Finding Happiness

Finding Happiness

Principles of Complex Systems CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

> Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Twitter

Health

Movement

Networks

These slides brought to you by:

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

hrases

The End

Finding Happiness

Measuring Happiness

Data sets
Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

hrases

The End

foronoo

eterences

Measuring Happiness

Data sets Blogs

Outline

Twitter

Geography

Health

Demographics

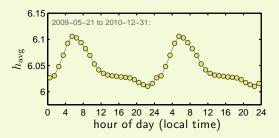
Movement

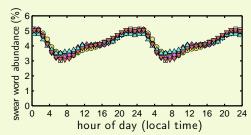
Networks

Phrases

The End

The daily unravelling of the human mind:





Blogs

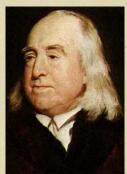
Twitter

Movement

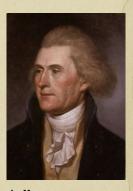
Networks

Happiness:

Socrates et al.: eudaimonia [11]



Bentham: hedonistic calculus



Jefferson:
...the pursuit of happiness

Measuring Happiness

Data sets Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

Early drafts:

that among these are:

Measuring Happiness

Data S Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

Happiness:

Even the odd modern economist is happy:

"Happiness" by Richard Layard [15]

amazonl (⊞)

Measuring Happiness

Data se

Twitter

Geography

Health

Demographic

Movement

Networks

hrases

The End

Measuring Happiness

Twitter

Health

What makes us happy?

Layard's summary:

Dominant factors:

- Family relationships
- Financial situation
- Work
- Community and Friends

- Health
- Personal Values
- Personal Freedom

Movement

Networks

- Age

- ▶ Inherent

What makes us happy?

Layard's summary:

Dominant factors:

- Family relationships
- ► Financial situation
- ▶ Work
- Community and Friends

- ▶ Health
- Personal Values
- Personal Freedom

Unimportant factors:

- Age
- Gender
- Education

- Inherent intelligence
- Looks

Measuring Happiness

Data se

Twitter

Geography

Health

Demographics

Movement Networks

.....

The End

oforonoo

Finding Happiness

Desiring happiness—not just for boffins:

- Average people routinely report being happy is what they want most in life [15, 16, 6]
- And it matters: "Happy people live longer:..." Survey by Diener and Chan. [6]

Measuring Happiness

Twitter

Health

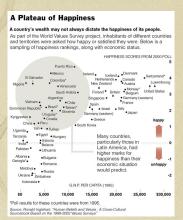
Movement

Networks

Finding Happiness

Desiring happiness—not just for boffins:

- ► Average people routinely report being happy is what they want most in life [15, 16, 6]
- ► And it matters: "Happy people live longer:..." Survey by Diener and Chan. [6]



National indices of well-being:

- ▶ Bhutan
- ▶ France
- Australia

Measuring Happiness

ata sets

Twitter

Geography

lealth

Demographics

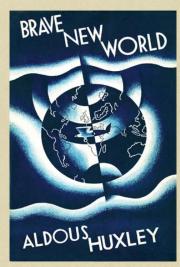
Phraciae

The End

An easy knock:

George Orwell a novel

Science = Orwell



Policy = Brave New World

Measuring Happiness

Data s

Twitter

Geography

пеаш

emographics

Movement Networks

Phrases

The End

So how does one measure

- 1. happiness?
- 2. levels of other emotional states?

Just ask people how happy they are.

- Experience sampling [3, 5, 4] (Csikszentmihalyi et al.
- ▶ Day reconstruction [12] (Kahneman et al.)

But self-reporting has some drawbacks:

- ▶ relies on memory and self-perception
- ▶ induces misreporting [17]
- costly

Measuring Happiness

Data se

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases
The End

References

So how does one measure

- 1. happiness?
- 2. levels of other emotional states?

Just ask people how happy they are.

- ► Experience sampling [3, 5, 4] (Csikszentmihalyi et al.)
- ▶ Day reconstruction [12] (Kahneman et al.)

But self-reporting has some drawbacks:

- ▶ relies on memory and self-perception
- ▶ induces misreporting [17]
- costly

Measuring Happiness

ata sets

Twitter

Geography

Health

Demographics

Movement

Networks

The End

So how does one measure

- 1. happiness?
- 2. levels of other emotional states?

Just ask people how happy they are.

- Experience sampling [3, 5, 4] (Csikszentmihalyi et al.)
- ▶ Day reconstruction [12] (Kahneman et al.)

But self-reporting has some drawbacks:

- ▶ relies on memory and self-perception
- ▶ induces misreporting [17]
- costly

Measuring Happiness

ata sets

Twitter

Geography

Health

Demographics

Movement

Networks

The End

eferences

So how does one measure

- 1. happiness?
- 2. levels of other emotional states?

Just ask people how happy they are.

- Experience sampling [3, 5, 4] (Csikszentmihalyi et al.)
- ▶ Day reconstruction [12] (Kahneman et al.)

But self-reporting has some drawbacks:

- relies on memory and self-perception
- ► induces misreporting [17]
- costly

Measuring Happiness

ata sets

Twitter

Geography

Health

Demographics

Movement Networks

Dhuanaa

The End

Finding Happiness

Happiness, attention, and doing:

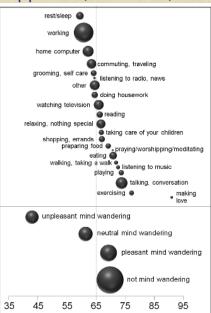


Fig. 1. Mean happiness reported during each activity (top) and while mind wandering to unpleasant topics, neutral topics, pleasant topics or not mind wandering (bottom). Dashed line indicates mean of happiness across all samples. Bubble area indicates the frequency of occurrence. The largest bubble ("not mind wandering") corresponds to 53.1% of the samples, and the smallest bubble ("praying/worshipping/meditating") corresponds to 0.1% of the samples.

Killingsworth and Gilbert, Science, 2010^[13]

Measuring Happiness

Data sets

Twitter

Geography

Health

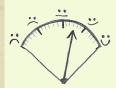
Demographics

Movement

Networks

Phrases
The End

We'd like to build an 'hedonometer':



An instrument to 'remotely-sense' emotional states and levels, in real time or post hoc.

Ideally:

- Transparent
- ▶ Fast
- Based on written expression
- Uses human evaluation

- Non-reactive
- Complementary to self-reported measures
- Improvable

Measuring Happiness

Data sets

Blogs

Twitter

realth

Demographics

Movement

Networks

Phrases

The End

Measuring Emotional Content

Idea: Build on measures of the emotional content of individual words.

Osgood et al. (1957) [20] identified

 a basis of three psychological variables as semantic
 differentials:

▶ Valence: bad ↔ good

- Dominance: weak \leftrightarrow strong

▶ Arousal: passive ↔ active

Measuring Happiness

Data sets

Twitter

Geography

Health

emographics

Movement Networks

nrases

The End

Measuring Emotional Content

- Idea: Build on measures of the emotional content of individual words.
- Osgood et al. (1957) [20] identified a basis of three psychological variables as semantic differentials:

▶ Valence: bad ↔ good

► Dominance: weak ↔ strong

▶ Arousal: passive ↔ active

Measuring Happiness

Data sets

Twitter

Geography

lealth

Demographics

Movement Networks

The End

Measuring Emotional Content

Idea: Build on measures of the emotional content of individual words.

