growth
Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．

Herbert Simon（ \boxplus ）（1916－2001）：

－Political scientist
－Involved in Cognitive Psychology，Computer Science， Public Administration，Economics，Management， Sociology
－Coined＇bounded rationality＇and＇satisficing＇
－Nearly 1000 publications
－An early leader in Artificial Intelligence，Information Processing，Decision－Making，Problem－Solving， Attention Economics，Organization Theory，Complex Systems，And Computer Simulation Of Scientific Discovery．
－Nobel Laureate in Economics

Growth
Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions

Herbert Simon (\boxplus) (1916-2001):

- Political scientist
- Involved in Cognitive Psychology, Computer Science, Public Administration, Economics, Management, Sociology
- Coined 'bounded rationality' and 'satisficing'
- Nearly 1000 publications
- An early leader in Artificial Intelligence, Information Processing, Decision-Making, Problem-Solving, Attention Economics, Organization Theory, Complex Systems, And Computer Simulation Of Scientific Discovery.
- Nobel Laureate in Economics

Growth
Mechanisms

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

1. Start with 1 elephant (or element) of a particular flavor at $t=1$

2. At time $t=2,3,4, \ldots$, add a new elephant in one of two ways:

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

1. Start with 1 elephant (or element) of a particular flavor at $t=1$
2. At time $t=2,3,4, \ldots$, add a new elephant in one of two ways:

- With probability ρ, create a new elephant with a new flavor

Growth

- With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.

Essential Extract of a Growth Model：

Random Competitive Replication（RCR）：

1．Start with 1 elephant（or element）of a particular flavor at $t=1$
2．At time $t=2,3,4, \ldots$ ，add a new elephant in one of two ways：
－With probability ρ ，create a new elephant with a new flavor
－With probability $1-\rho$ ，randomly choose from all existing elephants，and make a copy．
－Elephants of the same flavor form a group

Essential Extract of a Growth Model:

Random Competitive Replication (RCR):

1. Start with 1 elephant (or element) of a particular flavor at $t=1$
2. At time $t=2,3,4, \ldots$, add a new elephant in one of two ways:

- With probability ρ, create a new elephant with a new flavor

Growth

- With probability $1-\rho$, randomly choose from all existing elephants, and make a copy.
- Elephants of the same flavor form a group

Essential Extract of a Growth Model：

Random Competitive Replication（RCR）：

1．Start with 1 elephant（or element）of a particular flavor at $t=1$
2．At time $t=2,3,4, \ldots$ ，add a new elephant in one of two ways：
－With probability ρ ，create a new elephant with a new flavor
＝Mutation／Innovation
－With probability $1-\rho$ ，randomly choose from all existing elephants，and make a copy．
－Elephants of the same flavor form a group

Essential Extract of a Growth Model：

Random Competitive Replication（RCR）：

1．Start with 1 elephant（or element）of a particular flavor at $t=1$
2．At time $t=2,3,4, \ldots$ ，add a new elephant in one of two ways：
－With probability ρ ，create a new elephant with a new flavor
＝Mutation／Innovation
－With probability $1-\rho$ ，randomly choose from all existing elephants，and make a copy．
＝Replication／Imitation
－Elephants of the same flavor form a group

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.

- With probability ρ, the next word has not previously appeared

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Note: This is a terrible way to write a novel.

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.

```
> With probability }\rho\mathrm{ , the next word has not previously appeared
```


Growth

Note: This is a terrible way to write a novel.

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared

Growth

> - With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word

[^0]
Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared

Growth

- With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word

Note: This is a terrible way to write a novel.

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared
= Mutation/Innovation

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word

Note: This is a terrible way to write a novel.

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared
= Mutation/Innovation

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word
= Replication/Imitation

Note: This is a terrible way to write a novel.

Random Competitive Replication:

Example: Words appearing in a language

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared
= Mutation/Innovation
Growth
Mechanisms
- With probability $1-\rho$, randomly choose one word from all words that have come before, and reuse this word
= Replication/Imitation

Note: This is a terrible way to write a novel.

For example:

More Power-Law Mechanisms II
.21 words used

- next word is new with prob e
- next word is a copy with prob 1-e prob: next word: 6/21 book 4/21 the $3 / 21$ and 2/21 penguin YO library

Random Competitive Replication:

Some observations:

- Fundamental Rich-get-Richer story;

Competition for replication between individual elephants is random;

- Competition for arowth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Random Competitive Replication:

Some observations:

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on grouns is hiased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

Random Competitive Replication：

Some observations：

－Fundamental Rich－get－Richer story；
－Competition for replication between individual elephants is random；
－Competition for growth between groups of matching elephants is not random；
－Selection on groups is biased by size；
－Random selection sounds easy；
－Possible that no areat knowledae of system needed （but more later

Growth

Mechanisms

Random Competitive Replication:

Some observations:

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later

Growth

Random Competitive Replication:

Some observations:

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;

Growth

> - Possible that no great knowledge of system needed (but more later

Random Competitive Replication:

Some observations:

- Fundamental Rich-get-Richer story;
- Competition for replication between individual elephants is random;
- Competition for growth between groups of matching elephants is not random;
- Selection on groups is biased by size;
- Random selection sounds easy;
- Possible that no great knowledge of system needed (but more later ...).

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

- Steady growth of system: +1 elephant per unit time.

$$
\begin{aligned}
& \text { Steady growth of distinct flavors at } \\
& \text { We can incorporate }
\end{aligned}
$$

Random Competitive Replication:

Growth

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

Random Competitive Replication:

Growth

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

Random Competitive Replication:

Growth

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

Random Competitive Replication:

Growth

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

Random Competitive Replication:

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

Random Competitive Replication:

- Steady growth of system: +1 elephant per unit time.
- Steady growth of distinct flavors at rate ρ
- We can incorporate

1. Elephant elimination
2. Elephants moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size (But mechanism for selection is not as simple...)

Random Competitive Replication:

Definitions:

- $k_{i}=$ size of a group i
$>N_{k}(t)=\#$ groups containing k elephants at time t.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Random Competitive Replication:

Definitions:

- $k_{i}=$ size of a group i
- $N_{k}(t)=\#$ groups containing k elephants at time t.

Growth

Optimization

Random Competitive Replication:

Growth

Definitions:

- $k_{i}=$ size of a group i
- $N_{k}(t)=\#$ groups containing k elephants at time t.

Basic question: How does $N_{k}(t)$ evolve with time?
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Random Competitive Replication:

Definitions:

- $k_{i}=$ size of a group i
- $N_{k}(t)=$ \# groups containing k elephants at time t.

Basic question: How does $N_{k}(t)$ evolve with time?

First: $\sum_{k} k N_{k}(t)=t=$ number of elephants at time t

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
$P_{k}(t)=$ Probability of choosing an elephant that belongs
to a group of size k :

Optimization

Minimal Cost
Mandetbrot vs. Simon
Assumptions

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
$P_{k}(t)=$ Probability of choosing an elephant that belongs to a group of size k :

- $N_{k}(t)$ size k groups

$$
k N_{k}(t) \text { elephants in size } k \text { groups }
$$

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
$P_{K}(t)=$ Probability of choosing an elephant that belongs to a group of size k :

- $N_{k}(t)$ size k groups
- $\Rightarrow k N_{k}(t)$ elephants in size k groups

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Random Competitive Replication:

$P_{K}(t)=$ Probability of choosing an elephant that belongs to a group of size k :

- $N_{k}(t)$ size k groups
- $\Rightarrow k N_{k}(t)$ elephants in size k groups
- t elephants overall

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Random Competitive Replication:

$P_{K}(t)=$ Probability of choosing an elephant that belongs to a group of size k :

- $N_{k}(t)$ size k groups
- $\Rightarrow k N_{k}(t)$ elephants in size k groups
- t elephants overall

$$
P_{k}(t)=\frac{k N_{k}(t)}{t}
$$

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

An elephant belonging to a group with k elephants is

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?
2. An elephant belonging to a group with $k-1$ elephants is replicated

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
2. An elephant belonging to a group with $k-1$ elephants is replicated

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated
2. An elephant belonging to a group with $k-1$ elephants is replicated

Random Competitive Replication:

Growth

Mechanisms
$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated

$$
N_{k}(t+1)=N_{k}(t)-1
$$

2. An elephant belonging to a group with $k-1$ elephants is replicated

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated

$$
N_{k}(t+1)=N_{k}(t)-1
$$

Happens with probability $(1-\rho) k N_{k}(t) / t$
2. An elephant belonging to a group with $k-1$ elephants is replicated

Growth

Mechanisms

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated

$$
N_{k}(t+1)=N_{k}(t)-1
$$

Happens with probability $(1-\rho) k N_{k}(t) / t$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
2. An elephant belonging to a group with $k-1$ elephants is replicated

$$
N_{k}(t+1)=N_{k}(t)+1
$$

Random Competitive Replication:

$N_{k}(t)$, the number of groups with k elephants, changes at time t if

1. An elephant belonging to a group with k elephants is replicated

$$
N_{k}(t+1)=N_{k}(t)-1
$$

Happens with probability $(1-\rho) k N_{k}(t) / t$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is... ?
2. An elephant belonging to a group with $k-1$ elephants is replicated
$N_{k}(t+1)=N_{k}(t)+1$
Happens with probability $(1-\rho)(k-1) N_{k-1}(t) / t$

Random Competitive Replication:

Special case for $N_{1}(t)$:

The new elephant is a new flavor:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

2. A unique elephant is replicated.

Random Competitive Replication:

Special case for $N_{1}(t)$:

\author{

1. The new elephant is a new flavor:
}

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

2. A unique elephant is replicated.

Random Competitive Replication:

Special case for $N_{1}(t)$:

1. The new elephant is a new flavor:

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

2. A unique elephant is replicated.

Random Competitive Replication:

Special case for $N_{1}(t)$:

1. The new elephant is a new flavor:

$$
N_{1}(t+1)=N_{1}(t)+1
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
2. A unique elephant is replicated.

