Mechanisms for Generating Power-Law Size Distributions I

Principles of Complex Systems CSYS/MATH 300, Spring, 2013

Prof. Peter Dodds

 @peterdodds
Department of Mathematics \& Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

(1) (1)(2)

Outline

Random Walks

The First Return Problem
Examples

Variable transformation Basics Holtsmark's Distribution PLIPLO

References

Mechanisms：

A powerful story in the rise of complexity：
－structure arises out of randomness．
Random Walks
The First Return Problem

Mechanisms：

A powerful story in the rise of complexity：
－structure arises out of randomness．

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- Exhibit A: Random walks. (\boxplus)

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- Exhibit A: Random walks. (\boxplus)

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a drunk) starts at origin $x=0$.
- Step at time t is ϵ_{t} :

1 with probability $1 / 2$

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- Exhibit A: Random walks. (\boxplus)

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a drunk) starts at origin $x=0$.
- Step at time t is ϵ_{t} :

1 with probability $1 / 2$
1 with probability $1 / 2$

Mechanisms:

A powerful story in the rise of complexity:

- structure arises out of randomness.
- Exhibit A: Random walks. (\boxplus)

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- Random walker (e.g., a drunk) starts at origin $x=0$.
- Step at time t is ϵ_{t} :
with probability $1 / 2$
with probability $1 / 2$

Mechanisms：

A powerful story in the rise of complexity：
－structure arises out of randomness．
－Exhibit A：Random walks．（ \boxplus ）
The essential random walk：
－One spatial dimension．
－Time and space are discrete
－Random walker（e．g．，a drunk）starts at origin $x=0$ ．
－Step at time t is ϵ_{t} ：

$$
\epsilon_{t}= \begin{cases}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{cases}
$$

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

A few random random walks:

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
ЭQく 4 of 44

Random walks：

Displacement after t steps：

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Random walks:

Displacement after t steps:

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement:

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}
$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

Random walks：

Displacement after t steps：

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement：

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}\left\langle\epsilon_{i}\right\rangle=0
$$

－At any time step，we＇expect＇our drunkard to be back at the pub．
－Obviously fails for odd number of steps．．．
－But as time goes on，the chance of our drunkard lurching back to the pub must diminish，right？

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References

っのく 5 of 44

Random walks：

Displacement after t steps：

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement：

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}\left\langle\epsilon_{i}\right\rangle=0
$$

－At any time step，we＇expect＇our drunkard to be back at the pub．
－Obviously fails for odd number of steps．．．
－But as time goes on，the chance of our drunkard lurching back to the pub must diminish，right？

Random Walks

The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References

Random walks:

Displacement after t steps:

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement:

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}\left\langle\epsilon_{i}\right\rangle=0
$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

Random walks:

Displacement after t steps:

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement:

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}\left\langle\epsilon_{i}\right\rangle=0
$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

Random walks:

Displacement after t steps:

$$
x_{t}=\sum_{i=1}^{t} \epsilon_{i}
$$

Expected displacement:

$$
\left\langle x_{t}\right\rangle=\left\langle\sum_{i=1}^{t} \epsilon_{i}\right\rangle=\sum_{i=1}^{t}\left\langle\epsilon_{i}\right\rangle=0
$$

- At any time step, we 'expect' our drunkard to be back at the pub.
- Obviously fails for odd number of steps...
- But as time goes on, the chance of our drunkard lurching back to the pub must diminish, right?

Variances sum：（ \boxplus ）＊

$$
\operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right)
$$

＊Sum rule＝a good reason for using the variance to measure spread；only works for independent distributions．

So typical displacement from the origin scales as：

Variances sum: (\boxplus)*

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=
\end{aligned}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

Variances sum: $(\boxplus)^{*}$

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=
\end{aligned}
$$

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

Variances sum: $(\boxplus)^{*}$

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=t
\end{aligned}
$$

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

Variances sum: (\boxplus)*

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=t
\end{aligned}
$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

$$
\sigma=t^{1 / 2}
$$

- A non-trivial scaling law arises out of additive aggregation or accumulation.

Variances sum: (\boxplus)*

$$
\begin{aligned}
& \operatorname{Var}\left(x_{t}\right)=\operatorname{Var}\left(\sum_{i=1}^{t} \epsilon_{i}\right) \\
& =\sum_{i=1}^{t} \operatorname{Var}\left(\epsilon_{i}\right)=\sum_{i=1}^{t} 1=t
\end{aligned}
$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as:

$$
\sigma=t^{1 / 2}
$$

- A non-trivial scaling law arises out of additive aggregation or accumulation.

Great moments in Televised Random Walks:

Plinko! (田) from the Price is Right.

Random walk basics:

Counting random walks:

- Each specific random walk of length t appears with a chance $1 / 2^{t}$.
- We'll be more interested in how many random walks end up at the same place.
- Define $N(i, j, t)$ as \# distinct walks that start at $x=i$ and end at $x=j$ after t time steps.
- Random walk must displace by $+(j-i)$ after t steps.

$$
N(i, j, t)=\binom{t}{(t+j-i) / 2}
$$

Random Walks

The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Random walk basics:

Counting random walks:

- Each specific random walk of length t appears with a chance $1 / 2^{t}$.
- We'll be more interested in how many random walks end up at the same place.
- Define $N(i, j, t)$ as \# distinct v/alks that start at $x=i$ and end at $x=j$ after t time steps.
- Random walk must displace by $+(j-i)$ after t steps.

Random walk basics:

Counting random walks:

- Each specific random walk of length t appears with a chance $1 / 2^{t}$.
- We'll be more interested in how many random walks end up at the same place.
Define $N(i, j, t)$ as \# distinct walks that start at $x=i$ and end at $x=j$ after t time steps.
- Random walk must displace by $+(j-i)$ after t steps.

Random walk basics:

Counting random walks:

- Each specific random walk of length t appears with a chance $1 / 2^{t}$.
- We'll be more interested in how many random walks end up at the same place.
- Define $N(i, j, t)$ as \# distinct walks that start at $x=i$ and end at $x=j$ after t time steps.
- Random walk must displace by $+(j-i)$ after t steps.