Osgood et al. (1957) [20] identified a basis of three psychological variables as semantic differentials:

► Valence: bad ↔ good

▶ Dominance: weak ↔ strong

▶ Arousal: passive ↔ active

Measuring Happiness

Data sets

Twitter

Geography

lealth

Demographics

Networks

.

The End

oforonooc

ANEW study

- ► ANEW = "Affective Norms for English Words"
- Study: participants shown lists of isolated words
- Asked to grade each word's valence, arousal, and dominance level
- ► Integer scale of 1–9
- N =1034 words—previously identified as bearing emotional weight
- Participants = College students (*cough*)
- ► Results published by Bradley and Lang (1999) [2]

Measuring Happiness

Blogs

Twitter

Geography

Health

emographics

Movement Networks

The End

oforonoo

1999 ANEW study—three 1-9 scales: [2]

valence:

Finding Happiness

Measuring Happiness

Blogs

Twitter

Geography

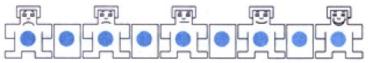
Health

Movement

Networks

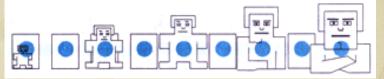
1999 ANEW study—three 1–9 scales: [2]

valence:



arousal:

dominance:



Measuring Happiness

Data sets

Twitter

Geography

ealth

omographica

Movement

Networks

Obvenie

The End

ANEW study:

Valence = Happiness:

- Valence scale presented to participants as a 'happy-unhappy scale.'
- ► Participants were further told:

"At one extreme of this scale, you are happy, pleased, satisfied, contented, hopeful. . . .

Measuring Happiness

ata sets

Twitter

Geography

Health

emographics

Movement

Networks

hrases

The End

ANEW study:

Valence = Happiness:

- Valence scale presented to participants as a 'happy-unhappy scale.'
- Participants were further told:

"At one extreme of this scale, you are happy, pleased, satisfied, contented, hopeful. . . .

Measuring Happiness

ata set

Twitter

Geography

Health

Demographics

Movement

Networks

hrases

The End

ANEW study:

Valence = Happiness:

- Valence scale presented to participants as a 'happy-unhappy scale.'
- Participants were further told:

"At one extreme of this scale, you are happy, pleased, satisfied, contented, hopeful. ...

The other end of the scale is when you feel completely unhappy, annoyed, unsatisfied, melancholic, despaired, or bored."

Measuring Happiness

ata set

Twitter

Geography

Health

Demographics

Movement

Networks

hrases

The End

Measuring	
lappiness	

Data se

Twitter

Geography

Health

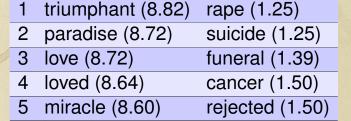
Demographics

Movement Networks

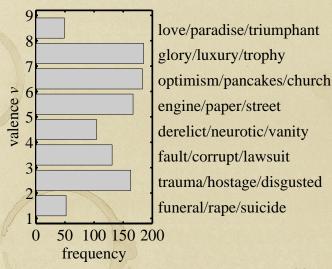
bussia

nrases

The End



ANEW study words—examples



ANEW = "Affective Norms for English Words" [2]

Finding Happiness

Measuring Happiness

ata set

Twitter

Geography

Health

emographics

Movement Networks

The End

oforoncos

elerences :

Measuring the happiness of a text:

Lyrics for Michael Jackson's Billie Jean

"She was more like a beauty queen from a movie scene.

And mother always told me, be careful who you love.

And be careful of what you do 'cause the lie becomes the truth.

Billie Jean is not my lover,

She's just a girl who claims that I am the one.

ANEW words

k=1. love mother

baby

4. beauty 5. truth

6. people 7. strong

8. young

9. girl

10. movie 11. perfume

12. queen

13. name

14. lie

 v_k

6.76

6 44

5.55

2.79 1

 f_k 8.72 8.39 8.22 7.82 7.80 7.33 2 7.11 6.89 6.87 6.86

3

 $v_{\rm Billie\ Jean}=7.1$ $v_{\text{Thriller}} = 6.3$

 $v_{
m Michael}=6.4$ Jackson

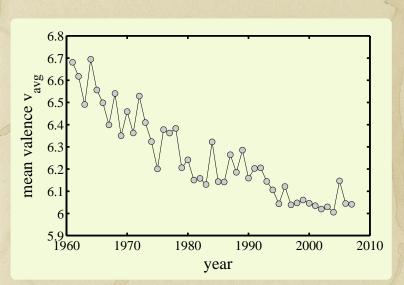
Finding Happiness

Measuring Happiness

Blogs

Twitter

Networks



Measuring Happiness

Data sets

Blogs

Geography

Health

emographics

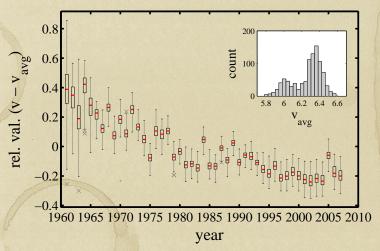
Movement

Networks

Phrases

The End

Song Lyrics—measurement robustness



100 random subsets of 750 ANEW words

Measuring Happiness

Blogs

Twitter

Geography

lealth

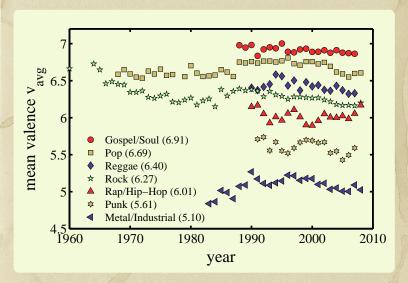
emographics

Networks

Dhrana

The End

Song Lyrics—average happiness of genres:



Measuring Happiness

Data sets

Twitter

Geography

lealth

emographics

Movement

Networks

hrases

The End

Valence shift details:

Given two texts a and b:

- ► Measure difference in average valence: $v_{avg}^{(b)} v_{avg}^{(a)}$
- Break difference down by contributions from individual words:

$$\Delta_i = 100 \times [p_{i,b} - p_{i,a}] \frac{[v_i - v_{\text{avg}}^{(a)}]}{[v_{\text{avg}}^{(b)} - v_{\text{avg}}^{(a)}]}$$

$$\sum_{i} \Delta_{i} = v_{avg}^{(b)} - v_{avg}^{(a)}$$

▶ Rank words by $|\Delta_i|$

Measuring Happiness

Data se

Twitter

Geography

Health

emographics

Movement

Networks

Phrases

The End

Valence shift details:

Given two texts a and b:

- Measure difference in average valence: $v_{avg}^{(b)} v_{avg}^{(a)}$
- Break difference down by contributions from individual words:

$$\Delta_i = 100 \times [p_{i,b} - p_{i,a}] \frac{[v_i - v_{\text{avg}}^{(a)}]}{[v_{\text{avg}}^{(b)} - v_{\text{avg}}^{(a)}]}$$

$$\sum_{i} \Delta_{i} = v_{avg}^{(b)} - v_{avg}^{(a)}$$

ightharpoonup Rank words by $|\Delta_i|$

Measuring Happiness

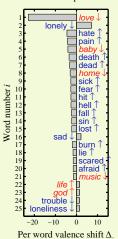
Twitter

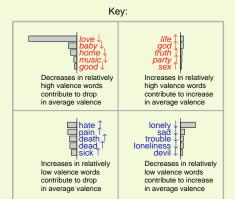
Movement

Networks

Happiness Word Shift Graph:

Per word drop in valence of lyrics from 1980-2007 relative to valence of lyrics from 1960





Measuring Happiness

Twitter

Health

Movement Networks

Top 16 of \simeq 20,000 artists:

Rank	Artist	Valence
1	All-4-One	7.15
2	Luther Vandross	7.12
3	S Club 7	7.05
4	K Ci & JoJo	7.04
5	Perry Como	7.04
6	Diana Ross & The Supremes	7.03
7	Buddy Holly	7.02
8	Faith Evans	7.01
9	The Beach Boys	7.01
10	Jon B	6.98
11	Dru Hill	6.96
12	Earth Wind & Fire	6.95
13	Ashanti	6.95
14	Otis Redding	6.93
15	Faith Hill	6.93
16	NSync	6.93

(criteria: \geq 50 songs and \geq 1000 ANEW words)

Measuring Happiness

ata sets

Blogs

Geography

ealth

emographics

Movement

Networks

hrases

The End

Bottom 16 of \simeq 20,000 artists:

Rank	Artist	Valence
1	Slayer	4.80
2	Misfits	4.88
3	Staind	4.93
4	Slipknot	4.98
5	Darkthrone	4.98
6	Death	5.02
7	Black Label Society	5.05
8	Pig	5.08
9	Voivod	5.14
10	Fear Factory	5.15
11	Iced Earth	5.16
12	Simple Plan	5.16
13	Machine Head	5.17
14	Metallica	5.19
15	Dimmu Borgir	5.20
16	Mudvayne	5.21

(criteria: \geq 50 songs and \geq 1000 ANEW words)

Finding Happiness

Measuring Happiness

ata sets

Blogs

Geography

Joolth

. .

Movement

Networks

111 4303

The End

Data sets:

Texts:

- ► Song lyrics and titles (1960–2008)
- ► State of the Union (SOTU) Addresses (1790–2008)
- ► Twitter, 2008—
- ► Blogs (wefeelfine.org)
- ► New York Times (20 years)
- Gutenberg.org
- ▶ Google Books: http://ngrams.googlelabs.com/ (⊞)
- BBC transcripts

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement Networks

.....

The End

2060400000

Data sets:

Blog phrases containing "I feel...", "I am feeling", etc., taken from wefeelfine.org (H) (API, 2005-2010)

Created by Jonathan Harris & Sep Kamvar

Data sets

Blogs Twitter

Health

Movement

Networks

The End

Jonathan Harris, wefeelfine.org

(Loading Movie)

Finding Happiness

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

hrases

The End

wefeelfine.org:

Feeling loosly Gender Both Age Ali Weather All Location All Date Ali

i feel very lonely and unoticed and that i am poised in a point of my life when i am able to do great things but
just cant quite get them started

March 30, 2006 / from a 31 year old in fairfax virginia united states when it was cloudy

i feel lonely recently

farch 30, 2006 / from someone in georgia united state

i feel lonely things are all good but i miss the way things used to be

March 31, 2006 / from an 18 year old female in arizona united state

 i feel really lonely every night because i dont have any good friends irl that i can just talk about anything with March 31, 2006 / from a 17 year old male in lawrence ville georgia united states

i feel really lonely and like any sensible loser i have to write about it in a blog

i feel so lonely inside

och 21. 2006 / from a 24 year old male in san diego california united states when it was cloudy

i feel sooooooo lonely sometimes

March 31, 2006 / from a 19 year old female in ellensburg washington united state

i feel lonely

March 31, 2006 / from someone

: f--11---b-: f--1-----

March 31, 2006 / from a 29 year old in mount vernon ohio united states

i feel lonely when im with her

farch 31, 2006 / from someone in florida un

leasuring

Data sets

Blogs

Twitter

Geography

ealth

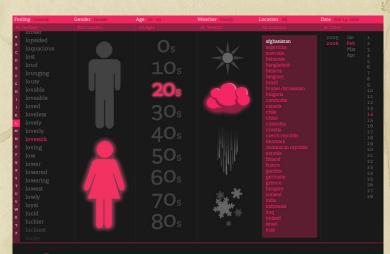
Demographics

Networks

Phrases

The End

wefeelfine.org:



Measuring

Data sets

Blogs

Twitter

Geography

lealth

Demographics

Movement

Networks

Phrases
The End

leferences

WE FEEL FINE

Find Feelings

wefeelfine.org:

Measuring Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

ferences

· · >

wefeelfine.org:

Measuring Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

nrases

The End

i feel like the jacket needs some detailing and the tights don t really work

Sep 2, 2009/ from someone

Jun 17, 2009 / from a female

Happiness

Data sets

Blogs Twitter

Geography

Health

Demographics

Networks

The End

Finding Happiness

Measuring Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

wefeelfine.org:

i now have to drive 5 hours if i ever want to see them that when i'm there i feel like my whole life has stopped and i'm stuck in some alternate universe and the sense that at any moment someone will stop everything they're doing and point out the homosexual in the room

Nov 9, 2009 / from someone in odessa tex as united states when it was sunny

Measuring Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement Networks

Phrases

The End

eferences

()

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

wefeelfine.org:

Measuring

Data sets

Twitter

Geography

Health

emographics

Movement

Networks

Phrases

The End

wefeelfine.org:

Measuring Happiness

Data sets

Blogs

Twitter

Geography

realli

Demographics

Movement

Networks

Phrases

The End

Data sets

Blogs

Twitter

Movement Networks

The End

Measuring Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

Measuring

Data sets

Blogs

Goography

realth

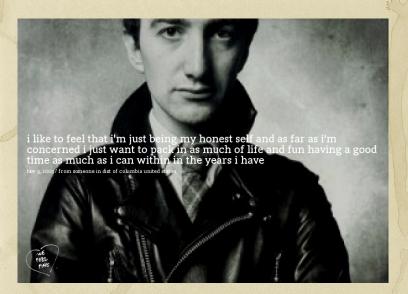
Demographics

Movement

Networks

nrases

The End



Measuring

Data sets

Blogs

Twitter

Geography

Icailii

Demographics

Movement

Networks

Phrases

The End

wefeelfine.org:

i feel like the jacket needs some detailing and the tights don t really work Sep 2, 2009/ from someone

Happiness

Data sets

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

The End

More data sets:

5. Lwitter

- 6. New York Times (20 years)
- 7. Gutenberg.org
- 8, Google Books: http://ngrams.googlelabs.com/ (H)
- 9. . .

Measuring Happiness

Data sets

Twitter

Goog aprij

Health

Demographics

Movement Networks

.....