Random Competitive Replication:

Special case for $N_{1}(t)$:

1. The new elephant is a new flavor:
$N_{1}(t+1)=N_{1}(t)+1$
Happens with probability ρ

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
2. A unique elephant is replicated.

Random Competitive Replication:

Special case for $N_{1}(t)$:

1. The new elephant is a new flavor:
$N_{1}(t+1)=N_{1}(t)+1$
Happens with probability ρ

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
2. A unique elephant is replicated.
$N_{1}(t+1)=N_{1}(t)-1$

Random Competitive Replication:

Special case for $N_{1}(t)$:

1. The new elephant is a new flavor:
$N_{1}(t+1)=N_{1}(t)+1$
Happens with probability ρ

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?
2. A unique elephant is replicated.
$N_{1}(t+1)=N_{1}(t)-1$
Happens with probability $(1-\rho) N_{1} / t$

Random Competitive Replication:

Put everything together:
For $k>1$:

$$
\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions
Model
Analysis
Extra
And the winner is...?

Random Competitive Replication:

Put everything together:
For $k>1$:

$$
\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)
$$

For $k=1$:

$$
\left\langle N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t}
$$

Random Competitive Replication：

Assume distribution stabilizes：$N_{k}(t)=n_{k} t$
（Reasonable for t large）
Growth
Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
References
－Drop expectations
－Numbers of elephants now fractional
－Okay over large time scales
－$n_{k} / \rho=$ the fraction of groups that have size k ．

Random Competitive Replication:

Assume distribution stabilizes: $N_{k}(t)=n_{k} t$
(Reasonable for t large)
Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales
- $n_{k} / \rho=$ the fraction of aroups that have size k

Random Competitive Replication:

Assume distribution stabilizes: $N_{k}(t)=n_{k} t$
(Reasonable for t large)
Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales
- $n_{k} / \rho=$ the fraction of groups that have size k.

Random Competitive Replication:

Growth

Assume distribution stabilizes: $N_{k}(t)=n_{k} t$
(Reasonable for t large)

Optimization

Minimal Cost
Mandelbrot vs. Simon

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales
$\Rightarrow n_{k} / \rho=$ the fraction of groups that have size k.

Random Competitive Replication:

Assume distribution stabilizes: $N_{k}(t)=n_{k} t$
(Reasonable for t large)
Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- Drop expectations
- Numbers of elephants now fractional
- Okay over large time scales
- $n_{k} / \rho=$ the fraction of groups that have size k.

Random Competitive Replication:

More Power-Law Mechanisms II

Stochastic difference equation:

$\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)$
becomes

$$
n_{k}(t+1)-n_{k} t=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right)
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

Random Competitive Replication:

More Power-Law Mechanisms II

Stochastic difference equation:

$$
\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)
$$

becomes

$$
\begin{gathered}
n_{k}(t+1)-n_{k} t=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right) \\
n_{k}(t+1-t)=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right)
\end{gathered}
$$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Random Competitive Replication:

Stochastic difference equation:

$$
\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

$$
\begin{gathered}
n_{k}(t+1-t)=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right) \\
\Rightarrow n_{k}=(1-\rho)\left((k-1) n_{k-1}-k n_{k}\right)
\end{gathered}
$$

Random Competitive Replication:

Stochastic difference equation:

$$
\left\langle N_{k}(t+1)-N_{k}(t)\right\rangle=(1-\rho)\left((k-1) \frac{N_{k-1}(t)}{t}-k \frac{N_{k}(t)}{t}\right)
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

$$
\begin{gathered}
n_{k}(t+1-t)=(1-\rho)\left((k-1) \frac{n_{k-1} t}{t}-k \frac{n_{k} t}{t}\right) \\
\Rightarrow n_{k}=(1-\rho)\left((k-1) n_{k-1}-k n_{k}\right) \\
\Rightarrow n_{k}(1+(1-\rho) k)=(1-\rho)(k-1) n_{k-1}
\end{gathered}
$$

Random Competitive Replication:

We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.
- To get at tail: Expand as a series of powers of $1 / k$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Random Competitive Replication:

We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.
- To get at tail: Expand as a series of powers of $1 / k$

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

- To get at tail: Expand as a series of powers of $1 / k$

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.

Insert question from assignment 3 (\boxplus)

- To get at tail: Expand as a series of powers of $1 / k$

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.

- To get at tail: Expand as a series of powers of $1 / k$

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
We have a simple recursion:

$$
\frac{n_{k}}{n_{k-1}}=\frac{(k-1)(1-\rho)}{1+(1-\rho) k}
$$

- Interested in k large (the tail of the distribution)
- Can be solved exactly.

Insert question from assignment 3 (\boxplus)

- To get at tail: Expand as a series of powers of $1 / k$ Insert question from assignment 3 (\boxplus)

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Random Competitive Replication:

- We (okay, you) find

$$
\frac{n_{k}}{n_{k-1}} \simeq\left(1-\frac{1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}}
$$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Random Competitive Replication:

- We (okay, you) find

$$
\begin{aligned}
\frac{n_{k}}{n_{k-1}} & \simeq\left(1-\frac{1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}} \\
\frac{n_{k}}{n_{k-1}} & \simeq\left(\frac{k-1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}}
\end{aligned}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

Random Competitive Replication：

－We（okay，you）find

$$
\begin{aligned}
& \frac{n_{k}}{n_{k-1}} \simeq\left(1-\frac{1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}} \\
& \frac{n_{k}}{n_{k-1}} \simeq\left(\frac{k-1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}} \\
& n_{k} \propto k^{-\frac{(2-\rho)}{(1-\rho)}}=k^{-\gamma}
\end{aligned}
$$

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost

Mandelbrot vs．Simon

Assumptions

Model

Analysis
Extra
And the winner is．．．？
References

Random Competitive Replication:

- We (okay, you) find

$$
\begin{array}{r}
\frac{n_{k}}{n_{k-1}} \simeq\left(1-\frac{1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}} \\
\frac{n_{k}}{n_{k-1}} \simeq\left(\frac{k-1}{k}\right)^{\frac{(2-\rho)}{(1-\rho)}} \\
n_{k} \propto k^{-\frac{(2-\rho)}{(1-\rho)}}=k^{-\gamma} \\
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
\end{array}
$$

－Micro－to－Macro story with ρ and γ measurable．

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

－Observe $2<\gamma<\infty$ for $0<\rho<1$ ．
－For $\rho \simeq 0$（low innovation rate）：
More Power－Law
Mechanisms II

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon

Assumptions

Model

Analysis
Extra
And the winner is．．．？
References
－＇Wild＇power－law size distribution of group sizes， bordering on＇infinite＇mean．
－For $\rho \simeq 1$（high innovation rate）：
－All elephants have different flavors．
－Upshot：Tunable mechanism producing a family of universality classes．

- Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

- Observe $2<\gamma<\infty$ for $0<\rho<1$.
- For $\rho \simeq 0$ (low innovation rate):

More Power-Law

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.
－Micro－to－Macro story with ρ and γ measurable．

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

－Observe $2<\gamma<\infty$ for $0<\rho<1$ ．
－For $\rho \simeq 0$（low innovation rate）：

$$
\gamma \simeq 2
$$

－＇Wild＇power－law size distribution of group sizes， bordering on＇infinite＇mean．
－For $\rho \simeq 1$（high innovation rate）：
－All elephants have different flavors．
－Upshot：Tunable mechanism producing a family of universality classes．

More Power－Law Mechanisms II

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon

Assumptions

Model

Analysis
Extra
And the winner is．．．？

- Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

- Observe $2<\gamma<\infty$ for $0<\rho<1$.
- For $\rho \simeq 0$ (low innovation rate):

$$
\gamma \simeq 2
$$

- 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- For $\rho \simeq 1$ (high innovation rate):
- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

- Observe $2<\gamma<\infty$ for $0<\rho<1$.
- For $\rho \simeq 0$ (low innovation rate):

$$
\gamma \simeq 2
$$

- 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- For $\rho \simeq 1$ (high innovation rate):

$$
\gamma \simeq \infty
$$

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

- Observe $2<\gamma<\infty$ for $0<\rho<1$.
- For $\rho \simeq 0$ (low innovation rate):

$$
\gamma \simeq 2
$$

- 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- For $\rho \simeq 1$ (high innovation rate):

$$
\gamma \simeq \infty
$$

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.
- Micro-to-Macro story with ρ and γ measurable.

$$
\gamma=\frac{(2-\rho)}{(1-\rho)}=1+\frac{1}{(1-\rho)}
$$

- Observe $2<\gamma<\infty$ for $0<\rho<1$.
- For $\rho \simeq 0$ (low innovation rate):

$$
\gamma \simeq 2
$$

- 'Wild' power-law size distribution of group sizes, bordering on 'infinite' mean.
- For $\rho \simeq 1$ (high innovation rate):

$$
\gamma \simeq \infty
$$

- All elephants have different flavors.
- Upshot: Tunable mechanism producing a family of universality classes.

