Lognormals and friends

Principles of Complex Systems
CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth w Variable Lifespan

Outline

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

Outline

Lognormals
Empirical Confusability

References

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth with

There are other 'heavy-tailed' distributions:

The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\boxplus$).

3. Gamma distributions (\boxplus), and more.

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\boxplus$).

3. Gamma distributions (\boxplus), and more.

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- In x is distributed according to a normal distribution with mean μ and variance σ.
- Appears in economics and biology where growth increments are distributed normally.

Empirical Confusability

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals

 $median_{lognormal} = e^{\mu}$.

 $1)e^{2\mu+\sigma^2}$, mode $_{ ext{loghormal}}=e^{\mu}$

All moments of lognormals are finite.

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
 $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$

All moments of lognormals are finite.

Empirical Confusability
Random Multiplicative
Growth Model

Growth Model
Random Growth with
Variable Lifespan

Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
 $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$

All moments of lognormals are finite.

Derivation from a normal distribution

Lognormals and friends

Take *Y* as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

► Transform according to P(x)dx = P(y)dy

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals Empirical Confusability

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

Derivation from a normal distribution

Lognormals and friends

Take *Y* as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Empirical Confusability

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

► Transform according to P(x)dx = P(y)dy:

Þ

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

Take *Y* as distributed normally:

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

► Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Growth Model
Random Growth with
Variable Lifespan

Take *Y* as distributed normally:

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

▶ Transform according to P(x)dx = P(y)dy:

•

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

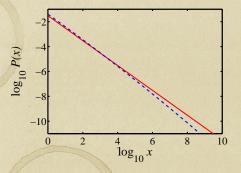
▶ Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Empirical Confusability

Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude!

- For lognormal (blue), $\mu = 0$ and $\sigma = 10$.
- For power law (red), $\gamma = 1$ and c = 0.03.

Lognormals and friends

Empirical Confusability

Random Multiplicative Growth Model

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

ightharpoonup \Rightarrow If $\sigma^2 \gg 1$ and μ ,

Empirical Confusability

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

$$ightharpoonup$$
 \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Empirical Confusability

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\pi^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}$$

▶
$$\Rightarrow$$
 If $\sigma^2 \gg 1$ and μ ,

 $\ln P(x) \sim -\ln x + \text{const.}$

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth with Variable Lifespan

What's happening:

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

$$ightharpoonup$$
 \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Empirical Confusability

What's happening:

•

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

Þ

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

▶ \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth w Variable Lifespan

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

Þ

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

▶ \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

Confusion

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
 - This happens when (roughly)

 $\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{P}{\sigma^2} - 1\right) \ln x$

 $\log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} \epsilon$

 $\leq 0.05(\sigma^2-\mu)$

 If you find a -1 exponent, you may have a lognormal distribution.

Lognormals

Empirical Confusability

Growth Model
Random Growth with
Variable Lifespan

Confusion

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- ► This happens when (roughly)

 $\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x$

 $\log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} \epsilon$

 $0.05(\sigma^2-\mu)$

⇒ If you find a -1 exponent, you may have a lognormal distribution.

Lognormals

Empirical Confusability
Random Multiplicative

Growth Model
Random Growth with
Variable Lifespan

Confusion

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x$$

 $imes \log_{10} x \lesssim 0.05 imes 2 (\sigma^2 - \mu) \log_{10} \epsilon$

 $\simeq 0.05(\sigma^2-\mu)$

If you find a -1 exponent,
 you may have a lognormal distribution

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative

Growth Model
Random Growth with
Variable Lifespan

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

 $(0.05(\sigma^2 - \mu))$

⇒ If you find a -1 exponent,
 you may have a lognormal distribu

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05(\sigma^2 - \mu)$$

If you find a -1 exponent,
 you may have a lognormal distribution

- ► Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05(\sigma^2 - \mu)$$

→ If you find a -1 exponent, you may have a lognormal distribution...

Outline

Lognormals

Random Multiplicative Growth Model

References

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with

•

$$x_{n+1} = rx_n$$

- ► (Shrinkage is allowed)
- ▶ In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

•

$$x_{n+1} = rx_n$$

- (Shrinkage is allowed)
- ▶ In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

•

$$x_{n+1} = rx_n$$

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

•

$$x_{n+1} = rx_n$$

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $\rightarrow x_n$ is lognormally distributed

•

$$x_{n+1} = rx_n$$

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow ln x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

Lognormals or power laws?

▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq$ 1).

Lognormals and

friends

Empirical Confusability

Random Multiplicative Growth Model

Random Growth v Variable Lifespan

Lognormals or power laws?

- ► Gibrat ^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma =$ 2, not $\gamma =$ 1 (!)
- Problem of data censusing (missing small firms)

Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Random Growth Variable Lifespan

Lognormals or power laws?

- Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma =$ 2, not $\gamma =$ 1 (!)
- Problem of data censusing (missing small firms).

Lognormals and friends

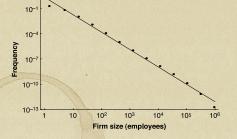
Lognormals

Random Multiplicative Growth Model

Variable Lifespai

Lognormals or power laws?

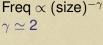
- ▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma =$ 2, not $\gamma =$ 1 (!)
- Problem of data censusing (missing small firms).