The End

Data sets:

Counts	Song lyrics	Song titles
All words	58,610,849	60,867,223
Individuals	\sim 20,000	\sim 632,000

Counts	blogs	SOTU
All words	155,667,394	1,796,763
Individuals	\sim 2,335,000	43

Counts	Twitter
All words	\sim 100 billion
Tweets	\sim 10 billion
Individuals	\sim 100 million

Measuring Happiness

Data sets Blogs

Twitter

Geography

Health

Demographics

Movement Networks

Phrases

The End

Most frequent ANEW words:

Rank	Song lyrics	Song titles
1	love (7.37%)	love (7.39%)
2	time (4.18%)	time (4.19%)
3	baby (2.75%)	baby (2.75%)
4	life (2.59%)	life (2.60%)
5	heart (2.14%)	heart (2.15%)

Measuring Happiness	
Data sets Blogs	
Twitter	
Geography	
Health	

Demographics Movement

Rank	blogs	SOTU	twitter	etw
1	good (4.89%)	people (5.49%)	good (4.50%)	nra
·	, ,			ie l
2	time (4.72%)	time (4.09%)	love (4.45%)	efe
3	people (3.94%)	present (3.45%)	time (3.30%)	
4	love (3.31%)	world (3.10%)	people (2.06%)	
5	life (3.13%)	war (2.98%)	home (1.71%)	<
	17.		# A Part	

Meacuring Hanninger

Data sets Blogs

Outline

Twitter

Geograph

Health

Demographics

Movement

Networks

Phrases

The Enc

References

Measuring Happiness

Data sets Blogs

Twitter

Geography

Health

Demographics

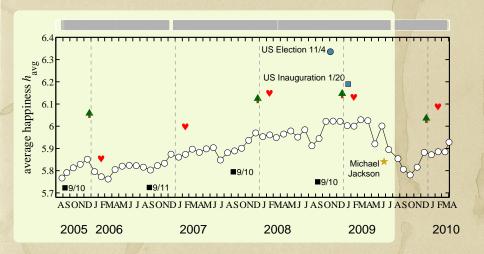
Movement

Networks

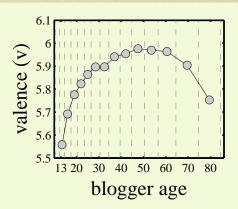
Phrases

The End

Blogs—Overall trend



Blogs—Age:



Average happiness as a function of the age bloggers report they will turn in the year of their posting. Measuring Happiness

Data sets Blogs

Twitter

Geography

Health

Demographics

Movement

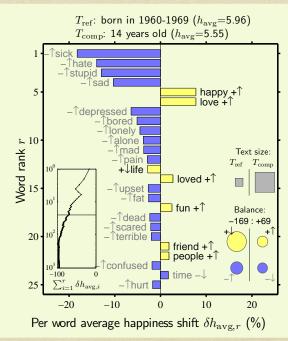
Networks

Phrases
The End

Blogs Twitter

Movement

The End



Data cote

Blogs

Geography

Health

Demographic

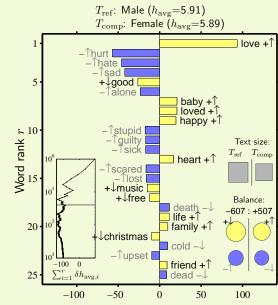
Movement

Networks

hrases

The End

eferences



Per word average happiness shift $\delta h_{\mathrm{avg},r}$ (%)

labMT 1.0:

language assessment by Mechanical Turk

- Twitter, Google Books, Music Lyrics, and the New York Times.
- ▶ 5000 most frequency used words for each corpus.
- ▶ 10,222 words, 50 evaluations each.

Happiness

Blogs

Twitter

Geography

lealth

emographics

Movement

The End

ndina	Happir	ess
9	· · · chb	

valence	word	valence	std dev	twitter	g-books	nyt	lyrics
rank				rank	rank	rank	rank
1	laughter	8.50	0.93	3600	_	_	1728
2	happiness	8.44	0.97	1853	2458	_	1230
3	love	8.42	1.11	25	317	328	23
4	happy	8.30	0.99	65	1372	1313	375
5 6	laughed	8.26	1.16	3334	3542	_	2332
6	laugh	8.22	1.37	1002	3998	4488	647
7	laughing	8.20	1.11	1579	_	_	1122
8	excellent	8.18	1.10	1496	1756	3155	_
9	laughs	8.18	1.16	3554	_	_	2856
10	joy	8.16	1.06	988	2336	2723	809
11	successful	8.16	1.08	2176	1198	1565	_
12	win	8.12	1.08	154	3031	776	694
13	rainbow	8.10	0.99	2726	_	_	1723
14	smile	8.10	1.02	925	2666	2898	349
15	won	8.10	1.22	810	1167	439	1493
16	pleasure	8.08	0.97	1497	1526	4253	1398
17	smiled	8.08	1.07	_	3537	_	2248
18	rainbows	8.06	1.36	_	_	_	4216
19	winning	8.04	1.05	1876	_	1426	3646
20	celebration	8.02	1.53	3306	_	2762	4070
21	enjoyed	8.02	1.53	1530	2908	3502	_
22	healthy	8.02	1.06	1393	3200	3292	4619
23	music	8.02	1.12	132	875	167	374
24	celebrating	8.00	1.14	2550	_	_	_
25	congratulations	8.00	1.63	2246	_	-	-
26	weekend	8.00	1.29	317	_	833	2256
27	celebrate	7.98	1.15	1606	_	3574	2108
28	comedy	7.98	1.15	1444	_	2566	_
29	jokes	7.98	0.98	2812	_	-	3808
30	rich	7.98	1.32	1625	1221	1469	890

Measuring Happiness

Data sets Blogs

Fi

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases

The End

• α.σσσ		• 44.000	old do.		9 200.10	, .	.,
rank				rank	rank	rank	rank
:	:	:	:	:	:		:
10193	violence	1.86	1.05	4299	1724	1238	2016
10194	cruel	1.84	1.15	2963	_	_	1447
10195	cry	1.84	1.28	1028	3075	_	226
10196	failed	1.84	1.00	2645	1618	1276	2920
10197	sickness	1.84	1.18	4735	_	_	3782
10198	abused	1.83	1.31	-	_	_	4589
10199	tortured	1.82	1.42	_	_	_	4693
10200	fatal	1.80	1.53	_	4089	_	3724
10201	killings	1.80	1.54	-	_	4914	_
10202	murdered	1.80	1.63	-	_	_	4796
10203	war	1.80	1.41	468	175	291	462
10204	kills	1.78	1.23	2459	_	_	2857
10205	jail	1.76	1.02	1642	_	2573	1619
10206	terror	1.76	1.00	4625	4117	4048	2370
10207	die	1.74	1.19	418	730	2605	143
10208	killing	1.70	1.36	1507	4428	1672	998
10209	arrested	1.64	1.01	2435	4474	1435	-
10210	deaths	1.64	1.14	-	_	2974	-
10211	raped	1.64	1.43	-	_	-	4528
10212	torture	1.58	1.05	3175	_	-	3126
10213	died	1.56	1.20	1223	866	208	826
10214	kill	1.56	1.05	798	2727	2572	430
10215	killed	1.56	1.23	1137	1603	814	1273
10216	cancer	1.54	1.07	946	1884	796	3802