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
many real systems: city sizes, word distributions,

- Corresponds to $\rho \rightarrow 0$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible.
- Must look at the details to see if mechanism makes sense.

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Random Competitive Replication:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$

We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for
many real systems: city sizes, word distributions,

- Corresponds to $\rho \rightarrow 0$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible.
- Must look at the details to see if mechanism makes sense.

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$
- We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for many real systems: city sizes, word distributions, ...

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- Corresponds to $\rho \rightarrow 0$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible.
- Must look at the details to see if mechanism makes sense.

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$
- We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for many real systems: city sizes, word distributions, ...

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Corresponds to $\rho \rightarrow \mathbf{0}$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible.
- Must look at the details to see if mechanism makes sense.

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$
- We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for many real systems: city sizes, word distributions, ...

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Corresponds to $\rho \rightarrow \mathbf{0}$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
 sense

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$
- We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for many real systems: city sizes, word distributions, ...
- Corresponds to $\rho \rightarrow 0$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible... Must look at the details to see if mechanism makes sense.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Random Competitive Replication:

- Recall Zipf's law: $s_{r} \sim r^{-\alpha}$
($s_{r}=$ size of the r th largest elephant)
- We found $\alpha=1 /(\gamma-1)$
- $\gamma=2$ corresponds to $\alpha=1$
- We (roughly) see Zipfian exponent ${ }^{[26]}$ of $\alpha=1$ for many real systems: city sizes, word distributions, ...
- Corresponds to $\rho \rightarrow 0$, low innovation.
- Krugman doesn't like it) ${ }^{[9]}$ but it's all good.
- Still, other quite different mechanisms are possible...
- Must look at the details to see if mechanism makes sense... more later.

What about small k ?:

We had one other equation:

$$
\begin{aligned}
& \left.\qquad N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t} \\
& \text { As before, set } N_{1}(t)=n_{1} t \text { and drop expectations }
\end{aligned}
$$

$$
n_{1}(t+1)-n_{1} t=\rho-(1-\rho) 1 \cdot \frac{n_{1} t}{t}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

$$
n_{1}=\rho-(1-\rho) n_{1}
$$

- Rearrange:

$$
n_{1}+(1-\rho) n_{1}=\rho
$$

What about small k ?:

We had one other equation:

$$
\left\langle N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t}
$$

- As before, set $N_{1}(t)=n_{1} t$ and drop expectations

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

- Rearrange:

What about small k ?:

We had one other equation:

$$
\left\langle N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t}
$$

- As before, set $N_{1}(t)=n_{1} t$ and drop expectations

$$
\begin{gathered}
n_{1}(t+1)-n_{1} t=\rho-(1-\rho) 1 \cdot \frac{n_{1} t}{t} \\
n_{1}=\rho-(1-\rho) n_{1}
\end{gathered}
$$

- Rearrange:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

What about small k ?:

We had one other equation:

$$
\left\langle N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t}
$$

- As before, set $N_{1}(t)=n_{1} t$ and drop expectations

$$
\begin{gathered}
n_{1}(t+1)-n_{1} t=\rho-(1-\rho) 1 \cdot \frac{n_{1} t}{t} \\
n_{1}=\rho-(1-\rho) n_{1}
\end{gathered}
$$

- Rearrange:

$$
n_{1}+(1-\rho) n_{1}=\rho
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

What about small k ?:

We had one other equation:

$$
\left\langle N_{1}(t+1)-N_{1}(t)\right\rangle=\rho-(1-\rho) 1 \cdot \frac{N_{1}(t)}{t}
$$

- As before, set $N_{1}(t)=n_{1} t$ and drop expectations

$$
\begin{gathered}
n_{1}(t+1)-n_{1} t=\rho-(1-\rho) 1 \cdot \frac{n_{1} t}{t} \\
n_{1}=\rho-(1-\rho) n_{1}
\end{gathered}
$$

- Rearrange:

$$
\begin{gathered}
n_{1}+(1-\rho) n_{1}=\rho \\
n_{1}=\frac{\rho}{2-\rho}
\end{gathered}
$$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

(also $=$ fraction of groups of size 1)
- For ρ small, fraction of unique elepharts $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants ~ $1 / 6$
- Model does well at both ends of the distribution

More Power-Law
Mechanisms II

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

－Recall number of distinct elephants $=\rho t$ ．
－Fraction of distinct elephants that are unique（belong to groups of size 1）：

（also＝fraction of groups of size 1）
－For ρ small，fraction of unique elephants $\sim 1 / 2$
－Roughly observed for real distributions
－ρ increases，fraction increases
－Can show fraction of groups with two elephants ～1／6
－Model does well at both ends of the distribution

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon

Assumptions

Model
Analysis
Extra
And the winner is．．．？
References

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?
(also $=$ fraction of groups of size 1)
For ρ small, fraction of unique elephants $\sim 1 / 2$

- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants
- Model does well at both ends of the distribution

$$
\text { So } \ldots \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
(also = fraction of groups of size 1)

- For ρ small, fraction of unique elephants $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants
- Model does well at both ends of the distribution

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
(also = fraction of groups of size 1)

- For ρ small, fraction of unique elephants $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants
- Model does well at both ends of the distribution

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

(also = fraction of groups of size 1)

- For ρ small, fraction of unique elephants $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants - Model does well at both ends of the distribution

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

(also = fraction of groups of size 1)

- For ρ small, fraction of unique elephants $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants ~ $1 / 6$
> Model does well at both ends of the distribution

$$
\text { So... } \quad N_{1}(t)=n_{1} t=\frac{\rho t}{2-\rho}
$$

- Recall number of distinct elephants $=\rho t$.
- Fraction of distinct elephants that are unique (belong to groups of size 1):

$$
\frac{N_{1}(t)}{\rho t}=\frac{1}{2-\rho}
$$

(also = fraction of groups of size 1)

- For ρ small, fraction of unique elephants $\sim 1 / 2$
- Roughly observed for real distributions
- ρ increases, fraction increases
- Can show fraction of groups with two elephants ~ 1/6
- Model does well at both ends of the distribution

Outline

Growth Mechanisms

Words, Cities, and the Web

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Words：

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost

From Simon ${ }^{[20]}$ ：

Estimate $\rho_{\text {est }}=$ \＃unique words／\＃all words

Mandelbrot vs．Simon
Assumptions

Words:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
From Simon ${ }^{[20]}$:
Estimate $\rho_{\text {est }}=$ \# unique words/\# all words
For Joyce's Ulysses: $\rho_{\text {est }} \simeq 0.115$

Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Words:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost

From Simon ${ }^{[20]}$:

Estimate $\rho_{\text {est }}=$ \# unique words/\# all words
For Joyce's Ulysses: $\rho_{\text {est }} \simeq 0.115$

N_{1} (real)	N_{1} (est)	N_{2} (real)	N_{2} (est)
16,432	15,850	4,776	4,870

Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[24]}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955)
"On a class of skew distribution functions" (snore)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[24]}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[24]}$: "A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:
It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological biological and economic phenomena.

Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{\text {[24] }}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:
It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data
biological and economic phenomena.
Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{\text {[24] }}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:
It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological, biological and economic phenomena.
Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[24]}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological, biological and economic phenomena.
Its appearance is so frequent, and the phenomena so diverse,
phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{[24]}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological, biological and economic phenomena.
Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

- Yule's paper (1924) ${ }^{\text {[24] }}$:
"A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ${ }^{[20]}$: "On a class of skew distribution functions" (snore)

From Simon's introduction:

It is the purpose of this paper to analyse a class of distribution functions that appear in a wide range of empirical data-particularly data describing sociological, biological and economic phenomena.
Its appearance is so frequent, and the phenomena so diverse, that one is led to conjecture that if these phenomena have any property in common it can only be a similarity in the structure of the underlying probability mechanisms.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.

> Citation network of scientific papers Price's term: Cumulative Advantage Idea: naners receive new citations with probability proportional to their existing \# of citations - Directed network - Two (surmountable) problems:
> 1. New papers have no citations 2. Selection mechanism is more complicated

Growth

Mechanisms

Random Copying

Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers

> Price's term: Cumulative Advantage Idea: papers receive new citations with probability proportional to their existing \# of citations - Directed network
> - Two (surmountable) problems: 1. New papers have no citations 2. Selection mechanism is more complicated

Growth

Mechanisms

Random Copying

Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

> Model

Analysis
Extra
And the winner is.. ?

