# Lognormals and friends

#### Principles of Complex Systems CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

#### Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

### Lognormals and friends

#### ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with /ariable Lifespan

References





200 1 of 23

# Outline

#### Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

#### References

Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References



DQ @ 2 of 23

# Alternative distributions

### There are other 'heavy-tailed' distributions: 1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions  $(\boxplus)$ 

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

CCDF = stretched exponential  $(\boxplus)$ . 3. Gamma distributions  $(\boxplus)$ , and more.

### Lognormals and friends

#### ognormals

Empirical Confusability Random Multiplicative

Random Growth with /ariable Lifespan

References



DQ @ 4 of 23

### lognormals

#### The lognormal distribution:

$$P(x) = rac{1}{x\sqrt{2\pi\sigma}} \exp\left(-rac{(\ln x - \mu)^2}{2\sigma^2}
ight)$$

- In x is distributed according to a normal distribution with mean μ and variance σ.
- Appears in economics and biology where growth increments are distributed normally.

### Lognormals and friends

#### ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan



### lognormals

Standard form reveals the mean μ and variance σ<sup>2</sup> of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

 $\mu_{\text{lognormal}} = e^{\mu + \frac{1}{2}\sigma^2}, \quad \text{median}_{\text{lognormal}} = e^{\mu},$  $\sigma_{\text{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \quad \text{mode}_{\text{lognormal}} = e^{\mu - \sigma^2}.$  $\blacktriangleright \text{ All moments of lognormals are finite.}$  Lognormals and friends

#### ognormals

Empirical Confusability Random Multiplicative

Random Growth with /ariable Lifespan





# Derivation from a normal distribution

Take *Y* as distributed normally:

$$P(y)$$
d $y = rac{1}{\sqrt{2\pi\sigma}}$ d $y \exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight)$ 

Set  $Y = \ln X$ :

• Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals and friends

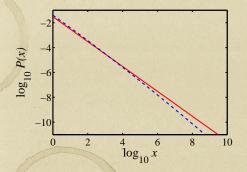
#### ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

VERMONT

# Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude!

• For lognormal (blue),  $\mu = 0$  and  $\sigma = 10$ .

For power law (red),  $\gamma = 1$  and c = 0.03.

Lognormals and friends

#### ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# Confusion

### What's happening:

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$
$$= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$=-\frac{1}{2\sigma^2}(\ln x)^2+\left(\frac{\mu}{\sigma^2}-1\right)\ln x-\ln\sqrt{2\pi}-\frac{\mu^2}{2\sigma^2}.$$

•  $\Rightarrow$  If  $\sigma^2 \gg 1$  and  $\mu$ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

### Lognormals and friends

#### Lognormals

Empirical Confusability Random Multiplicative

Random Growth with /ariable Lifespan

Dec 9 of 23

# Confusion

- Expect -1 scaling to hold until (ln x)<sup>2</sup> term becomes significant compared to (ln x).
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2}-1\right)\ln x$$

$$\Rightarrow \log_{10}{x} \lesssim 0.05 imes 2(\sigma^2 - \mu) \log_{10}{e}$$

$$\simeq 0.05(\sigma^2 - \mu)$$

► ⇒ If you find a -1 exponent, you may have a lognormal distribution...

### Lognormals and friends

#### ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# Generating lognormals:

Random multiplicative growth:

 $x_{n+1} = rx_n$ 

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

 $\ln x_{n+1} = \ln r + \ln x_n$ 

- $\Rightarrow$  ln  $x_n$  is normally distributed
- $\Rightarrow x_n$  is lognormally distributed

Lognormals and friends

#### ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# Lognormals or power laws?

- ► Gibrat <sup>[2]</sup> (1931) uses preceding argument to explain lognormal distribution of firm sizes (γ ≃ 1).
- But Robert Axtell<sup>[1]</sup> (2001) shows a power law fits the data very well with γ = 2, not γ = 1 (!)
- Problem of data censusing (missing small firms).



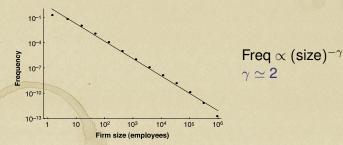
#### ognormals

**Empirical Confusability** 

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

leferences



One mechanistic piece in Gibrat's model seems okay empirically: Growth rate *r* appears to be independent of firm size.<sup>[1]</sup>.



20 13 of 23

# An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument<sup>[5]</sup> for why power laws appear with exponent γ ≃ 2
- The set up: N entities with size x<sub>i</sub>(t)

Generally:

$$x_i(t+1) = rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- Each x<sub>i</sub> cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c \langle x_i \rangle)$$

Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with /ariable Lifespan



# An explanation

Some math later... Insert question from assignment 6 (⊞)

Find  $P(x) \sim x^{-\gamma}$ 

• where  $\gamma$  is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[ \frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

Now, if 
$$c/N \ll 1$$
,  $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[ \frac{-1}{-(c/N)} \right]$ 

Which gives  $\gamma \sim 1 + \frac{1}{1-c}$ 

• Groovy...  $c \text{ small} \Rightarrow \gamma \simeq 2$ 

Lognormals and friends

#### ognormals

**Empirical Confusability** 

Random Multiplicative Growth Model

Random Growth with /ariable Lifespan

NIVERSITY S

Dac 15 of 23

# The second tweak

#### Ages of firms/people/... may not be the same

- Allow the number of updates for each size x<sub>i</sub> to vary
- Example:  $P(t)dt = ae^{-at}dt$  where t = age.
- Back to no bottom limit: each x<sub>i</sub> follows a lognormal
- Sizes are distributed as<sup>[6]</sup>

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that *σ* ∼ *t* and *μ* = ln *m*)
Now averaging different lognormal distributions.

### Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# Averaging lognormals

### Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

Insert question from assignment 6 (⊞)
 Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$



# The second tweak

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

• Depends on sign of  $\ln x/m$ , i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \left\{ egin{array}{ll} x^{-1+\sqrt{2\lambda}} & ext{if } x/m < 1 \ x^{-1-\sqrt{2\lambda}} & ext{if } x/m > 1 \end{array} 
ight.$$

- 'Break' in scaling (not uncommon)
- ► Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger<sup>[7, 8]</sup>
- Later: Huberman and Adamic<sup>[3, 4]</sup>: Number of pages per website

### Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there...

Lognormals and friends

#### ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan



# **References** I

[1] R. Axtell. Zipf distribution of U.S. firm sizes. <u>Science</u>, 293(5536):1818–1820, 2001. pdf (⊞)

- [2] R. Gibrat.
   <u>Les inégalités économiques</u>.
   Librairie du Recueil Sirey, Paris, France, 1931.
- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. <u>Quarterly Journal of Economic Commerce</u>, 1:5–12, 2000.

### Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# **References II**

[5] O. Malcai, O. Biham, and S. Solomon. Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

Phys. Rev. E, 60(2):1299–1303, 1999. pdf (⊞)

 [6] M. Mitzenmacher.
 A brief history of generative models for power law and lognormal distributions.
 Internet Mathematics, 1:226–251, 2003. pdf (⊞)

[7] E. W. Montroll and M. W. Shlesinger.
 On 1/f noise aned other distributions with long tails.
 Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf (⊞)

Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan





# **References III**

Lognormals and friends

ognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

[8] E. W. Montroll and M. W. Shlesinger.
 Maximum entropy formalism, fractals, scaling phenomena, and 1/*f* noise: a tale of tails.
 J. Stat. Phys., 32:209–230, 1983.