1.28

1.01

0.91

0.79

0.84

0.91

509

2762

3133

2124

3576

307

3110

4707

373

1541

3192

4115

3319

3026

433

1059

2977

2107

std dev

twitter

g-books

nyt

lyrics

valence

valence

10217

10218

10219

10220

10221

10222

death

rape

murder

suicide

terrorist

terrorism

1.54

1.48

1.48

1.44

1.30

1.30

word

Happiness

Blogs

Twitter

Geography

Movement Networks

The End

std dev rank	word	valence	std dev	twitter rank	g-books rank	nyt rank	lyrics rank
Idilk				Idilk	Idik	Idiik	Idlik
1	f#@king	4.64	2.93	448	_	_	620
2	f☆☆kin	3.86	2.74	1077	-	-	688
3	f☆☆ked	3.56	2.71	1840	_	-	904
4	pussy	4.80	2.66	2019	_	_	949
5	whiskey	5.72	2.64	-	-	-	2208
6 7	slut	3.57	2.63	_	_	_	4071
	cigarettes	3.31	2.60	-	-	-	3279
8	f☆☆k	4.14	2.58	322	_	-	185
9	mortality	4.38	2.55	_	3960	_	_
10	cigarette	3.09	2.52	_	_	-	2678
11	motherf★★kers	2.51	2.47	_	_	_	1466
12	churches	5.70	2.46	_	2281	-	_
13	motherf★★king	2.64	2.46	_	_	_	2910
14	capitalism	5.16	2.45	_	4648	_	_
15	porn	4.18	2.43	1801	_	-	_
16	summer	6.40	2.39	896	1226	721	590
17	beer	5.92	2.39	839	4924	3960	1413
18	execution	3.10	2.39	_	2975	-	_
19	wines	6.28	2.37	_	_	3316	_
20	zombies	4.00	2.37	4708	_	_	_
21	aids	4.28	2.35	2983	3996	1197	_
22	capitalist	4.84	2.34	_	4694	_	_
23	revenge	3.71	2.34	_	_	_	2766
24	mcdonalds	5.98	2.33	3831	_	_	_
25	beatles	6.44	2.33	3797	_	_	_
26	islam	4.68	2.33	_	4514	-	_
27	pay	5.30	2.32	627	769	460	499
28	alcohol	5.20	2.32	2787	2617	3752	3600
29	muthaf☆☆kin	3.00	2.31	_	_	_	4107
30	christ	6.16	2.31	2509	909	4238	1526

Measuring Happiness

Blogs

Twitter

Geography

Health

Demographics

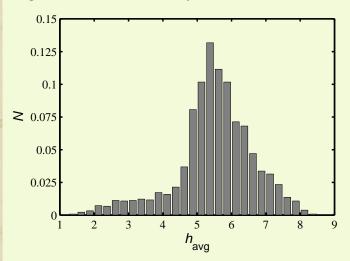
Movement

Networks

Phrases

The End

English's scale-invariant, positive bias: [14]



Social organism story manifested in language.

Measuring Happiness

ata sets

Blogs

Geography

Health

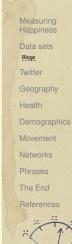
Demographics

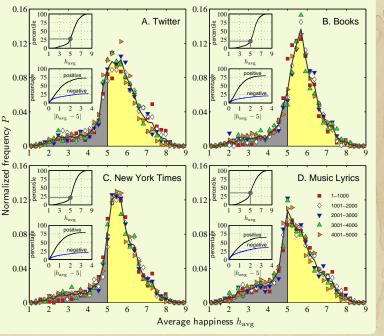
Movement

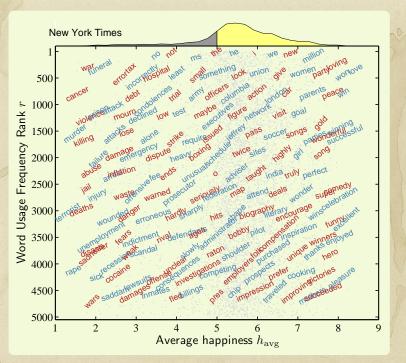
Networks

hrases

The End



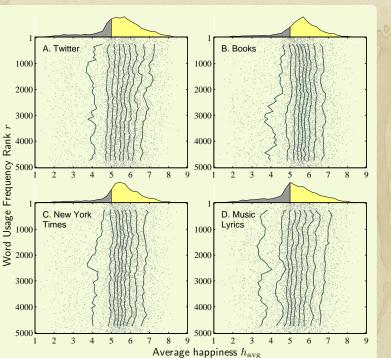




Blogs Twitter

The End

少 Q (48 of 95



Measuring Happiness

Data sets

Blogs

Geography

Health

Demographics

Movement

Networks

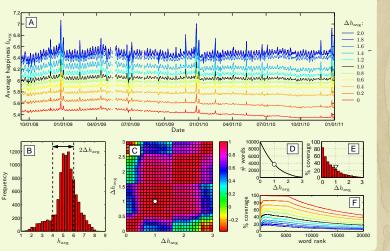
hrases

The End

eferences

2 € 49 of 95

The very surprising tunable hedonometer:



Blogs

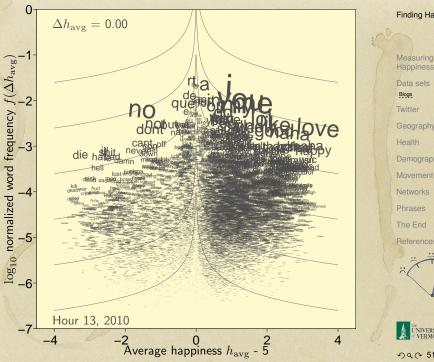
Twitter

Geography

Movement

Networks

The End



Happiness

Geography

Health

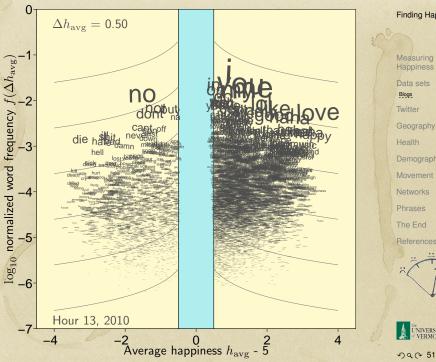
Demographics

Networks

The End

References

9 Q ← 51 of 95



Happiness

Twitter

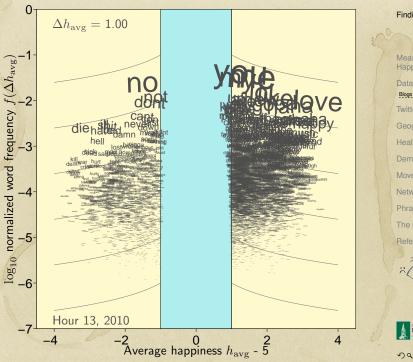
Health

Demographics

Movement

Networks

The End



Happiness

Twitter

Geography

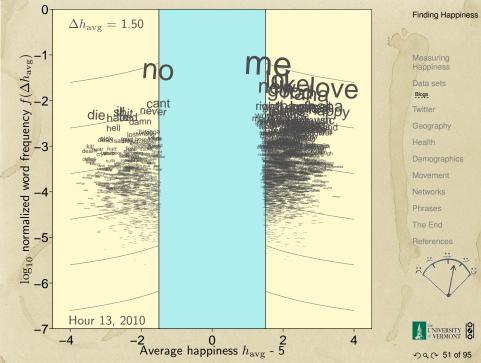
Health

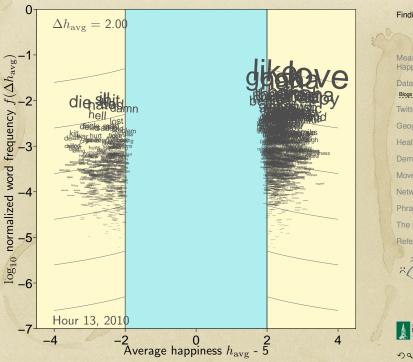
Demographics

Movement

Networks

The End





Measuring Happiness

Twitter

Geography

Health

Demographics

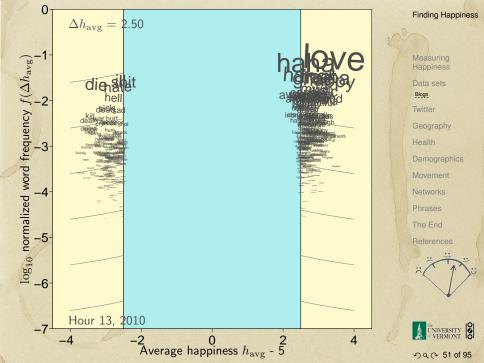
Movement

Networks

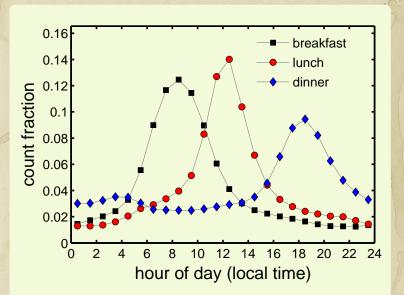
The End

References

9 Q ← 51 of 95



Twitter—living in the now:



Quantifying the quotidian.