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price’s term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing \# of citations
- Directed network
- Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing \# of citations
- Directed network
- Two (surmountable) problems:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing \# of citations
- Directed network

Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated
Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Evolution of catch phrases:

Derek de Solla Price:

- First to study network evolution with these kinds of models.
- Citation network of scientific papers
- Price's term: Cumulative Advantage
- Idea: papers receive new citations with probability proportional to their existing \# of citations
- Directed network
- Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated

Evolution of catch phrases：

Robert K．Merton：the Matthew Effect（ $⿴ 囗 十$ ）

－Studied careers of scientists and found credit flowed disproportionately to the already famous

Growth

Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...

Growth

- (Hath = suggested unit of purchasing power.)
women's scientific achievements are often overlooked

Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...
(Wait! There's more....)

Growth

[^1]
Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...
(Wait! There's more....)
but from him that hath not, that also which he seemeth to have shall be taken away.

$$
\begin{aligned}
& \text { (Hath = suggested unit of purchasing power.) } \\
& \text { Matilda effect: }(\boxplus) \text { women's scientific achievements } \\
& \text { are often overlooked }
\end{aligned}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...
(Wait! There's more....)
but from him that hath not, that also which he seemeth to have shall be taken away.
And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

Growth

Mechanisms
Random Copying
(Hath = suggested unit of purchasing power.)
women's scientific achievements
are often overlooked

Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...
(Wait! There's more....)
but from him that hath not, that also which he seemeth to have shall be taken away.
And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

- (Hath = suggested unit of purchasing power.)
women's scientific achievements
are often overlooked

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is.

Evolution of catch phrases:

Robert K. Merton: the Matthew Effect (\boxplus)

- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:
"For to every one that hath shall be given...
(Wait! There's more....)
but from him that hath not, that also which he seemeth to have shall be taken away.
And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

- (Hath = suggested unit of purchasing power.)
- Matilda effect: (\boxplus) women’s scientific achievements are often overlooked

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is

Evolution of catch phrases：

Merton was a catchphrase machine：

Self－fulfilling prophecy Role model
 Unintended（or unanticipated）consequences
 Focused interview \rightarrow focus group

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？

Evolution of catch phrases:

Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated) consequences

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
4. Focused interview \rightarrow focus group

Evolution of catch phrases:

Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model

Unintended (or unanticipated) consequences
Focused interview \rightarrow focus group

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Evolution of catch phrases:

Growth

Mechanisms
Random Copying
Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated) consequences

Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

Evolution of catch phrases:

Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated) consequences
4. Focused interview \rightarrow focus group

Evolution of catch phrases:

Merton was a catchphrase machine:

1. Self-fulfilling prophecy
2. Role model
3. Unintended (or unanticipated) consequences
4. Focused interview \rightarrow focus group

And just to be clear...

Evolution of catch phrases：

Merton was a catchphrase machine：
1．Self－fulfilling prophecy
2．Role model
3．Unintended（or unanticipated）consequences
4．Focused interview \rightarrow focus group
And just to be clear．．．
Merton＇s son，Robert C．Merton，won the Nobel Prize for Economics in 1997.

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential At achment
- Considered undirected networks (not realistic but avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy)
- ... and then randomly connect to the node's friends (also easy)
- Scale-free networks = food on the table for physicists

Growth

Mechanisms

Random Copying

Words, Cities, and the Web

Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but
avoids 0 citation problem)
- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy)
- ... and then randomly connect to the node's friends (also easy)
- Scale-free networks = food on the table for physicists

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Evolution of catch phrases：

－Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
－Independent reinvention of a version of Simon and Price＇s theory for networks
－Another term：＂Preferential Attachment＂
－Considered undirected networks（not realistic but avoids 0 citation problem）
－Still have selection problem kased on size （non－random）
－Solution：Randomly connect to a node（easy）
－．．．and then randomly connect to the node＇s friends （also easy）
－Scale－free networks＝food on the table for physicists

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy)
and then randomly connect to the node's friends (also easy)
- Scale-free networks = food on the table for physicists

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy)
and then randomly connect to the node's friends
- Scale-free networks $=$ food on the table for physicists

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...
and then randomly connect to the node's friends
- Scale-free networks = food on the table for physicists

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is.

- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...
- ... and then randomly connect to the node's friends (also easy)
- Scale-free networks $=$ food on the table for physicists

Evolution of catch phrases:

- Barabasi and Albert ${ }^{[1]}$ —thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- Considered undirected networks (not realistic but avoids 0 citation problem)

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is.

- Still have selection problem based on size (non-random)
- Solution: Randomly connect to a node (easy) ...
- ... and then randomly connect to the node's friends (also easy)
- Scale-free networks = food on the table for physicists

Outline

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
References

Benoît Mandelbrot (\boxplus)

Nassim Taleb's tribute:

Benoit Mandelbrot, 1924-2010
A Greek among Romans

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

- Mandelbrot = father of fractals
- Mandelbrot = almond bread
- Bonus Mandelbrot set action: here (\boxplus).

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$

> Idea: Language is efficient
> Communicate as much information as possible for as little cost
> - Need measures of information (H) and average cost (C).
> - Language evolves to maximize H / C, the amount of information per average cost.
> - Equivalently: minimize C / H.
> - Recurring theme: what role does optimization play in complex systems?

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$
- Idea: Language is efficient

Communicate as much information as possible for as little cost

- Need measures of information (H) and average cost (C).
- Language evolves to maximize H / C, the amount of information per average cost.
- Equivalently: minimize C/H.
- Recurring theme: what role does optimization play in complex systems?

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$
- Idea: Language is efficient
- Communicate as much information as possible for as little cost
- Need measures of information (H) and average cost (C).
- Lanquage evolves to maximize H / C, the amount of information per average cost.
- Equivalently: minimize C / H.
- Recurring theme: what role does optimization play in complex systems?

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Another approach：

Benoît Mandelbrot

－Derived Zipf＇s law through optimization ${ }^{[12]}$
－Idea：Language is efficient
－Communicate as much information as possible for as little cost
－Need measures of information（H）and average cost （C）．．．
－Language evolves to maximize H / C ，the amount of information per average cost．
－Equivalently：minimize C / H ．
－Recurring theme：what role does optimization play in complex systems？

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
References

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$
- Idea: Language is efficient
- Communicate as much information as possible for as little cost
- Need measures of information (H) and average cost (C)...
- Language evolves to maximize H / C, the amount of information per average cost.
- Equivalently: minimize C/H.
- Recurring theme: what role does optimization play in complex systems?

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$
- Idea: Language is efficient
- Communicate as much information as possible for as little cost
- Need measures of information (H) and average cost (C)...
- Language evolves to maximize H / C, the amount of information per average cost.
- Equivalently: minimize C / H.
- Recurring theme: what role does optimization play in complex systems?

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...

Another approach:

Benoît Mandelbrot

- Derived Zipf's law through optimization ${ }^{[12]}$
- Idea: Language is efficient
- Communicate as much information as possible for as little cost
- Need measures of information (H) and average cost (C)...
- Language evolves to maximize H / C, the amount of information per average cost.
- Equivalently: minimize C / H.
- Recurring theme: what role does optimization play in complex systems?

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is.
References

Outline

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
Mandelbrot vs．Simon
References

The Quickening (\boxplus) —Mandelbrot versus Simon:

There Can Be Only One: (\boxplus)

- Things there should be only one of:

Theory, Highlander Films.

- Feel free to play Queen's It's a Kind of Magic (\#) in

More Power-Law
Mechanisms II

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

The Quickening (\boxplus)－Mandelbrot versus Simon：

There Can Be Only One：（ \boxplus ）

－Things there should be only one of： Theory，Highlander Films．
－Feel free to play Queen＇s It＇s a Kind of Magic（ $⿴ 囗 十 ⺝ 丶$

More Power－Law Mechanisms II

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost

Mandelbrot vs．Simon
Assumptions

Model

Analysis
Extra
And the winner is．．．？
References

The Quickening (\boxplus) —Mandelbrot versus Simon:

There Can Be Only One: (\boxplus)

- Things there should be only one of: Theory, Highlander Films.
- Feel free to play Queen's It's a Kind of Magic (\boxplus) in

More Power-Law Mechanisms II

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages"
- Simon (1955): "On a class of skew distribution functions
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon"
- Simon (1960): "Some further notes on a class of skew distribution functions"

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" ${ }^{[12]}$
- Simon (1955): "On a class of skew distribution functions"
- Mandelhrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon"
- Simon (1960). "Some further notes on a class of skew distribution functions'

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization

Minimal Cost

Mandelbrot vs. Simon
Assumption
Model
Analysis
Extra
And the winner is...?
References

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" ${ }^{[12]}$
- Simon (1955): "On a class of skew distribution functions" ${ }^{[20]}$
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon"
- Simon (1960): "Some further notes on a class of skew distribution functions"

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization

Minimal Cost

Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" ${ }^{[12]}$
- Simon (1955): "On a class of skew distribution functions" ${ }^{[20]}$
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon" ${ }^{[13]}$
> - Simon (1960): "Some further notes on a class of skew distribution functions"

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" ${ }^{[12]}$
- Simon (1955): "On a class of skew distribution functions" ${ }^{[20]}$
- Mandelbrot (1959): "A note on a class of skew distribution functions: analysis and critique of a paper by H.A. Simon" ${ }^{[13]}$
- Simon (1960): "Some further notes on a class of skew distribution functions" ${ }^{[21]}$

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" ${ }^{[15]}$
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot
- Mandelbrot (1961): "Post scriptum to 'final note"
- Simon (1961): "Reply to Dr. Mandelbrot’s post scriptum"

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" ${ }^{[15]}$
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" ${ }^{[23]}$
- Mandelbrot (1961): "Post scriptum to 'final note"'
- Simon (1961): "Reply to Dr. Mandelbrot's post scriptum"

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" ${ }^{[15]}$
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" ${ }^{[23]}$
- Mandelbrot (1961): "Post scriptum to 'final note"' [15]
- Simon (1961): "Reply to Dr. Mandelbrot’s post scriptum"

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon" ${ }^{[15]}$
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot" ${ }^{[23]}$
- Mandelbrot (1961): "Post scriptum to 'final note"" [15]
- Simon (1961): "Reply to Dr. Mandelbrot's post scriptum" ${ }^{[22]}$

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $p-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:
"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid.