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Random walk basics：

Counting random walks：

－Each specific random walk of length t appears with a chance $1 / 2^{t}$ ．
－We＇ll be more interested in how many random walks end up at the same place．
－Define $N(i, j, t)$ as \＃distinct walks that start at $x=i$ and end at $x=j$ after t time steps．
－Random walk must displace by $+(j-i)$ after t steps．

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Random walk basics：

Counting random walks：

－Each specific random walk of length t appears with a chance $1 / 2^{t}$ ．
－We＇ll be more interested in how many random walks end up at the same place．
－Define $N(i, j, t)$ as \＃distinct walks that start at $x=i$ and end at $x=j$ after t time steps．
－Random walk must displace by $+(j-i)$ after t steps．
－Insert question from assignment 2 （ \boxplus ）

$$
N(i, j, t)=\binom{t}{(t+j-i) / 2}
$$

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.
- Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$
\operatorname{Pr}\left(x_{t} \equiv x\right) \simeq \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} .
$$

- The whole is different from the parts.

Random Walks

The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

How does $P\left(x_{t}\right)$ behave for large t ？
－Take time $t=2 n$ to help ourselves．
＞$x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
－$x_{2 n}$ is even so set $x_{2 n}=2 k$ ．
－Using our exnression $N(i, j, t)$ with $i=0, j=2 k$ ，and $t=2 n$ ，we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

－For large n ，the binomial deliciously approaches the Normal Distribution of Snoredom：

－The whole is different from the parts．
\＃nutritious
－See also：Stable Distributions（ $⿴ 囗 十 ⺝)$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution PLIPLO

References

How does $P\left(x_{t}\right)$ behave for large t ？
－Take time $t=2 n$ to help ourselves．
－$x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
－$x_{2 n}$ is even so set $x_{2 n}=2 k$ ．
－Using our expression $N(i, j, t)$ with $i=0, j=2 k$ ，and $t=2 n$ ，we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

－For large n ，the binomial deliciously approaches the Normal Distribution of Snoredom：

－The whole is different from the parts．
\＃nutritious
－See also：
葸筑vivisury

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.

Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

- The whole is different from the parts.

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.
- Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

- The whole is different from the parts.
$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.
- Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$
\operatorname{Pr}\left(x_{t} \equiv x\right) \simeq \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

Insert question from assignment 2 (\boxplus)

- See also:
\#nutritious

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.
- Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$
\operatorname{Pr}\left(x_{t} \equiv x\right) \simeq \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

Insert question from assignment 2 (\boxplus)

- The whole is different from the parts.
\#nutritious
- See also:
$|0|$

How does $P\left(x_{t}\right)$ behave for large t ?

- Take time $t=2 n$ to help ourselves.
- $x_{2 n} \in\{0, \pm 2, \pm 4, \ldots, \pm 2 n\}$
- $x_{2 n}$ is even so set $x_{2 n}=2 k$.
- Using our expression $N(i, j, t)$ with $i=0, j=2 k$, and $t=2 n$, we have

$$
\operatorname{Pr}\left(x_{2 n} \equiv 2 k\right) \propto\binom{2 n}{n+k}
$$

- For large n, the binomial deliciously approaches the Normal Distribution of Snoredom:

$$
\operatorname{Pr}\left(x_{t} \equiv x\right) \simeq \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}
$$

Insert question from assignment 2 (\boxplus)

- The whole is different from the parts.
\#nutritious
- See also: Stable Distributions (\boxplus)

Universality (\boxplus) is also not left-handed:

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- This is Diffusion (\boxplus) : the most essential kind of spreading (more later).
- View as Random Additive Growth Mechanism.

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flin game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is...
> In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier:

The expected time between tied scores $=\infty$!

Random Walks

The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is...
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier: The expected time between tied scores $=\infty$.

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 11 of 44

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is...
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier: The expected tirne between tied scores $=\infty$!

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... - In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier: The expected time between tied scores $=\infty$!

$\left\lvert\, \begin{gathered}0 \\ 6 \\ 0\end{gathered}\right.$

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is...
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier:

${ }^{\circ}$

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}$
- Even crazier:

The expected time between tied scores $=\infty$.

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0 .
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}>\cdots$

$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 0\end{aligned}\right.$

Random walks are even weirder than you might think...

- $\xi_{r, t}=$ the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0 .
- In fact: $\xi_{0, t}>\xi_{1, t}>\xi_{2, t}>\cdots$
- Even crazier:

The expected time between tied scores $=\infty!$
$|0|$

Random walks are even weirder than you might think．．．
－$\xi_{r, t}=$ the probability that by time step t ，a random walk has crossed the origin r times．
－Think of a coin flip game with ten thousand tosses．
－If you are behind early on，what are the chances you
－The most likely number of lead changes is．．． 0.
－In fact：$\xi_{0, t}>\xi_{1, t}>\xi_{2, t}>\ldots$
－Even crazier：
The expected time between tied scores $=\infty$ ！
See Feller，Intro to Probability Theory，Volume I ${ }^{[3]}$

$\left\lvert\, \begin{gathered}0 \\ 6 \\ 0\end{gathered}\right.$

Outline

Random Walks
The First Return Problem

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด^ 12 of 44

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- What about higher dimensions?

Reasons for caring:

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

$\left\lvert\, \begin{gathered}0 \\ 6\end{gathered}\right.$

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

${ }^{\circ}{ }^{\circ}$

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

1. We will find a power-law size distribution with an interesting exponent.
2. Some physical structures may result from random walks.
We'll start to see how different scalings relate to each other.

10

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

1. We will find a power-law size distribution with an interesting exponent.
2. Some physical structures may result from random walks.

3. We'll start to see how different scalings relate to each other.

っa^ 13 of 44

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

1. We will find a power-law size distribution with an interesting exponent.
2. Some physical structures may result from random walks.
3. We'll start to see how different scalings relate to each other.

๑ด® 13 of 44

Random walks \#crazytownbananapants

The problem of first return:

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

1. We will find a power-law size distribution with an interesting exponent.
2. Some physical structures may result from random walks.
3. We'll start to see how different scalings relate to each other.