Measuring Happiness

Data sets

Twitter

Caaaaaaba

Health

Demographics

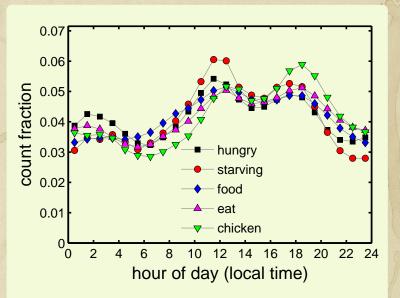
Movement

Networks

Phrases
The End

Poforonoon

Twitter—living in the now:



Makes the unexpected believable...

Blogs

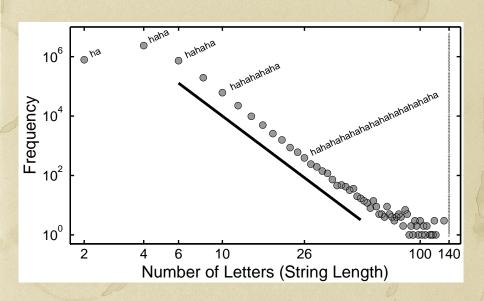
Twitter

Movement

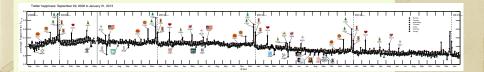
Networks

The End

The happiest distribution:

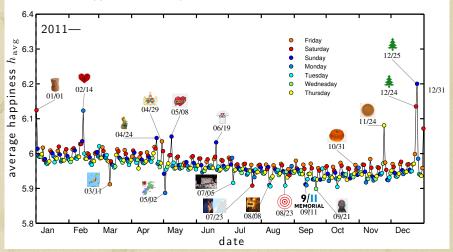


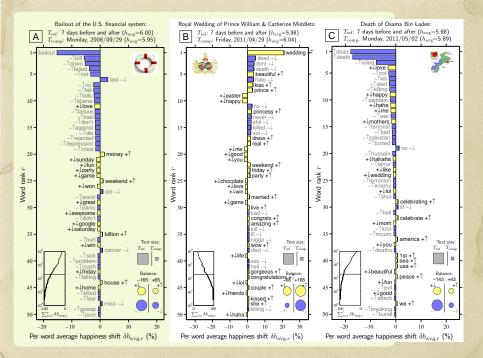
Twitter—overall time series:



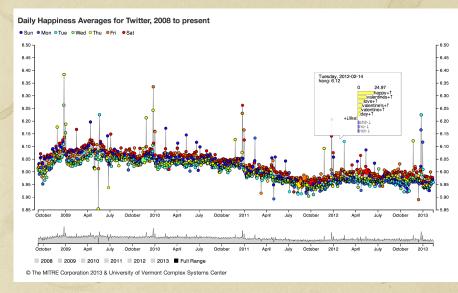
- Global happiness spikes due to predictable rituals.
- ► Global sadness spikes due to unpredictable, exogeneous shocks.

Twitter happiness: January 01, 2011 to December 31, 2011





hedonometer.org (⊞) (launching Tuesday, April 30, 2013)



Blogs

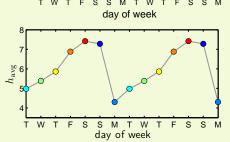
Movement Networks

The End

Twitter—weekly time series:

What people say:

What people think:



▶ Inflation: NYT piece (⊞) on the blueness of Tuesdays.