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $p-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $p-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $\mathrm{p}-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Plankton:

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $\mathrm{p}-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Plankton:

"You can't do this to me, I WENT TO COLLEGE!"

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon Assumptions
Model
Analysis
Extra
And the winner is

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $\mathrm{p}-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Plankton:

> "You can't do this to me, I WENT TO COLLEGE!" "You weak minded fool!"

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon Assumptions

Model

Analysis
Extra
And the winner is

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of $\mathrm{p}-1$, so that most of Simon's (1960) reply was irrelevant." ${ }^{[14]}$

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid." ${ }^{[23]}$

Plankton:

> "You can't do this to me, I WENT TO COLLEGE!" "You weak minded foo!!" "You just lost your brain privileges," etc.

Outline

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References
Assumptions

Zipfarama via Optimization:

Mandelbrot's Assumptions:

Language contains n words: w_{1}, w_{2} W_{n}.
i th word appears with probability p_{i}- Words annear randomly according to this distribution(obviously not true...)- Words = composition of letters is important- Alnhabet contains m letters- Words are ordered by length (shortest first)
Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis

Zipfarama via Optimization:

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.

$$
\begin{aligned}
& \text { } i \text { th word appears with probability } p_{i} \\
& \text { Words appear randomly according to this distribution } \\
& \text { (obviously not true...) } \\
& \text { Words = composition of letters is important } \\
& \text { Alphabet contains } m \text { letters } \\
& \text { Words are ordered by length (shortest first) }
\end{aligned}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.
- ith word appears with probability p_{i}

Words appear randomly according to this distribution
(obviously not true...)

- Words = composition of letters is important
- Alphabet contains m letters
- Words are ordered by length (shortest first)

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.
- ith word appears with probability p_{i}
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- Alphabet contains m letters
- Words are ordered by length ($\$$ hortest first)

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Zipfarama via Optimization:

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.
- ith word appears with probability p_{i}
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- Alphabet contains m letters

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Zipfarama via Optimization:

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.
- ith word appears with probability p_{i}
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- Alphabet contains m letters
- Words are ordered by length (shortest first)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Zipfarama via Optimization:

Mandelbrot's Assumptions:

- Language contains n words: $w_{1}, w_{2}, \ldots, w_{n}$.
- ith word appears with probability p_{i}
- Words appear randomly according to this distribution (obviously not true...)
- Words = composition of letters is important
- Alphabet contains m letters
- Words are ordered by length (shortest first)

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Zipfarama via Optimization：

More Power－Law

Mechanisms II

Word Cost

－Length of word（plus a space）
－Word length was irrelevant for Simon＇s method

Objection

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
References

Objections to Objection

Zipfarama via Optimization:

Word Cost

- Length of word (plus a space)
- Word length was irrelevant for Simon's method

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?
References

Objections to Objection

Zipfarama via Optimization:

Word Cost

- Length of word (plus a space)
- Word length was irrelevant for Simon's method

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis
Extra
And the winner is...?

Zipfarama via Optimization：

Growth

Mechanisms

Word Cost

－Length of word（plus a space）
－Word length was irrelevant for Simon＇s method

Objection

－Real words don＇t use all letter sequences

Zipfarama via Optimization:

Growth

Mechanisms

Word Cost

- Length of word (plus a space)
- Word length was irrelevant for Simon's method

Objection

- Real words don't use all letter sequences

Random Copying
Words, Cities, and the Web

Objections to Objection

- Maybe real words roughly follow this pattern (?)
- Words can be encoded this way
- Na na na-na naaaaa.

Zipfarama via Optimization:

Growth

Mechanisms

Word Cost

- Length of word (plus a space)
- Word length was irrelevant for Simon's method

Objection

- Real words don't use all letter sequences

Random Copying
Words, Cities, and the Web

Objections to Objection

- Maybe real words roughly follow this pattern (?)
- Words can be encoded this way
- Na na na-na naaaaa

Zipfarama via Optimization:

Word Cost

- Length of word (plus a space)
- Word length was irrelevant for Simon's method

Objection

- Real words don't use all letter sequences

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...
References

Objections to Objection

- Maybe real words roughly follow this pattern (?)
- Words can be encoded this way
- Na na na-na naaaaa...

Zipfarama via Optimization：

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1+\mathrm{In}_{2} i$	1	2	2.58	3	3.32	3.58	3.81	4

Mandelbrot vs．Simon

Assumptions

Model
Analysis
Extra
And the winner is．．．？
－Word length of 2^{k} th word：$=k+1$
－Word length of i th word $\simeq 1+\log _{2} i$
－For an alphabet with m letters，
word length of i th word $\simeq 1+\log _{m} i$ ．

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1+\mathrm{In}_{2} i$	1	2	2.58	3	3.32	3.58	3.81	4

Mandelbrot vs. Simon

Assumptions

- Word length of 2^{k} th word: $=k+1$
- Word length of i th word $\simeq 1+\log _{2} i$
For an alphabet with m letters,
word length of i th word $\simeq 1+\log _{m} i$.

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1+\mathrm{In}_{2} i$	1	2	2.58	3	3.32	3.58	3.81	4

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions
Model
Analysis
Extra
And the winner is...?

- Word length of 2^{k} th word: $=k+1=1+\log _{2} 2^{k}$
- Word length of i th word $\simeq 1+\log _{2} i$
For an alphabet with m letters,
word length of i th word $\simeq 1+\log _{m} i$.

Zipfarama via Optimization:

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1+\mathrm{In}_{2} i$	1	2	2.58	3	3.32	3.58	3.81	4

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

- Word length of 2^{k} th word: $=k+1=1+\log _{2} 2^{k}$
- Word length of i th word $\simeq 1+\log _{2} i$
- For an alphabet with m letters,
word length of i th word $\simeq 1+\log _{m} i$.

Zipfarama via Optimization:

Binary alphabet plus a space symbol

i	1	2	3	4	5	6	7	8
word	1	10	11	100	101	110	111	1000
length	1	2	2	3	3	3	3	4
$1+\mathrm{In}_{2} i$	1	2	2.58	3	3.32	3.58	3.81	4

Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

- Word length of 2^{k} th word: $=k+1=1+\log _{2} 2^{k}$
- Word length of i th word $\simeq 1+\log _{2} i$
- For an alphabet with m letters, word length of i th word $\simeq 1+\log _{m} i$.

Outline

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Model

Zipfarama via Optimization:

Total Cost C

- Cost of the i th word: $C_{i} \simeq 1+\log _{m} i$
- Cost of the i th word plus space: $C_{i} \simeq 1+\log _{m}(i+1)$

- Simplify base of logarithm:

$$
C_{i}^{\prime} \simeq \log _{m}(i+1)=\frac{\log _{e}(i+1)}{\log _{e} m}
$$

Growth

Mechanisms

Random Copying

Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

- Total Cost:

Zipfarama via Optimization：

Total Cost C

－Cost of the i th word：$C_{i} \simeq 1+\log _{m} i$
－Cost of the i th word plus space：$C_{i} \simeq 1+\log _{m}(i+1)$
－Subtract fixed cost：$C_{i}^{\prime}=C_{i}-1 \simeq \log _{m}(i+1)$
－Simplify base of logarithm：

$$
C_{i}^{\prime} \simeq \log _{m}(i+1)=\frac{\log _{e}(i+1)}{\log _{e} m}
$$

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon

Assumptions

Model

Analysis
Extra
And the winner is．．．？
References

Zipfarama via Optimization:

Total Cost C

- Cost of the i th word: $C_{i} \simeq 1+\log _{m} i$
- Cost of the i th word plus space: $C_{i} \simeq 1+\log _{m}(i+1)$
- Subtract fixed cost: $C_{i}^{\prime}=C_{i}-1 \simeq \log _{m}(i+1)$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?
References

Zipfarama via Optimization:

Total Cost C

- Cost of the i th word: $C_{i} \simeq 1+\log _{m} i$
- Cost of the i th word plus space: $C_{i} \simeq 1+\log _{m}(i+1)$
- Subtract fixed cost: $C_{i}^{\prime}=C_{i}-1 \simeq \log _{m}(i+1)$
- Simplify base of logarithm:

$$
C_{i}^{\prime} \simeq \log _{m}(i+1)=\frac{\log _{e}(i+1)}{\log _{e} m}
$$

- Total Cost:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Zipfarama via Optimization:

Total Cost C

- Cost of the i th word: $C_{i} \simeq 1+\log _{m} i$
- Cost of the i th word plus space: $C_{i} \simeq 1+\log _{m}(i+1)$
- Subtract fixed cost: $C_{i}^{\prime}=C_{i}-1 \simeq \log _{m}(i+1)$
- Simplify base of logarithm:

$$
C_{i}^{\prime} \simeq \log _{m}(i+1)=\frac{\log _{e}(i+1)}{\log _{e} m} \propto \ln (i+1)
$$

- Total Cost:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Zipfarama via Optimization:

Total Cost C

- Cost of the i th word: $C_{i} \simeq 1+\log _{m} i$
- Cost of the i th word plus space: $C_{i} \simeq 1+\log _{m}(i+1)$
- Subtract fixed cost: $C_{i}^{\prime}=C_{i}-1 \simeq \log _{m}(i+1)$
- Simplify base of logarithm:

$$
C_{i}^{\prime} \simeq \log _{m}(i+1)=\frac{\log _{e}(i+1)}{\log _{e} m} \propto \ln (i+1)
$$

- Total Cost:

$$
C \sim \sum_{i=1}^{n} p_{i} C_{i}^{\prime} \propto \sum_{i=1}^{n} p_{i} \ln (i+1)
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Zipfarama via Optimization:

Information Measure

- Use Shannon’s Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy’
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others
- If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$
- If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Growth

Mechanisms

Random Copying

Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Information Measure

- Use Shannon's Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
$\Rightarrow-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others
- If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$
- If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Information Measure

- Use Shannon’s Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others - If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$ - If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Zipfarama via Optimization:

Information Measure

- Use Shannon’s Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others
- If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$ - If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Zipfarama via Optimization:

Information Measure

- Use Shannon’s Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others
- If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$
- If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Zipfarama via Optimization:

Information Measure

- Use Shannon’s Entropy (or Uncertainty):

$$
H=-\sum_{i=1}^{n} p_{i} \log _{2} p_{i}
$$

- (allegedly) von Neumann suggested 'entropy'...
- Proportional to average number of bits needed to encode each 'word' based on frequency of occurrence
- $-\log _{2} p_{i}=\log _{2} 1 / p_{i}=$ minimum number of bits needed to distinguish event i from all others
- If $p_{i}=1 / 2$, need only 1 bit $\left(\log _{2} 1 / p_{i}=1\right)$
- If $p_{i}=1 / 64$, need 6 bits $\left(\log _{2} 1 / p_{i}=6\right)$

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Information Measure

- Use a slightly simpler form:

$$
H=-\sum_{i=1}^{n} p_{i} \log _{e} p_{i} / \log _{e} 2
$$

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Information Measure

- Use a slightly simpler form:

$$
H=-\sum_{i=1}^{n} p_{i} \log _{e} p_{i} / \log _{e} 2=-g \sum_{i=1}^{n} p_{i} \ln p_{i}
$$

where $g=1 / \ln 2$

Zipfarama via Optimization:

- Minimize

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=C / H
$$

subject to constraint

$$
\sum_{i=1}^{n} p_{i}=1
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- Minimize

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=C / H
$$

subject to constraint

$$
\sum_{i=1}^{n} p_{i}=1
$$

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

- Tension:
(1) Shorter words are cheaper

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

- Minimize

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=C / H
$$

subject to constraint

$$
\sum_{i=1}^{n} p_{i}=1
$$

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

- Tension:
(1) Shorter words are cheaper
(2) Longer words are more informative (rarer)

Outline

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Analysis

Zipfarama via Optimization:

Time for Lagrange Multipliers:

- Minimize

$$
\begin{gathered}
\Psi\left(p_{1}, p_{2}, \ldots, p_{n}\right)= \\
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)+\lambda G\left(p_{1}, p_{2}, \ldots, p_{n}\right)
\end{gathered}
$$

where

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\frac{C}{H}=\frac{\sum_{i=1}^{n} p_{i} \ln (i+1)}{-g \sum_{i=1}^{n} p_{i} \ln p_{i}}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

and the constraint function is

Zipfarama via Optimization:

Time for Lagrange Multipliers:

- Minimize

$$
\begin{gathered}
\Psi\left(p_{1}, p_{2}, \ldots, p_{n}\right)= \\
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)+\lambda G\left(p_{1}, p_{2}, \ldots, p_{n}\right)
\end{gathered}
$$

where

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\frac{C}{H}=\frac{\sum_{i=1}^{n} p_{i} \ln (i+1)}{-g \sum_{i=1}^{n} p_{i} \ln p_{i}}
$$

and the constraint function is

$$
G\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i}-1=0
$$

Zipfarama via Optimization:

Time for Lagrange Multipliers:

- Minimize

$$
\begin{gathered}
\Psi\left(p_{1}, p_{2}, \ldots, p_{n}\right)= \\
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)+\lambda G\left(p_{1}, p_{2}, \ldots, p_{n}\right)
\end{gathered}
$$

where

$$
F\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\frac{C}{H}=\frac{\sum_{i=1}^{n} p_{i} \ln (i+1)}{-g \sum_{i=1}^{n} p_{i} \ln p_{i}}
$$

and the constraint function is

$$
G\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\sum_{i=1}^{n} p_{i}-1=0
$$

Zipfarama via Optimization:

Some mild suffering leads to:

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+1)^{-H / g C}
$$

- A power law appears [applause]: $\alpha=H / g C$
- Next: sneakily deduce λ in terms of g, C, and H.
- Find

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Some mild suffering leads to:

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+1)^{-H / g C} \propto(j+1)^{-H / g C}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Some mild suffering leads to:

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+1)^{-H / g C} \propto(j+1)^{-H / g C}
$$

- A power law appears [applause]: $\alpha=H / g C$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Zipfarama via Optimization：

Growth

Mechanisms
Random Copying

Some mild suffering leads to：

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+1)^{-H / g C} \propto(j+1)^{-H / g C}
$$

－A power law appears［applause］：$\alpha=H / g C$
－Next：sneakily deduce λ in terms of g, C ，and H ．
－Find
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon

Assumptions

Model

Analysis
Extra
And the winner is．．．？

Zipfarama via Optimization：

Growth

Mechanisms
Random Copying

Some mild suffering leads to：

$$
p_{j}=e^{-1-\lambda H^{2} / g C}(j+1)^{-H / g C} \propto(j+1)^{-H / g C}
$$

－A power law appears［applause］：$\alpha=H / g C$
－Next：sneakily deduce λ in terms of g, C ，and H ．
－Find

$$
p_{j}=(j+1)^{-H / g C}
$$

Zipfarama via Optimization：

Finding the exponent

－Now use the normalization constraint：

$$
1=\sum_{j=1}^{n} p_{j}
$$

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
－As $n \rightarrow \infty$ ，we end up with $\zeta(H / g C)=2$
where ζ is the Riemann Zeta Function
－Gives $\alpha \simeq 1.73$（ >1 ，too high）
－If cost function changes $(j+1 \rightarrow j+a)$ then
exponent is tunable
－Increase a，decrease α

Zipfarama via Optimization:

Finding the exponent

- Now use the normalization constraint:

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

- As $n \rightarrow \infty$, we end up with $\zeta(H / g C)=2$
where (is the Riemann Zeta Function
- Gives $\alpha \simeq 1.73$ (>1, too high)
- If cost function changes $(j+1 \rightarrow j+a)$ then
exponent is tunable
- Increase a, decrease α

Zipfarama via Optimization：

Finding the exponent

－Now use the normalization constraint：

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}=\sum_{j=1}^{n}(j+1)^{-\alpha}
$$

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
－As $n \rightarrow \infty$ ，we end up with $\zeta(H / g C)=2$
where ζ is the Riemann Zeta Function
－Gives $\alpha \simeq 1.73$（ >1 ，too high）
－If cost function changes $(j+1 \rightarrow j+a)$ then
exponent is tunable
－Increase a，decrease α

Zipfarama via Optimization:

Finding the exponent

- Now use the normalization constraint:

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}=\sum_{j=1}^{n}(j+1)^{-\alpha}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

- As $n \rightarrow \infty$, we end up with $\zeta(H / g C)=2$ where ζ is the Riemann Zeta Function
- Gives $\alpha \simeq 1.73$ (>1, too high)
- If cost function changes $(j+1 \rightarrow j+a)$ then
exponent is tunable
- Increase a, decrease α

Zipfarama via Optimization:

Finding the exponent

- Now use the normalization constraint:

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}=\sum_{j=1}^{n}(j+1)^{-\alpha}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra
And the winner is...?