Random Walks
The First Return Problem Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left\lvert\, \begin{gathered}0 \\ 6 \\ 0\end{gathered}\right.$

Power－Law
－Idea：Transform first return problem into an easier return problem．
For random walks in 1－d：

\rightarrow A return to origin can only happen when $t=2 n$ ．
－In example above，returns occur at $t=8,10$ ，and 14 ．
－Call $P_{f r}(2 n)$ the probability of first return at $t=2 n$ ．
－Probability calculation \equiv Counting problem （combinatorics／statistical mechanics）．

Mechanisms I

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution PLIPLO

References

つのく 14 of 44

For random walks in 1-d:

- A return to origin can only happen when $t=2 n$.
- In example above, returns occur at $t=8,10$, and 14 .
- Call $P_{\mathrm{fr}}(2 n)$ the probability of first return at $t=2 n$.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$ っの® 14 of 44

For random walks in 1-d:

- A return to origin can only happen when $t=2 n$.
- In example above, returns occur at $t=8,10$, and 14 .
- Call $P_{\mathrm{fr}}(2 n)$ the probability of first return at $t=2 n$.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

っด® 14 of 44

For random walks in 1-d:

- A return to origin can only happen when $t=2 n$.
- In example above, returns occur at $t=8,10$, and 14.
- Call $P_{\mathrm{fr}}(2 n)$ the probability of first return at $t=2 n$.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).

- Idea: Transform first return problem into an easier

 return problem.Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

For random walks in 1-d:

- A return to origin can only happen when $t=2 n$.
- In example above, returns occur at $t=8,10$, and 14.
- Call $P_{\mathrm{fr}}(2 n)$ the probability of first return at $t=2 n$.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

For random walks in 1-d:

- A return to origin can only happen when $t=2 n$.
- In example above, returns occur at $t=8,10$, and 14.
- Call $P_{\mathrm{fr}}(2 n)$ the probability of first return at $t=2 n$.
- Probability calculation \equiv Counting problem (combinatorics/statistical mechanics).
- Idea: Transform first return problem into an easier return problem.

Random Walks
The First Return Problem

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$
$\Rightarrow P_{\mathrm{fr}}(2 n)=$ $2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
- The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 .
- The 2 accounts for drunkards that first lurch to

1
\mid
のQく 15 of 44

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$. - $P_{\mathrm{fr}}(2 n)=$ $2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
- The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 .
- The 2 accounts for drunkards that first lurch to

Power-Law
Mechanisms I

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$.
$\begin{aligned} & P_{\mathrm{fr}}(2 n)= \\ & 2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1, \text { and } x_{1}=x_{2 n-1}=1\right)\end{aligned}$ - The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 . - The 2 accounts for drunkards that first lurch to

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$.
- $P_{\mathrm{fr}}(2 n)=$
$2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
- The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 .
- The 2 accounts for drunkards that first lurch to
$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$.
- $P_{\mathrm{fr}}(2 n)=$
$2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
- The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 .

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

- Can assume drunkard first lurches to $x=1$.
- Observe walk first returning at $t=16$ stays at or above $x=1$ for $1 \leq t \leq 15$ (dashed red line).
- Now want walks that can return many times to $x=1$.
- $P_{\mathrm{fr}}(2 n)=$ $2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1,1 \leq t \leq 2 n-1\right.$, and $\left.x_{1}=x_{2 n-1}=1\right)$
- The $\frac{1}{2}$ accounts for $x_{2 n}=2$ instead of 0 .
- The 2 accounts for drunkards that first lurch to $x=-1$.

Random Walks
The First Return Problem

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

っの^ 16 of 44

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem Examples

Variable

transformation
Basics
Holtsmark's Distribution PLIPLO

References

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem Examples

Variable

transformation
Basics
Holtsmark's Distribution PLIPLO

References

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.

> Call walks that drop below $x=1$ excluded walks. We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.

We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem

${ }^{\circ}$

Counting first returns:

Approach:

- Move to counting numbers of walks.
- Return to probability at end.
- Again, $N(i, j, t)$ is the \# of possible walks between $x=i$ and $x=j$ taking t steps.
- Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps.
- Idea: If we can compute the number of walks that hit $x=0$ at least once, then we can subtract this from the total number to find the ones that maintain $x \geq 1$.
- Call walks that drop below $x=1$ excluded walks.
- We'll use a method of images to identify these excluded walks.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

${ }^{\circ}$

Examples of excluded walks：

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution PLIPLO

Key observation for excluded walks：
－For any path starting at $x=1$ that hits 0 ，there is a unique matching path starting at $x=-1$ ．
－Matching path first mirrors and then tracks after first reaching $x=0$ ．
－\＃of t－step paths starting and ending at $x=1$ and hitting $x=0$ at least once

$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$ \rightarrow So $N_{\text {first return }}(2 n)=N(1,1,2 n-2)-N(-1,1,2 n-2)$

Examples of excluded walks:

Random Walks
The First Return Problem

Key observation for excluded walks:

- For any path starting at $x=1$ that hits 0 , there is a unique matching path starting at $x=-1$.
- Matching path first mirrors and then tracks after first reaching $x=0$.
\# of t-step paths starting and ending at $x=1$ and
hitting $x=0$ at least once

Examples of excluded walks:

Random Walks
The First Return Problem

Key observation for excluded walks:

- For any path starting at $x=1$ that hits 0 , there is a unique matching path starting at $x=-1$.
- Matching path first mirrors and then tracks after first reaching $x=0$.
- \# of t-step paths starting and ending at $x=1$ and hitting $x=0$ at least once

Examples of excluded walks:

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References
Key observation for excluded walks:

- For any path starting at $x=1$ that hits 0 , there is a unique matching path starting at $x=-1$.
- Matching path first mirrors and then tracks after first reaching $x=0$.
- \# of t-step paths starting and ending at $x=1$ and hitting $x=0$ at least once
$=\#$ of t-step paths starting at $x=-1$ and ending at $x=1$

Examples of excluded walks:

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References
Key observation for excluded walks:

- For any path starting at $x=1$ that hits 0 , there is a unique matching path starting at $x=-1$.
- Matching path first mirrors and then tracks after first reaching $x=0$.
- \# of t-step paths starting and ending at $x=1$ and hitting $x=0$ at least once
$=\#$ of t-step paths starting at $x=-1$ and ending at $x=1=N(-1,1, t)$

Examples of excluded walks:

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References
Key observation for excluded walks:

- For any path starting at $x=1$ that hits 0 , there is a unique matching path starting at $x=-1$.
- Matching path first mirrors and then tracks after first reaching $x=0$.
- \# of t-step paths starting and ending at $x=1$ and hitting $x=0$ at least once
$=\#$ of t-step paths starting at $x=-1$ and ending at $x=1=N(-1,1, t)$
- So $N_{\text {first return }}(2 n)=N(1,1,2 n-2)-N(-1,1,2 n-2)$

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

- Normalized number of paths gives probability.

$$
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n)
$$

References
Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

っの® 18 of 44

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

- Normalized number of paths gives probability.

$$
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n)
$$

References

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

๑ด® 18 of 44

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

- Normalized number of paths gives probability.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

っのल 18 of 44

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

- Normalized number of paths gives probability.
- Total number of possible paths $=2^{2 n}$.

$$
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n)
$$

Random Walks
The First Return Problem Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

のQく 18 of 44

Probability of first return：

Insert question from assignment 2 （ \boxplus ）：

－Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

－Normalized number of paths gives probability．
－Total number of possible paths $=2^{2 n}$ ．

$$
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n)
$$

つのく 18 of 44

Probability of first return：

Insert question from assignment 2 （ \boxplus ）：

－Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

－Normalized number of paths gives probability．
－Total number of possible paths $=2^{2 n}$ ．

$$
\begin{gathered}
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n) \\
\simeq \frac{1}{2^{2 n}} \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
\end{gathered}
$$

っのく 18 of 44

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}
$$

- Normalized number of paths gives probability.
- Total number of possible paths $=2^{2 n}$.

$$
\begin{gathered}
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n) \\
\simeq \frac{1}{2^{2 n}} \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}} \\
=\frac{1}{\sqrt{2 \pi}}(2 n)^{-3 / 2} \propto t^{-3 / 2}
\end{gathered}
$$

๑ด^ 18 of 44

Probability of first return:

Insert question from assignment 2 (\boxplus) :

- Find

$$
N_{\mathrm{fr}}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}} .
$$

- Normalized number of paths gives probability.
- Total number of possible paths $=2^{2 n}$.

$$
\begin{gathered}
P_{\mathrm{fr}}(2 n)=\frac{1}{2^{2 n}} N_{\mathrm{fr}}(2 n) \\
\simeq \frac{1}{2^{2 n}} \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}} \\
=\frac{1}{\sqrt{2 \pi}}(2 n)^{-3 / 2} \propto t^{-3 / 2} .
\end{gathered}
$$

๑ด® 18 of 44

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

っの 19 of 44

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. \#totalmadness
- Even thouç h walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. \#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks

The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 19 of 44

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 19 of 44

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
\#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

のa^ 19 of 44

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
\#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 0\end{aligned}\right.$

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
\#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left\lvert\, \begin{aligned} & 0 \\ & 6 \\ & 0\end{aligned}\right.$

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
\#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions (\boxplus):

- Walker in $d=2$ dimensions must also return
- Walker may not return in $d \geq 3$ dimensions

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite.
\#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions (\boxplus):

- Walker in $d=2$ dimensions must also return
- Walker may not return in $d \geq 3$ dimensions

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

First Returns

$$
P(t) \propto t^{-3 / 2}, \gamma=3 / 2
$$

- Same scaling holds for continuous space/time walks.
- $P(t)$ is normalizable.
- Recurrence: Random walker always returns to origin
- But mean, variance, and all higher moments are infinite. \#totalmadness
- Even though walker must return, expect a long wait...
- One moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Higher dimensions (\boxplus) :

- Walker in $d=2$ dimensions must also return
- Walker may not return in $d \geq 3$ dimensions

Random Walks
The First Return Problem Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system

Random Walks
The First Return Problem

- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

つa® 20 of 44

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Random walks

On finite spaces：
－In any finite homogeneous space，a random walker will visit every site with equal probability
－Call this probability the Invariant Density of a dynamical system
－Non－trivial Invariant Densities arise in chaotic systems．

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency \propto node degree
- Equal probability still present:
walkers traverse edges with equal frequency.

๑ด® 20 of 44

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency \propto node degree \#groovy
- Equal probability still present: walkers traverse edges with equal frequency.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Random walks

On finite spaces:

- In any finite homogeneous space, a random walker will visit every site with equal probability
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

On networks:

- On networks, a random walker visits each node with frequency \propto node degree
- Equal probability still present: walkers traverse edges with equal frequency. \#totallygroovy

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

${ }^{\circ}$

Outline

Random Walks

Examples

Random Walks

The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

っaく 21 of 44

Scheidegger Networks ${ }^{[8,2]}$

- Random directed network on triangular lattice.
- Toy model of real networks.
- 'Flow' is southeast or southwest with equal probability.

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:
- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell)$

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell)$

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$
つดく 23 of 44

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell)$

$\left|\begin{array}{l}0 \\ 6\end{array}\right|$

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell)$

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell)$

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Scheidegger networks

- Creates basins with random walk boundaries.
- Observe that subtracting one random walk from another gives random walk with increments:

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

- Random walk with probabilistic pauses.
- Basin termination = first return random walk problem.
- Basin length ℓ distribution: $P(\ell) \propto \ell^{-3 / 2}$
- For real river networks, generalize to $P(\ell) \propto \ell^{-\gamma}$.