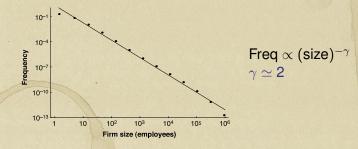
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

Lognormals and

friends



- ► Gibrat ^[2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma =$ 2, not $\gamma =$ 1 (!)
- Problem of data censusing (missing small firms).



One mechanistic piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. [1]. Lognormals and

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with

An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument ^[5] for why power laws appear with exponent $\gamma \simeq$ 2
- The set up: N entities with size x₁(t)
- Generally

 $x_i(t+1) = rx_i(t)$

- where r is drawn from some happy distribution
- Same as for lognormal but one extra piece
- Each x cannot drop too low with respect to the other sizes:

 $\hat{\gamma}(t+1) = \max(rx_i(t), \sigma(x_i))$

Lognormals
Empirical Confusabil

Random Multiplicative Growth Model Random Growth with

An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq$ 2
- ► The set up: N entities with size $x_i(t)$
- → Generally
 - where r is drawn from some hanny dist
- Same as for lognormal but one extra piece
- Each x sannot drop too low with respect to the other sizes:

 $\gamma(t+1) = \max(rx_i(t), c(x_i))$

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Variable Lifespar

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq 2$
- ▶ The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

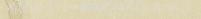
where r is drawn from some happy distribution

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq 2$
- The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- ► Each x, cannot drop too low with respect to the other



- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq 2$
- ► The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- ► Each x_i cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\langle x_i\rangle)$$

Some math later... Insert question from assignment

6 (⊞)

Find
$$P(x) \sim x^{-\gamma}$$

 \blacktriangleright where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... c small $\Rightarrow \gamma \simeq 2$

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Find $P(x) \sim x^{-\gamma}$

 $\,\blacktriangleright\,$ where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

6 (⊞)

Find
$$P(x) \sim x^{-\gamma}$$

lacktriangle where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... c small $\Rightarrow \gamma \simeq 2$

Empirical Confusability
Random Multiplicative

Growth Model
Random Growth with
Variable Lifespan

6 (⊞)

Find
$$P(x) \sim x^{-\gamma}$$

lacktriangle where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... c small $\Rightarrow \gamma \simeq 2$

Lognormals

Random Multiplicative

Random Growth with Variable Lifespan

6 (⊞)

Find
$$P(x) \sim x^{-\gamma}$$

• where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

• Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Random Multiplicative

Find
$$P(x) \sim x^{-\gamma}$$

 \blacktriangleright where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

• Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals

Empirical Confusabilit

Random Multiplicative Growth Model

Outline

Lognormals

Random Growth with Variable Lifespan

References

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

- ► Allow the number of updates for each size *x_i* to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each *x_i* follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each *x_i* follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x_i follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as ^[6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

- Allow the number of updates for each size x_i to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x_i follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- Back to no bottom limit: each x_i follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

- ► Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

Lognormals and friends

ognormals

Random Multiplicative

Random Growth with Variable Lifespan

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dx$$

- ► Insert question from assignment 6 (⊞)

Lognormals and friends

Random Growth with Variable Lifespan

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

- ► Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

$$^{\circ}P(x)\propto x^{-1}e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

Lognormals and friends

ognormals

Random Multiplicative

Random Growth with Variable Lifespan

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 of x/m < 1

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2}\lambda} & \text{if } x/m < 1\\ x^{-1-\sqrt{2}\lambda} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
 - Double-Pareto distribution (⊞)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]. Number of pages per website

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

 $P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$

- 'Break' in scaling (not uncommon)
- ✓ Double-Pareto distribution (⊞)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ▶ Later: Huberman and Adamic ^[3, 4]. Number of pages per website

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ► Double-Pareto distribution (⊞)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]. Number of pages per website

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
 - Double-Pareto distribution (H)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]. Number of pages per website

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ► Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages per website

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1 \\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- Later: Huberman and Adamic [3, 4]. Number of pages

Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages per website

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
 - Take-home message: Be careful out there

Lognormals and friends

Lognormals

Random Multiplicative

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
 - Take-home message: Be careful out there

Lognormals and

Lognormals Empirical Confusab

Random Multiplicative

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes the double Pareto distribution appears
 - Take-home message: Be careful out there

Lognormals and friends

Lognormals

Random Multiplicative

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there.

Lognormals and friends

Lognormals

Random Multiplicative

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- ► Take-home message: Be careful out there...

Lognormals and friends

Lognormals Empirical Confusa

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References I

- [1] R. Axtell.

 Zipf distribution of U.S. firm sizes.

 Science, 293(5536):1818–1820, 2001. pdf (⊞)
- [2] R. Gibrat.
 Les inégalités économiques.
 Librairie du Recueil Sirey, Paris, France, 1931.
- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic.
 The nature of markets in the World Wide Web.
 Quarterly Journal of Economic Commerce, 1:5–12, 2000.

Lognormals and friends

Lognormals

Empirical Confusabilit Random Multiplicative Growth Model Random Growth with

[5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

Phys. Rev. E, 60(2):1299–1303, 1999. pdf (⊞)

[6] M. Mitzenmacher.
A brief history of generative models for power law and lognormal distributions.
Internet Mathematics, 1:226–251, 2003. pdf (H)

[7] E. W. Montroll and M. W. Shlesinger.
On 1/f noise aned other distributions with long tails.
Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf (H)

References III

Lognormals and friends

ognormals

Empirical Confusabilit Random Multiplicative Growth Model Random Growth with

References

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.