- As $n \rightarrow \infty$, we end up with $\zeta(H / g C)=2$ where ζ is the Riemann Zeta Function
- Gives $\alpha \simeq 1.73$ (>1, too high)
- If cost function changes $(j+1 \rightarrow j+a)$ then
exponent is tunable
- Increase a, decrease a

Zipfarama via Optimization：

Finding the exponent
－Now use the normalization constraint：

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}=\sum_{j=1}^{n}(j+1)^{-\alpha}
$$

Growth

Mechanisms
Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
－As $n \rightarrow \infty$ ，we end up with $\zeta(H / g C)=2$ where ζ is the Riemann Zeta Function
－Gives $\alpha \simeq 1.73$（ >1 ，too high）
－If cost function changes $(j+1 \rightarrow j+a)$ then exponent is tunable
－Increase a，decrease α

Zipfarama via Optimization:

Finding the exponent

- Now use the normalization constraint:

$$
1=\sum_{j=1}^{n} p_{j}=\sum_{j=1}^{n}(j+1)^{-H / g C}=\sum_{j=1}^{n}(j+1)^{-\alpha}
$$

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

- As $n \rightarrow \infty$, we end up with $\zeta(H / g C)=2$ where ζ is the Riemann Zeta Function
- Gives $\alpha \simeq 1.73$ (>1, too high)
- If cost function changes $(j+1 \rightarrow j+a)$ then exponent is tunable
- Increase a, decrease α

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

All told:

- Reasonable approach: Optimization is at work in evolutionary processes
But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness, Mandelbrot's argument is not super convincing Exponent depends too much on a loose definition of cost

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Zipfarama via Optimization:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

All told:

Optimization

Minimal Cost
Mandelbrot vs. Simon

- Reasonable approach: Optimization is at work in evolutionary processes
- But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness,...
- Mandelbrot's argument is not super convincing
- Exponent depends too much on a loose definition of cost

Zipfarama via Optimization:

All told:

- Reasonable approach: Optimization is at work in evolutionary processes
- But optimization can involve many incommensurate elephants: monetary cost, robustness, happiness,...
- Mandelbrot's argument is not super convincing
- Exponent depends too much on a loose definition of cost

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Zipfarama via Optimization：

All told：

－Reasonable approach：Optimization is at work in evolutionary processes
－But optimization can involve many incommensurate elephants：monetary cost，robustness，happiness，．．．
－Mandelbrot＇s argument is not super convincing
－Exponent depends too much on a loose definition of cost

Growth
Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions

From the discussion at the end of Mandelbrot's paper:

- A. S. C. Ross: "M. Mandelbrot states that 'the actual direction of evolution (sc. of language) is, in fact, towards fuller and fuller utilization of places'. We are, in fact, completely without evidence as to the existence of any 'direction of evolution' in language, and it is axiomatic that we shall remain so. Many philologists would deny that a 'direction of evolution' could be theoretically possible; thus I myself take the view that a language develops in what is essentially a purely random manner."
- Mandelbrot: "As to the 'fundamental linguistic units being the least possible differences between pairs of utterances' this is a logical consequence of the fact that two is the least integer greater than one."

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is
References

More:

Reconciling Mandelbrot and Simon

- Mixture of local optimization and randomness
- Numerous efforts

```
Carlson and Doyle, 1999:
Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness
Ferrer i Cancho and Solé, 2002:
Zipf's Principle of Least Effort
D'Souza et al., 2007:
Scale-free networks
```


Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

More:

Reconciling Mandelbrot and Simon

- Mixture of local optimization and randomness
- Numerous efforts...

1. Carlson and Doyle, 1999: Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness ${ }^{[4,5]}$
2. Ferrer i Cancho and Solé, 2002 :

Zipf's Principle of Least Effort
3. D'Souza et al., 2007:

Scale-free networks

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References

More:

Reconciling Mandelbrot and Simon

- Mixture of local optimization and randomness
- Numerous efforts...

1. Carlson and Doyle, 1999: Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness ${ }^{[4,5]}$
2. Ferrer i Cancho and Solé, 2002: Zipf's Principle of Least Effort ${ }^{[8]}$
D'Souza et al., 2007:
Scale-free networks

More:

Reconciling Mandelbrot and Simon

- Mixture of local optimization and randomness
- Numerous efforts...

1. Carlson and Doyle, 1999: Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness ${ }^{[4,5]}$
2. Ferrer i Cancho and Solé, 2002: Zipf's Principle of Least Effort ${ }^{[8]}$
3. D'Souza et al., 2007:

Scale-free networks ${ }^{[6]}$

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) ${ }^{[16]}$
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language"
- Let us now slap Miller around by simply reading his words out:

- Side note: Miller mentions "Genes of Language."
- Still fighting: "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution" ${ }^{[7]}$ by Ferrer-i-Cancho and Elvevåg, 2010.

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) ${ }^{[16]}$
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" ${ }^{[17, ~ 25]}$
- Let us now slap Miller around by simply reading his words out:

- Side note: Miller mentions "Genes of Language."
- Still fighting: "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution"
 Ferrer-i-Cancho and Elvevåg, 2010.

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) ${ }^{[16]}$
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf's "Psycho-biology of Language" ${ }^{[17, ~ 25]}$
- Let us now slap Miller around by simply reading his words out:

- Side note: Miller mentions "Genes of Language."
- Still fighting: "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution" Ferrer-i-Cancho and Elvevåg, 2010

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) ${ }^{[16]}$
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf’s "Psycho-biology of Language" ${ }^{[17, ~ 25]}$
- Let us now slap Miller around by simply reading his words out:

- Side note: Miller mentions "Genes of Language."

More

Other mechanisms:

- Much argument about whether or not monkeys typing could produce Zipf's law... (Miller, 1957) ${ }^{[16]}$
- Miller gets to slap Zipf rather rudely in an introduction to a 1965 reprint of Zipf’s "Psycho-biology of Language" ${ }^{[17, ~ 25]}$
- Let us now slap Miller around by simply reading his

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions

Model

Analysis words out:

- Side note: Miller mentions "Genes of Language."
- Still fighting: "Random Texts Do Not Exhibit the Real Zipf's Law-Like Rank Distribution" ${ }^{[7]}$ by Ferrer-i-Cancho and Elvevåg, 2010.

Outline

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

Extra

Others are also not happy:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Krugman and Simon

-"The Self-Organizing Economy" (Paul Krugman, 1995) ${ }^{[9]}$

- Krugman touts Zipf's law for cities, Simon's model
- "Déjà vu, Mr. Krugman" (Berry, 1999)
- Substantial work done by Urban Geographers

Others are also not happy:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Krugman and Simon

- "The Self-Organizing Economy" (Paul Krugman, 1995) ${ }^{[9]}$
- Krugman touts Zipf's law for cities, Simon's model
-"Déjà vu, Mr. Krugman" (Berry, 1999)
- Substantial work done by Urban Geographers

Others are also not happy:

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization

Krugman and Simon

- "The Self-Organizing Economy" (Paul Krugman, 1995) ${ }^{[9]}$
- Krugman touts Zipf's law for cities, Simon's model
- "Déjà vu, Mr. Krugman" (Berry, 1999)
- Substantial work done by Urban Geographers

Others are also not happy：

Krugman and Simon

－＂The Self－Organizing Economy＂（Paul Krugman， 1995）${ }^{[9]}$
－Krugman touts Zipf＇s law for cities，Simon＇s model
－＂Déjà vu，Mr．Krugman＂（Berry，1999）
－Substantial work done by Urban Geographers

Who needs a hug?

From Berry ${ }^{[2]}$

- Déjà vu, Mr. Krugman. Been there, done that. The Simon-ljiri model was introduced to geographers in 1958 as an explanation of city size distributions, the first of many such contributions dealing with the steady states of random growth processes, ...

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model
Analysis
Extra

- ---

And the winner is

But then, I suppose, even if Krugman had known about these studies, they would have been discounted because they were not written by professional economists or published in one of the top five journals in economics!

Who needs a hug?

From Berry ${ }^{[2]}$

- Déjà vu, Mr. Krugman. Been there, done that. The Simon-ljiri model was introduced to geographers in 1958 as an explanation of city size distributions, the first of many such contributions dealing with the steady states of random growth processes, ...

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra

- But then, I suppose, even if Krugman had known about these studies, they would have been discounted because they were not written by professional economists or published in one of the top five journals in economics!

Who needs a hug？

From Berry ${ }^{[2]}$

－．．．［Krugman］needs to exercise some humility，for his world view is circumscribed by folkways that militate against recognition and acknowledgment of scholarship beyond his disciplinary frontier．

Who needs a hug?

From Berry ${ }^{[2]}$

- ... [Krugman] needs to exercise some humility, for his world view is circumscribed by folkways that militate against recognition and acknowledgment of scholarship beyond his disciplinary frontier.
- Urban geographers, thank heavens, are not so afflicted.

Outline

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

And the winner is...?

So who's right?

More Power-Law

 Mechanisms II
Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References
Zipf's power law is a ubiquitous empirical regularity found in many systems, thought to result from proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth models that have been previously conjectured to be at the origin of Zipf's law. We use exceptionally detailed data on the evolution of open source software projects in Linux distributions, which offer a remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf's law over four full decades.