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$
- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-3 / 2} \mathrm{~d} \ell$

っด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-3 / 2} \mathrm{~d} \ell$
$\propto\left(a^{2 / 3}\right)^{-3 / 2} a^{-1 / 3} \mathrm{~d} a$

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$
- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
- $\operatorname{Pr}($ basin area $=a) \mathrm{d} a$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-3 / 2} \mathrm{~d} \ell$
$\propto\left(a^{2 / 3}\right)^{-3 / 2} a^{-1 / 3} \mathrm{~d} a$
$=a^{-4 / 3} d a$

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 24 of 44

Connections between exponents:

- For a basin of length ℓ, width $\propto \ell^{1 / 2}$
- Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
- Invert: $\ell \propto a^{2 / 3}$
- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
- $\operatorname{Pr}($ basin area $=a) \mathrm{d} a$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-3 / 2} \mathrm{~d} \ell$
$\propto\left(a^{2 / 3}\right)^{-3 / 2} a^{-1 / 3} d a$
$=a^{-4 / 3} d a$
$=a^{-\tau} \mathrm{d} a$
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

๑ด® 24 of 44

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Random Walks

The First Return Problem

Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References
Generalize relationship between area and length:

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Random Walks

The First Return Problem

Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

Generalize relationship between area and length:

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length:

- Hack's law

Connections between exponents：

－Both basin area and length obey power law distributions
－Observed for real river networks
－Reportedly： $1.3<\tau<1.5$ and $1.5<\gamma<2$
Generalize relationship between area and length：
－Hack＇s law ${ }^{[4]}$ ：

$$
\ell \propto a^{h} .
$$

－For real，large networks $h \simeq 0.5$
－Smaller basins possibly $h>1 / 2$（later：allometry）．
－Models exist with interesting values of h ．
－Plan：Redo calc with γ, τ ，and h ．

$\left|\begin{array}{l}0 \\ 0\end{array}\right|$

っの凤 25 of 44

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length:

- Hack's law ${ }^{[4]}$:

$$
\ell \propto a^{h} .
$$

- For real, large networks $h \simeq 0.5$
- Smaller basins possibly $h>1 / 2$ (later: allometry).
- Models exist with interesting values of h.
- Plan: Redo calc with γ, τ, and h.

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length:

- Hack's law ${ }^{[4]}$:

$$
\ell \propto a^{h}
$$

- For real, large networks $h \simeq 0.5$
- Smaller basins possibly $h>1 / 2$ (later: allometry).
- Models exist with interesting values of h.
- Plan: Redo calc with γ, τ, and h.

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length:

- Hack's law ${ }^{[4]}$:

$$
\ell \propto a^{h} .
$$

- For real, large networks $h \simeq 0.5$
- Smaller basins possibly $h>1 / 2$ (later: allometry).
- Models exist with interesting values of h.

Connections between exponents:

- Both basin area and length obey power law distributions
- Observed for real river networks
- Reportedly: $1.3<\tau<1.5$ and $1.5<\gamma<2$

Generalize relationship between area and length:

- Hack's law ${ }^{[4]}$:

$$
\ell \propto a^{h} .
$$

- For real, large networks $h \simeq 0.5$
- Smaller basins possibly $h>1 / 2$ (later: allometry).
- Models exist with interesting values of h.
- Plan: Redo calc with γ, τ, and h.

Connections between exponents:

- Given

```
        \ell\propto a}\mp@subsup{a}{}{h},P(a)\propto\mp@subsup{a}{}{-\tau},\mathrm{ and }P(\ell)\propto\mp@subsup{\ell}{}{-\gamma
    dl }\propto\textrm{d}(\mp@subsup{a}{}{h})=h\mp@subsup{a}{}{h-1}\textrm{d}
- Find }\tau\mathrm{ in terms of }\gamma\mathrm{ and }h\mathrm{ .
- Pr(basin area = a)da
= Pr(basin length = \ell)d
```

$$
\tau=1+h(\gamma-1)
$$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

$\Rightarrow \mathrm{d} \ell \propto \mathrm{d}\left(\mathrm{a}^{h}\right)=h \mathrm{a}^{h-1} \mathrm{da}$

- Find τ in terms of γ and h.

Random Walks

The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- Pr(basin area $=a) d a$ $=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$ $=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References
$\operatorname{Pr}($ basin area $=a) d a$ $=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution PLIPLO

References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$

Excellent example of the Scaling Relations found
between exponents describing power laws for many
Excellent example of the Scaling Relations found
between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$
$\propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a$
$=a^{-(1+h(\gamma-1))} d a$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$
$\propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a$
$=a^{-(1+h(\gamma-1))} \mathrm{d} a$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$
$\propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a$
$=a^{-(1+h(\gamma-1))} \mathrm{d} a$

$$
\tau=1+h(\gamma-1)
$$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

帾 UNIVERSITY a VERMONT

Connections between exponents:

- Given

$$
\ell \propto a^{h}, P(a) \propto a^{-\tau}, \text { and } P(\ell) \propto \ell^{-\gamma}
$$

- $\mathrm{d} \ell \propto \mathrm{d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a$
- Find τ in terms of γ and h.
- $\operatorname{Pr}($ basin area $=a) \mathrm{da}$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-\gamma} \mathrm{d} \ell$
$\propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a$
$=a^{-(1+h(\gamma-1))} \mathrm{d} a$

$$
\tau=1+h(\gamma-1)
$$

- Excellent example of the Scaling Relations found between exponents describing power laws for many systems.

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ${ }^{[1]}$

$$
\tau=2-h
$$

and

$$
\gamma=1 / h
$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize class with independent exponents.

Random Walks

The First Return Problem

 ExamplesVariable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References
 のดく 27 of 44

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ${ }^{[1]}$

$$
\tau=2-h
$$

and

$$
\gamma=1 / h
$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize class with independent exponents.

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ${ }^{[1]}$

$$
\tau=2-h
$$

and

$$
\gamma=1 / h
$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize class with independent exponents.

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ${ }^{[1]}$

$$
\tau=2-h
$$

and

$$
\gamma=1 / h
$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize
independent exponents.
class with

Connections between exponents:

With more detailed description of network structure, $\tau=1+h(\gamma-1)$ simplifies to: ${ }^{[1]}$

$$
\tau=2-h
$$

and

$$
\gamma=1 / h
$$

- Only one exponent is independent (take h).
- Simplifies system description.
- Expect Scaling Relations where power laws are found.
- Need only characterize Universality (\boxplus) class with independent exponents.

Other First Returns or First Passage Times:

Failure:

- A very simple model of failure/death: ${ }^{[10]}$
- $x_{t}=$ entity's 'health' at time t
- Start with $x_{0}>0$.
- Entity fails when x hits 0 .

Streams
 - Dispersion of suspended sediments in streams.
 - Long times for clearing.

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

๑ด® 28 of 44

Other First Returns or First Passage Times:

Failure:

- A very simple model of failure/death: ${ }^{[10]}$
- $x_{t}=$ entity's 'health' at time t
- Start with $x_{0}>0$.
- Entity fails when x hits 0 .

Streams

- Dispersion of suspended sediments in streams.
- Long times for clearing.