So who＇s right？

Mechanisms II

Growth

Mechanisms

Random Copying
Words，Cities，and the Web

Optimization

Minimal Cost
Mandetbrot vs．Simon

Assumptions

FIG． 1 （color online）．（Color Online）Log－log plot of the number of packages in four Debian Linux Distributions with more than C in－directed links．The four Debian Linux Distributions are Woody（19．07．2002）（orange diamonds）， Sarge（06．06．2005）（green crosses），Etch（15．08．2007）（blue circles），Lenny（ 15.12 .2007 ）（black＋＇s）．The inset shows the maximum likelihood estimate（MLE）of the exponent μ together with two boundaries defining its 95% confidence interval（ap－ proximately given by $1 \pm 2 / \sqrt{n}$ ，where n is the number of data points using in the MLE），as a function of the lower threshold． The MLE has been modified from the standard Hill estimator to take into account the discreteness of C ．

Maillart et al．，PRL，2008：
 ＂Empirical Tests of Zipf＇s Law Mechanism in Open Source Linux Distribution＂${ }^{[11]}$

So who's right?

FIG. 2. Left panel: Plots of ΔC versus C from the Etch release (15.08.2007) to the latest Lenny version $(05.05 .2008)$ in double logarithmic scale. Only positive values are displayed. The linear regression $\Delta C=R \times C+C_{0}$ is significant at the 95% confidence level, with a small value $C_{0}=0.3$ at the origin and $R=$ 0.09 . Right panel: same as left panel for the standard deviation of ΔC.

- Rough, approximately linear relationship between C

Growth
Mechanisms
Random Copying

Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?

Extra

So who's right?

Growth

Mechanisms
Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.
Show Simon's model fares well.Recall $\rho=$ probability new flavor appears.in 1999 give $\rho \simeq 0.10$- Leads to $\gamma=1+\frac{1}{1-\rho} \simeq 2.1$ for in-link distribution.- Cite direct measurement of γ at the time: $2.1+0.1$and 2.09 in two studies.

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

So who's right?

Growth

Mechanisms
Random Copying
Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.

- Show Simon's model fares well.

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?

So who's right?

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.

- Show Simon's model fares well.
- Recall $\rho=$ probability new flavor appears.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

Optimization

Minimal Cost
Mandelbrot vs. Simon

Assumptions

Model

Analysis
Extra
And the winner is...?
References
crawls in approximately 6 month period
in 1999 give $\rho \simeq 0.10$

- Leads to $\tau=1+\frac{1}{\underline{2}} \sim 2.1$ for in-link distribution.
- Cite direct measurement of γ at the time: 2.1 ± 0.1 and 2.09 in two studies.

So who's right?

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.

- Show Simon's model fares well.
- Recall $\rho=$ probability new flavor appears.
- Alta Vista (\boxplus) crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$
- Leads to $\gamma=1+\frac{1}{1-\rho} \simeq 2.1$ for in-link distribution.
- Cite direct measurement of γ at the time: 2.1 ± 0.1 and 2.09 in two studies.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

So who's right?

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.

- Show Simon's model fares well.
- Recall $\rho=$ probability new flavor appears.
- Alta Vista (\boxplus) crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$
- Leads to $\gamma=1+\frac{1}{1-\rho} \simeq 2.1$ for in-link distribution.
- Cite direct measurement of γ at the time: 2.1 ± 0.1 and 2.09 in two studies.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web

So who's right?

Bornholdt and Ebel (PRE), 2001: "World Wide Web scaling exponent from Simon’s 1955 model" ${ }^{[3]}$.

- Show Simon's model fares well.
- Recall $\rho=$ probability new flavor appears.
- Alta Vista (\boxplus) crawls in approximately 6 month period in 1999 give $\rho \simeq 0.10$
- Leads to $\gamma=1+\frac{1}{1-\rho} \simeq 2.1$ for in-link distribution.
- Cite direct measurement of γ at the time: 2.1 ± 0.1 and 2.09 in two studies.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web

So who's right?

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization

Nutshell:

- Simonish random 'rich-get-richer' models agree in detail with empirical observations.

Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
Mandelbrot's optimality is still

Optimality arises for free in Random Competitive Replication models.

So who's right?

Nutshell:

- Simonish random 'rich-get-richer' models agree in detail with empirical observations.
- Power-lawfulness: Mandelbrot's optimality is still apparent.

```
Optimality arises for free in Random Competitive
Replication models.
```


So who's right?

Nutshell:

- Simonish random 'rich-get-richer' models agree in detail with empirical observations.
- Power-lawfulness: Mandelbrot's optimality is still apparent.
- Optimality arises for free in Random Competitive Replication models.

References I

[1] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509-511, 1999. pdf (\boxplus)
[2] B. J. L. Berry.
Déjà vu, Mr. Krugman.
Urban Geography, 20:1-2, 1999. pdf (\boxplus)
[3] S. Bornholdt and H. Ebel.
World Wide Web scaling exponent from Simon's 1955 model.
Phys. Rev. E, 64:035104(R), 2001. pdf (\boxplus)
[4] J. M. Carlson and J. Doyle.
Highly optimized tolerance: A mechanism for power laws in designed systems.
Phys. Rev. E, 60(2):1412-1427, 1999. pdf (\boxplus)

References II

[5] J. M. Carlson and J. Doyle.
Complexity and robustness.
Proc. Natl. Acad. Sci., 99:2538-2545, 2002. pdf (\boxplus)
[6] R. M. D'Souza, C. Borgs, J. T. Chayes, N. Berger, and R. D. Kleinberg.
Emergence of tempered preferential attachment from optimization.
Proc. Natl. Acad. Sci., 104:6112-6117, 2007. pdf (\boxplus)
Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References
[7] R. Ferrer-i Cancho and B. Elvevåg.
Random texts do not exhibit the real Zipf's law-like rank distribution.
PLoS ONE, 5:e9411, 032010.
[8] R. Ferrer i Cancho and R. V. Solé. Zipf's law and random texts.
Advances in Complex Systems, 5(1):1-6, 2002.

References III

[9] P. Krugman.
The self-organizing economy.
Blackwell Publishers, Cambridge; Massachusetts, 1995.
[10] A. J. Lotka.
The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16:317-323, 1926.
[11] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh.
Empirical tests of Zipf's law mechanism in open source Linux distribution.
Phys. Rev. Lett., 101(21):218701, 2008. pdf (\boxplus)

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

References IV

[12] B. B. Mandelbrot.
An informational theory of the statistical structure of languages.
In W. Jackson, editor, Communication Theory, pages
486-502. Butterworth, Woburn, MA, 1953. pdf (\boxplus)
[13] B. B. Mandelbrot.
A note on a class of skew distribution function. Analysis and critique of a paper by H. A. Simon. Information and Control, 2:90-99, 1959.
[14] B. B. Mandelbrot.
Final note on a class of skew distribution functions: analysis and critique of a model due to H. A. Simon. Information and Control, 4:198-216, 1961.

Growth
Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is...?
References

References V

[15] B. B. Mandelbrot.
Post scriptum to 'final note'.
Information and Control, 4:300-304, 1961.
[16] G. A. Miller.
Some effects of intermittent silence.
American Journal of Psychology, 70:311-314, 1957.
pdf (\boxplus)
[17] G. A. Miller.
Introduction to reprint of G. K. Zipf's "The Psycho-Biology of Language." MIT Press, Cambridge MA, 1965. pdf (\boxplus)
[18] D. J. d. S. Price.
Networks of scientific papers.
Science, 149:510-515, 1965. pdf (\boxplus)

References VI

［19］D．J．d．S．Price．
A general theory of bibliometric and other cumulative advantage processes．
J．Amer．Soc．Inform．Sci．，27：292－306， 1976.
［20］H．A．Simon．
On a class of skew distribution functions．
Biometrika，42：425－440，1955．pdf（ \boxplus ）

Growth

Mechanisms
Random Copying
Words，Cities，and the Web
Optimization
Minimal Cost
Mandelbrot vs．Simon
Assumptions
Model
Analysis
Extra
And the winner is．．．？
References
［21］H．A．Simon．
Some further notes on a class of skew distribution functions．
Information and Control，3：80－88， 1960.
［22］H．A．Simon．
Reply to Dr．Mandelbrot＇s post scriptum． Information and Control，4：305－308， 1961.

References VII

[23] H. A. Simon.
Reply to 'final note' by Benoît Mandelbrot. Information and Control, 4:217-223, 1961.
[24] G. U. Yule.
A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S.
Phil. Trans. B, 213:21-, 1924.

Growth

Mechanisms
Random Copying
Words, Cities, and the Web
Optimization
Minimal Cost
Mandelbrot vs. Simon
Assumptions
Model
Analysis
Extra
And the winner is ...?
References
[25] G. K. Zipf.
The Psycho-Biology of Language.
Houghton-Mifflin, New York, NY, 1935.
[26] G. K. Zipf.
Human Behaviour and the Principle of Least-Effort.
Addison-Wesley, Cambridge, MA, 1949.

[^0]: Note: This is a terrible way to write a novel.

[^1]: (Hath = suggested unit of purchasing power.)
 women's scientific achievements are often overlooked