More than randomness

- Can generalize to Fractional Random Walks ${ }^{[6,7,5]}$

Levy flights, Fractional Brownian Motion

- See Montroll and Shlesinger for example: "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.
- In 1-d, standard deviation σ scales as

Random Walks

The First Return Problem

- Extensive memory of path now matters

More than randomness

- Can generalize to Fractional Random Walks ${ }^{[6,7,5]}$
- Levy flights, Fractional Brownian Motion

- In 1-d, standard deviation σ scales as

Random Walks

- Extensive memory of path now matters

More than randomness

- Can generalize to Fractional Random Walks ${ }^{[6,7,5]}$
- Levy flights, Fractional Brownian Motion
- See Montroll and Shlesinger for example: ${ }^{[5]}$ "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.
- In 1-d, standard deviation σ scales as

$$
\sigma \sim t^{\alpha}
$$

- Extensive memory of path now matters..

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

More than randomness

- Can generalize to Fractional Random Walks ${ }^{[6,7,5]}$
- Levy flights, Fractional Brownian Motion
- See Montroll and Shlesinger for example: ${ }^{[5]}$ "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.
- In 1-d, standard deviation σ scales as

$$
\sigma \sim t^{\alpha}
$$

$\alpha=1 / 2$ - diffusive
$\alpha>1 / 2$ - superdiffusive
$\alpha<1 / 2$ - subdiffusive

- Extensive memory of path now matters.

๑ด® 29 of 44

More than randomness

- Can generalize to Fractional Random Walks ${ }^{[6,7,5]}$
- Levy flights, Fractional Brownian Motion
- See Montroll and Shlesinger for example: ${ }^{[5]}$ "On 1/f noise and other distributions with long tails." Proc. Natl. Acad. Sci., 1982.
- In 1-d, standard deviation σ scales as

$$
\sigma \sim t^{\alpha}
$$

$\alpha=1 / 2$ - diffusive
$\alpha>1 / 2$ - superdiffusive
$\alpha<1 / 2$ - subdiffusive

- Extensive memory of path now matters...

Outline

Basics
Holtsmark＇s Distribution
PLIPLO
References

Variable transformation Basics

青 UN UNIVERSITY IV VERMONT

っの凤 30 of 44

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random Walks
The First Return Problem

- Random variable X with known distribution P_{X}
- Second random variable Y with $y=f(x)$.
- $P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$

- Often easier to do by hand.

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

Random Walks
The First Return Problem

Examples

Variable
transformation

Basics

Holtsmark's Distribution
PLIPLO

- Random variable X with known distribution P_{X}
- Second random variable Y with $y=f(x)$.
- $P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$

- Often easier to do by hand.

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

- Random variable X with known distribution P_{X}
- Second random variable Y with $y=f(x)$.
- $P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$

- Often easier to do by hand.

UND UNERSITY VERMONT

のQく 31 of 44

Variable Transformation

Understand power laws as arising from
1．Elementary distributions（e．g．，exponentials）．
2．Variables connected by power relationships．
－Random variable X with known distribution P_{X}
－Second random variable Y with $y=f(x)$ ．
－$P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$

－Often easier to do by hand．
$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

- Random variable X with known distribution P_{X}
- Second random variable Y with $y=f(x)$.

$\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

Variable Transformation

Understand power laws as arising from

1．Elementary distributions（e．g．，exponentials）．
2．Variables connected by power relationships．
－Random variable X with known distribution P_{X}
－Second random variable Y with $y=f(x)$ ．
－$P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$
$\sum_{y \mid f(x)=y} P_{x}\left(f^{-1}(y)\right) \frac{d y}{\left|f^{\prime}(f-1(y))\right|}$
－Often easier to do by
hand．

Variable Transformation

Understand power laws as arising from

1. Elementary distributions (e.g., exponentials).
2. Variables connected by power relationships.

- Random variable X with known distribution P_{X}
- Second random variable Y with $y=f(x)$.
- $P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$
$\sum_{y \mid f(x)=y} P_{x}\left(f^{-1}(y)\right) \frac{d y}{\left|f^{\prime}(f-1(y))\right|}$
- Often easier to do by hand...

$\left\lvert\, \begin{gathered}0 \\ 6 \\ 0\end{gathered}\right.$

General Example

Power-Law

Mechanisms I

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables:

$y=c x^{-\alpha}, \alpha>0$
 - Look at y large and x small

$$
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right)
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

っの^ 32 of 44

General Example

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables:

- Look at y large and x small

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
$\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right)$

っaく 32 of 44

General Example

－Assume relationship between x and y is 1－1．
－Power－law relationship between variables：

$$
y=c x^{-\alpha}, \alpha>0
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO

っの『 32 of 44

General Example

－Assume relationship between x and y is 1－1．
－Power－law relationship between variables：

$$
y=c x^{-\alpha}, \alpha>0
$$

－Look at y large and x small

General Example

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

- Look at y large and x small

$$
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right)
$$

Basics
Holtsmark's Distribution

っの^ 32 of 44

General Example

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

- Look at y large and x small

$$
\begin{gathered}
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x
\end{gathered}
$$

Basics
Holtsmark's Distribution

っaく 32 of 44

General Example

- Assume relationship between x and y is 1-1.
- Power-law relationship between variables:

$$
y=c x^{-\alpha}, \alpha>0
$$

- Look at y large and x small

$$
\begin{aligned}
& \qquad \mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
& =c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
& \text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y
\end{aligned}
$$

Basics
Holtsmark's Distribution

General Example

－Assume relationship between x and y is 1－1．
－Power－law relationship between variables：

$$
y=c x^{-\alpha}, \alpha>0
$$

－Look at y large and x small

$$
\begin{gathered}
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
\text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y \\
\mathrm{~d} x=\frac{-1}{c \alpha}\left(\frac{y}{c}\right)^{-(\alpha+1) / \alpha} \mathrm{d} y
\end{gathered}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References

っの『 32 of 44

General Example

－Assume relationship between x and y is 1－1．
－Power－law relationship between variables：

$$
y=c x^{-\alpha}, \alpha>0
$$

－Look at y large and x small

$$
\begin{gathered}
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right) \\
=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x \\
\text { invert: } \mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y \\
\mathrm{~d} x=\frac{-1}{c \alpha}\left(\frac{y}{c}\right)^{-(\alpha+1) / \alpha} \mathrm{d} y \\
\mathrm{~d} x=\frac{-c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y
\end{gathered}
$$

Now make transformation:

$$
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x
$$

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References

- If $P_{x}(x) \rightarrow$ non-zero constant as $x \rightarrow 0$ then

- If $P_{x}(x) \rightarrow x^{\beta}$ as $x \rightarrow 0$ then

Now make transformation：

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right)}^{(x)} \overbrace{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}^{\mathrm{d} x}
\end{gathered}
$$

Random Walks
The First Return Problem

Examples

Variable
transformation

Basics

Holtsmark＇s Distribution
PLIPLO
References
－If $P_{x}(x) \rightarrow$ non－zero constant as $x \rightarrow 0$ then

－If $P_{x}(x) \rightarrow x^{\beta}$ as $x \rightarrow 0$ then

っの凤 33 of 44

Now make transformation：

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right)}^{(x)} \overbrace{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}^{\mathrm{d} x}
\end{gathered}
$$

－If $P_{x}(x) \rightarrow$ non－zero constant as $x \rightarrow 0$ then

$$
P_{y}(y) \propto y^{-1-1 / \alpha} \text { as } y \rightarrow \infty
$$

－If $P_{x}(x) \rightarrow x^{\beta}$ as $x \rightarrow 0$ then

っの凤 33 of 44

Now make transformation:

$$
\begin{gathered}
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x \\
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right)}^{(x)} \overbrace{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}^{\mathrm{d} x}
\end{gathered}
$$

- If $P_{x}(x) \rightarrow$ non-zero constant as $x \rightarrow 0$ then

$$
P_{y}(y) \propto y^{-1-1 / \alpha} \text { as } y \rightarrow \infty
$$

- If $P_{x}(x) \rightarrow x^{\beta}$ as $x \rightarrow 0$ then

$$
P_{y}(y) \propto y^{-1-1 / \alpha-\beta / \alpha} \text { as } y \rightarrow \infty
$$

๑a凤 33 of 44

Example

Exponential distribution

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

- Exponentials arise from randomness (easy).
- More later when we cover robustness.

Random Walks
The First Return Problem
Examples
Variable
transformation

Basics

Holtsmark's Distribution
PLIPLO

References

Example

Exponential distribution

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

- Exponentials arise from randomness (easy)...

- More later when we cover robustness.

๑ด® 34 of 44

Example

Exponential distribution

Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$, then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

- Exponentials arise from randomness (easy)...
- More later when we cover robustness.

Outline

Variable transformation

Holtsmark's Distribution

Gravity

－Select a random point in the universe \vec{x}
－Measure the force of gravity $F(\vec{x})$
－Observe that $P_{F}(F) \sim F^{-5 / 2}$

Random Walks
The First Return Problem Examples

Variable
transformation

Basics

Holtsmark＇s Distribution PLIPLO

References

Gravity

- Select a random point in the universe \vec{x}
- Measure the force of gravity $F(\vec{x})$
- Observe that $P_{F}(F) \sim F^{-5 / 2}$

Random Walks
The First Return Problem

Examples

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

Gravity

- Select a random point in the universe \vec{x}
- Measure the force of gravity $F(\vec{x})$
- Observe that $P_{F}(F) \sim F^{-5 / 2}$.

Random Walks
The First Return Problem

Examples

Variable
transformation

Basics

Holtsmark's Distribution PLIPLO

References

Matter is concentrated in stars: ${ }^{[9]}$

- F is distributed unevenly

Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

- Assume stars are distributed randomly in space

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO
References (oops?)

- Assume only one star has significant effect at \vec{x}.
- Law of gravity:

- invert:
- Also invert:
$\mathrm{d} F \propto \mathrm{~d}\left(r^{-2}\right) \propto r^{-3} \mathrm{~d} r \rightarrow \mathrm{~d} r \propto r^{3} \mathrm{~d} F \propto F^{-3 / 2} \mathrm{~d} F$

Matter is concentrated in stars: ${ }^{[9]}$

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space

Random Walks
The First Return Problem

- Also invert:

Matter is concentrated in stars: ${ }^{[9]}$

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x}.
- Law of gravity:

Also invert:

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$

Matter is concentrated in stars：${ }^{[9]}$
－F is distributed unevenly
－Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$ ：

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

－Assume stars are distributed randomly in space （oops？）
－Assume only one star has significant effect at \vec{x} ．
－Law of gravity：
－Also invert：

Matter is concentrated in stars：${ }^{[9]}$
－F is distributed unevenly
－Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$ ：

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

－Assume stars are distributed randomly in space （oops？）
－Assume only one star has significant effect at \vec{x} ．
－Law of gravity：

$$
F \propto r^{-2}
$$

－Also invert：
$\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$

Matter is concentrated in stars: ${ }^{[9]}$

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x}.
- Law of gravity:

$$
F \propto r^{-2}
$$

- invert:

$$
r \propto F^{-1 / 2}
$$

- Also invert:

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$
のQく 37 of 44

Matter is concentrated in stars: ${ }^{[9]}$

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$:

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x}.
- Law of gravity:

$$
F \propto r^{-2}
$$

- invert:

$$
r \propto F^{-1 / 2}
$$

- Also invert: $\mathrm{d} F \propto \mathrm{~d}\left(r^{-2}\right) \propto r^{-3} \mathrm{~d} r \rightarrow \mathrm{~d} r \propto r^{3} \mathrm{~d} F \propto F^{-3 / 2} \mathrm{~d} F$.

Transformation:

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

๑ดく 38 of 44

Transformation：

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$ ，and $P_{r}(r) \propto r^{2}$

$$
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r
$$

Random Walks
The First Return Problem Examples

Variable
transformation Basics
Holtsmark＇s Distribution
PLIPLO

References

つのく 38 of 44

Transformation:

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

$$
\begin{aligned}
& P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r \\
& \propto P_{r}\left(F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F
\end{aligned}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
-
PLIPLO

References

っด® 38 of 44

Transformation：

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$ ，and $P_{r}(r) \propto r^{2}$

$$
\begin{aligned}
& P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r \\
& \propto P_{r}\left(F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F \\
& \propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F
\end{aligned}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
Holtsmark＇s Distribution
PLIPLO

References

っの凤 38 of 44

Transformation：

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$ ，and $P_{r}(r) \propto r^{2}$

$$
\begin{aligned}
& P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r \\
& \propto P_{r}\left(F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F \\
& \propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F \\
& \quad=F^{-1-3 / 2} \mathrm{~d} F
\end{aligned}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
Holtsmarks Distribution
PLIPLO

References

っの凤 38 of 44

Transformation:

Using $r \propto F^{-1 / 2}, \mathrm{~d} r \propto F^{-3 / 2} \mathrm{~d} F$, and $P_{r}(r) \propto r^{2}$

$$
\begin{gathered}
P_{F}(F) \mathrm{d} F=P_{r}(r) \mathrm{d} r \\
\propto P_{r}\left(F^{-1 / 2}\right) F^{-3 / 2} \mathrm{~d} F \\
\propto\left(F^{-1 / 2}\right)^{2} F^{-3 / 2} \mathrm{~d} F \\
=F^{-1-3 / 2} \mathrm{~d} F \\
=F^{-5 / 2} \mathrm{~d} F
\end{gathered}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
PLIPLO

References

๑a凤 38 of 44

Gravity：

$$
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F
$$

Random Walks
The First Return Problem
－Mean is finite．
－Variance $=\infty$ ．
－A wild distribution．
－Upshot：Random sampling of space usually safe but can end badly．．．

Gravity：

$$
\begin{gathered}
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F \\
\gamma=5 / 2
\end{gathered}
$$

Random Walks

The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
－－－－－－－－－－－－－－－－－－
PLIPLO

References

－Mean is finite．
－Variance $=\infty$ ．
－A wild distribution．
－Upshot：Random sampling of space usually safe but can end badly．．．

Gravity:

$$
\begin{gathered}
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F \\
\gamma=5 / 2
\end{gathered}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark's Distribution
Hols-------------PLIPLO

References

- Mean is finite.
- Variance $=\infty$.
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

Gravity：

$$
\begin{gathered}
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F \\
\gamma=5 / 2
\end{gathered}
$$

Random Walks
The First Return Problem

> Examples

Variable
transformation
Basics
Holtsmark＇s Distribution
Holtsmark＇s Distribution PLIPLO

References

－Mean is finite．
－Variance $=\infty$ ．

A wild distribution．
 Upshot：Random sampling of space usually safe but can end badly．

Gravity：

$$
\begin{gathered}
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F \\
\gamma=5 / 2
\end{gathered}
$$

Random Walks
The First Return Problem Examples

Variable
transformation
Basics
Holtsmark＇s Distribution PLIPLO

References

－Mean is finite．
－Variance $=\infty$ ．
－A wild distribution．
Upshot：Random sampling of space usually safe but can end badly．

つのく 39 of 44

Gravity:

$$
\begin{gathered}
P_{F}(F)=F^{-5 / 2} \mathrm{~d} F \\
\gamma=5 / 2
\end{gathered}
$$

- Mean is finite.
- Variance $=\infty$.
- A wild distribution.
- Upshot: Random sampling of space usually safe but can end badly...

っด^ 39 of 44

Outline

Variable transformation

PLIPLO

๑ด^ 40 of 44

Extreme Caution！

－PLIPLO＝Power law in，power law out
－Explain a power law as resulting from another unexplained power law．
－Yet another homunculus al
－We need mechanisms！

Random Walks

The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References

Extreme Caution！

－PLIPLO＝Power law in，power law out
－Explain a power law as resulting from another unexplained power law．
－Yet another
－Don＇t do this！！！（slap，slap）
－We need mechanisms！

Extreme Caution!

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- Yet another homunculus argument (\boxplus)...
- Don't do this!!! (slap, slap)
- We need mechanisms!

Extreme Caution！

－PLIPLO＝Power law in，power law out
－Explain a power law as resulting from another unexplained power law．
－Yet another homunculus argument（ \boxplus ）．．．
－Don’t do this！！！（slap，slap）
－We need mechanisms！

Extreme Caution！

－PLIPLO＝Power law in，power law out
－Explain a power law as resulting from another unexplained power law．
－Yet another homunculus argument（ \boxplus ）．．．
－Don’t do this！！！（slap，slap）
－We need mechanisms！

References I

［2］P．S．Dodds and D．H．Rothman． Scaling，universality，and geomorphology． Annu．Rev．Earth Planet．Sci．，28：571－610， 2000. pdf（ $⿴ 囗 十$ ）
［3］W．Feller．
An Introduction to Probability Theory and Its Applications，volume I．
John Wiley \＆Sons，New York，third edition， 1968.

IN NIVERSITY VERMONT

References II

［4］J．T．Hack．
Studies of longitudinal stream profiles in Virginia and Maryland．
United States Geological Survey Professional Paper， 294－B：45－97，1957．pdf（ \boxplus ）

The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References
［5］E．W．Montroll and M．F．Shlesinger． On the wonderful world of random walks，volume XI of Studies in statistical mechanics，chapter 1，pages 1－121． New－Holland，New York， 1984.
［6］E．W．Montroll and M．W．Shlesinger． On $1 / f$ noise aned other distributions with long tails． Proc．Natl．Acad．Sci．，79：3380－3383，1982．pdf（ \boxplus ）

References III

［7］E．W．Montroll and M．W．Shlesinger．
Maximum entropy formalism，fractals，scaling phenomena，and $1 / f$ noise：a tale of tails．
J．Stat．Phys．，32：209－230， 1983.
［8］A．E．Scheidegger．
The algebra of stream－order numbers．
United States Geological Survey Professional Paper， 525－B：B187－B189，1967．pdf（ $⿴ 囗 十$ ）
［9］D．Sornette．
Critical Phenomena in Natural Sciences．
Springer－Verlag，Berlin，1st edition， 2003.
［10］J．S．Weitz and H．B．Fraser．
Explaining mortality rate plateaus．
Proc．Natl．Acad．Sci．，98：15383－15386， 2001.
pdf (\boxplus)

Random Walks
The First Return Problem
Examples
Variable
transformation
Basics
Holtsmark＇s Distribution
PLIPLO
References