Word	$h_{\text{avg}}^{(\text{amb})}$	Total Tweets	$h_{\text{avg}}^{(\text{norm})}$	Word	$h_{\text{avg}}^{(\text{amb})}$	Total Tweets	$h_{\text{avg}}^{(\text{norm})}$
1. happy	+0.430	1.65e+07 (13)	+1.104(1)	51. snow	-0.051	2.60e+06 (49)	+0.083 (39)
2. Christmas	+0.404	4.89e+06 (35)	+0.953(3)	Jon Stewart	-0.052	5.21e+04 (97)	-0.024 (48)
3. vegan	+0.315	1.84e+05 (90)	-0.015 (46)	school	-0.056	9.26e+06 (24)	+0.050 (42)
4. :)	+0.274	1.04e+07 (20)	+0.630 (12)	54. Lehman Brothers	-0.078	8.50e+03 (100)	-0.721 (79)
5. family	+0.251	5.01e+06 (32)	+0.716 (7)	55. them	-0.090	1.54e+07 (15)	-0.280 (60)
6. :-)	+0.228	1.67e+06 (60)	+0.560(16)	56. right	-0.090	1.92e+07 (10)	+0.126(35)
7. our	+0.207	1.41e+07 (16)	+0.159 (33)	57. woman	-0.115	2.54e+06 (51)	+0.202 (30)
8. win	+0.204	7.98e+06 (26)	+0.924 (4)	58. left	-0.118	4.89e+06 (34)	-0.383 (63)
9. vacation	+0.200	9.35e+05 (67)	+0.817(5)	59. me	-0.119	1.44e+08 (4)	+0.160 (32)
10. party	+0.170	6.44e+06 (29)	+0.679(9)	60. election	-0.127	5.60e+05 (75)	-0.306 (61)
11. love	+0.164	4.67e+07 (6)	+0.977(2)	 Sarah Palin 	-0.128	2.26e+05 (87)	-0.681 (76)
12. friends	+0.155	7.67e+06 (27)	+0.685(8)	62. no	-0.132	9.51e+07 (5)	-1.415 (90)
13. hope	+0.149	1.18e+07 (18)	+0.515 (19)	63. rain	-0.134	3.23e+06 (41)	+0.050 (44)
14. coffee	+0.147	2.80e+06 (46)	+0.518 (18)	64. climate	-0.135	3.64e+05 (80)	-0.160 (51)
15. cash	+0.146	1.28e+06 (63)	+0.601 (14)	65. gay	-0.152	2.73e+06 (47)	-0.552 (72)
16. sun	+0.144	2.39e+06 (52)	+0.737(6)	66. lose	-0.157	2.06e+06 (55)	-1.181 (86)
17. income	+0.137	5.10e+05 (76)	+0.621 (13)	67. they	-0.159	2.74e+07 (8)	-0.208 (58)
18. summer	+0.135	3.00e+06 (43)	+0.221 (29)	68. oil	-0.162	1.38e+06 (62)	-0.411 (65)
19. church	+0.131	1.81e+06 (58)	-0.016 (47)	69. cold	-0.162	3.67e+06 (36)	-0.546 (71)
20. Valentine	+0.127	2.47e+05 (84)	+0.593(15)	70. I feel	-0.173	5.17e+06 (31)	-0.129 (50)
21. Stephen Colbert	+0.126	2.38e+04 (99)	+0.001 (45)	71. man	-0.175	1.59e+07 (14)	-0.163 (52)
22. USA	+0.113	2.16e+06 (54)	+0.325 (26)	72. Republican	-0.181	2.30e+05 (86)	-0.539 (70)
23. !	+0.106	3.44e+06 (40)	+0.195 (31)	73. sad	-0.187	3.56e+06 (38)	-1.366 (89)
24. winter	+0.101	1.26e+06 (64)	+0.050(43)	74. gas	-0.193	1.02e+06 (65)	-0.471 (67)
25. God	+0.099	8.58e+06 (25)	+0.468 (20)	75. economy	-0.203	6.09e+05 (73)	-0.525 (69)
26. hot	+0.095	7.12e+06 (28)	-0.172 (54)	76. Obama	-0.205	2.98e+06 (44)	-0.173 (55)
27. ;)	+0.094	2.61e+06 (48)	+0.326 (25)	77. Democrat	-0.226	9.32e+04 (93)	-0.384 (64)
28. Jesus	+0.094	2.03e+06 (56)	+0.247 (28)	78. Congress	-0.231	3.92e+05 (79)	-0.580 (74)
29. today	+0.092	2.56e+07 (9)	+0.126 (36)	79. hell	-0.250	6.27e+06 (30)	-1.551 (96)
30. kiss	+0.072	1.70e+06 (59)	+0.632(11)	80. sick	-0.262	3.58e+06 (37)	-1.630 (97)
31. yes	+0.056	1.16e+07 (19)	+0.321 (27)	81. Muslim	-0.262	2.15e+05 (88)	-0.569 (73)
32. tomorrow	+0.054	1.04e+07 (21)	+0.086 (38)	82. war	-0.270	1.96e+06 (57)	-2.040 (100)
33. you	+0.052	1.73e+08 (3)	+0.111 (37)	83. Pope	-0.277	1.52e+05 (91)	-0.316 (62)
34. heaven	+0.041	7.42e+05 (71)	+0.674 (10)	84. hate	-0.282	9.65e+06 (23)	-1.520 (94)
35. :-)	+0.041	9.39e+05 (66)	+0.395 (23)	85. Glenn Beck	-0.282	1.14e+05 (92)	-0.776 (82)
36. we	+0.035	3.91e+07 (7)	+0.146(34)	86. Islam	-0.299	1.87e+05 (89)	-0.710 (78)
37. yesterday	+0.033	3.08e+06 (42)	-0.168 (53)	87. George Bush	-0.333	3.23e+04 (98)	-0.747 (80)
38. dark	+0.031	1.58e+06 (61)	-0.766 (81)	88. Goldman Sachs	-0.337	5.27e+04 (96)	-0.984 (84)
39. ?	+0.030	2.32e+06 (53)	-0.503 (68)	89. depressed	-0.339	2.81e+05 (82)	-1.541 (95)
40. RT	+0.028	3.39e+08(1)	-0.443 (66)	90. Senate	-0.340	4.48e+05 (78)	-0.601 (75)
41. Michael Jackson	+0.018		-0.213 (59)	91. BP	-0.355	5.82e+05 (74)	-0.902 (83)
42. night	+0.014	1.71e+07 (12)	+0.074 (40)	92. gun	-0.367	6.81e+05 (72)	-1.476 (93)
43. life	+0.012		+0.422 (22)	93. drugs	-0.382	5.10e+05 (77)	-1.452 (91)
44. health	-0.000	2.58e+06 (50)	+0.447 (21)	94. headache	-0.437	8.57e+05 (69)	-1.881 (98)
45. sex	-0.008	3.55e+06 (39)	+0.542 (17)	95. :-(-0.455	3.40e+05 (81)	-1.174 (85)
46. work	-0.010	1.84e+07 (11)	-0.174 (56)	96. :(-0.472	2.89e+06 (45)	-1.288 (88)
47. girl	-0.010	1.01e+07 (22)	+0.331 (24)	97. Afghanistan	-0.703	2.74e+05 (83)	-1.458 (92)
48. boy	-0.026	4.93e+06 (33)	+0.062 (41)	98. mosque	-0.709	6.98e+04 (95)	-0.694 (77)
49. I	-0.048	3.08e+08 (2)	-0.062 (49)	99. flu	-0.735	9.01e+05 (68)	-1.912 (99)

Measuring Happiness

Data sets Blogs

Twitter

Geography

Health

Demographics

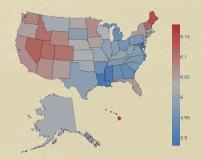
Movement

Networks

Phrases

The End

The Geography of Happiness:



- ► From "The Geography of Happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place", Mitchell et al., 2013, to appear in PLoS ONE [19].
- ▶ See blog posts here (\boxplus) , here (\boxplus) , and here (\boxplus) .

Measuring Happiness

Data se

Twitter

Geography

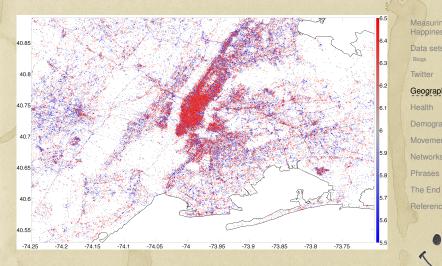
Health

Movement

Networks

Phrases

The End



Measuring Happiness

Twitter

Geography

Health

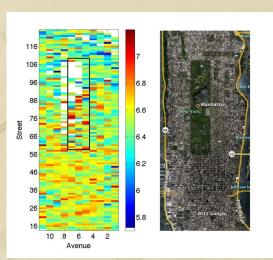
Demographics

Movement

Networks

Phrases

Happiness in Manhattan:



The same story to the same sto

See Blog post on onehappybird (⊞)

Measuring

Data sets

Twitter

Geography

Health

Demographics

Movement

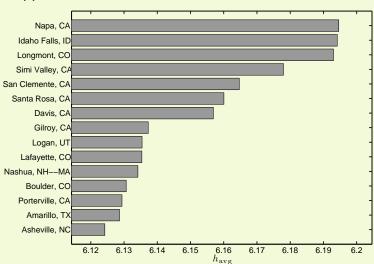
Networks

The End

eferences

eterences

Happiest Cities:



Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

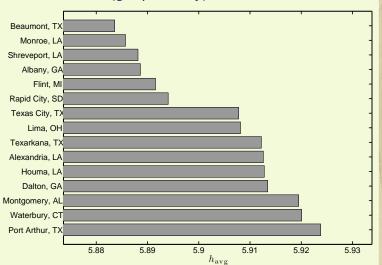
Movement

Networks

Phrases

The End

Saddest Cities (geoprofanity):



Measuring

Data sets

Twitter

Geography

Health

omographia

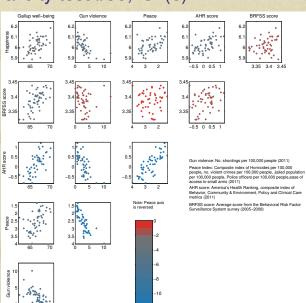
Movement

Networks

hrases

The End

Validity test #30,231(b):



Finding Happiness

leasuring appiness

ata sets

Blogs

Geography

Health

Domographics

Movement

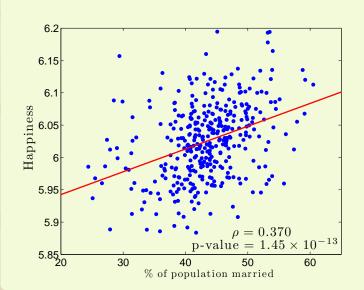
Networks

nrases

The End

Good news for Valentine's Day:

Happiness and Marriage:



Blogs Twitter

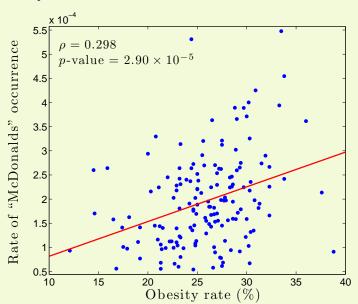
Health

Movement

Networks

The End

Obesity and tweets—"McDonalds":



Finding Happiness

Measuring

Data sets

Twitter

Geography

Health

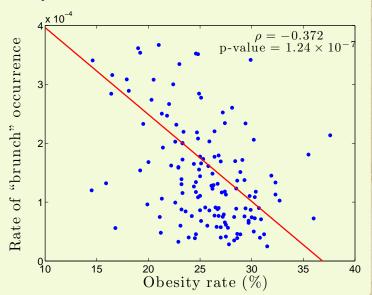
Demographics

Movement

Networks

The End

Obesity and tweets—"Brunch":



Measuring

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

Phrases
The End

Obesity rates and usage of food-related words:

Negative correlations

Word	ρ	<i>p</i> -value
cafe	-0.509	6.07×10^{-14}
sushi	-0.487	9.93×10^{-13}
brewery	-0.469	8.67×10^{-12}
restaurant	-0.448	8.93×10^{-11}
bar	-0.435	3.59×10^{-10}
banana	-0.434	3.77×10^{-10}
apple	-0.408	5.22×10^{-9}
fondue	-0.403	8.34×10^{-9}
wine	-0.400	1.08×10^{-8}
delicious	-0.392	2.17×10^{-8}
dinner	-0.386	3.85×10^{-8}
coffee	-0.384	4.51×10^{-8}
bakery	-0.383	5.12×10^{-8}
bean	-0.378	7.88×10^{-8}
espresso	-0.377	8.47×10^{-8}
cuisine	-0.376	8.82×10^{-8}
foods	-0.374	1.07×10^{-7}
tofu	-0.372	1.27×10^{-7}
brunch	-0.368	1.79×10^{-7}
veggie	-0.364	2.46×10^{-7}
organic	-0.361	3.13×10^{-7}
booze	-0.360	3.34×10^{-7}
grill	-0.354	5.4×10^{-7}
chocolate	-0.351	6.77×10^{-7}
#vegan	-0.350	7.47×10^{-7}

Finding Happiness

Measuring Happiness

Blogs

Twitter

Geography

Health

Demographics

Movement Networks

Phrases The End

Obesity rates and usage of food-related words:

Positive correlations

mcdonalds	0.246	6.18×10^{-4}
eat	0.241	8.22×10^{-4}
wings	0.222	2.13×10^{-3}
hungry	0.210	3.65×10^{-3}
heartburn	0.194	7.37×10^{-3}
ham	0.177	1.45×10^{-2}

Measuring Happiness

Data se

Twitter

Geography

Health

Demographics

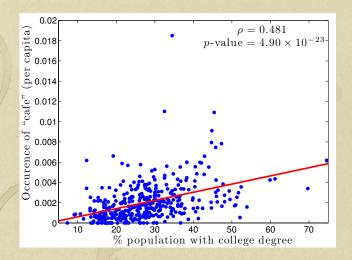
Movement

Networks

Phrases

The End

'cafe' usage frequency vs. fraction with College degree:



Measuring

ata sets

Twitter

Geography

Health

Demographics

Movement Networks

The End

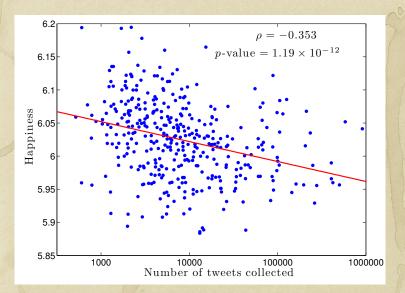
oforonooc

. . .

Word usage frequency vs. fraction with College degree:

Word	ρ	p-value	$h_{\text{avg}}(w_i)$
cafe	0.481	4.9×10^{-23}	6.78
pub	0.463	3.14×10^{-21}	6.02
software	0.458	9.07×10^{-21}	6.30
yoga	0.455	1.85×10^{-20}	7.04
grill	0.433	1.78×10^{-18}	6.24
development	0.424	1.14×10^{-17}	6.38
emails	0.419	2.87×10^{-17}	6.54
wine	0.417	3.83×10^{-17}	6.42
library	0.414	6.47×10^{-17}	6.48
art	0.414	6.8×10^{-17}	6.60
sciences	0.410	1.54×10^{-16}	6.30
pasta	0.410	1.57×10^{-16}	6.86
lounge	0.409	1.68×10^{-16}	6.50
market	0.408	2.2×10^{-16}	6.28
india	0.407	2.5×10^{-16}	6.42
drinking	0.405	3.74×10^{-16}	6.14
technology	0.405	3.76×10^{-16}	6.74
forest	0.405	3.83×10^{-16}	6.68
brunch	0.405	3.89×10^{-16}	6.32
dining	0.403	4.92×10^{-16}	6.48
supporting	0.399	1.1×10^{-15}	6.48
professor	0.398	1.23×10^{-15}	6.04
university	0.392	3.62×10^{-15}	6.74
film	0.391	4.27×10^{-15}	6.56
global	0.391	4.72×10^{-15}	6.00

		1	
Word	ρ	p-value	$h_{\text{avg}}(w_i)$
me	-0.393	3.26×10^{-15}	6.58
love	-0.389	6.51×10^{-15}	8.42
my	-0.354	1.97×10^{-12}	6.16
like	-0.346	6.04×10^{-12}	7.22
hate	-0.344	8.76×10^{-12}	2.34
tired	-0.343	1×10^{-11}	3.34
sleep	-0.341	1.27×10^{-11}	7.16
stupid	-0.328	8.55×10^{-11}	2.68
bored	-0.315	5.11×10^{-10}	3.04
you	-0.315	5.23×10^{-10}	6.24
goodnight	-0.305	1.77×10^{-9}	6.58
bitch	-0.295	6.51×10^{-9}	3.14
all	-0.289	1.33×10^{-8}	6.22
lie	-0.285	2.24×10^{-8}	2.60
mom	-0.284	2.42×10^{-8}	7.64
wish	-0.271	1.05×10^{-7}	6.92
talk	-0.267	1.74×10^{-7}	6.06
she	-0.265	2.01×10^{-7}	6.18
know	-0.262	2.78×10^{-7}	6.10
ill	-0.259	4.11×10^{-7}	2.42
dont	-0.258	4.54×10^{-7}	3.70
well	-0.256	5.3×10^{-7}	6.68
don't	-0.255	5.8×10^{-7}	3.70
give	-0.255	5.84×10^{-7}	6.54
friend	-0.255	6.27×10^{-7}	7.66



Measuring Happiness

lata sets

Twitter

Geography

Health

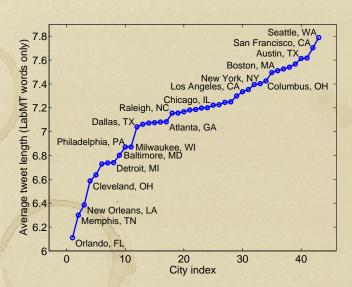
Demographics

Movement

Networks

Phrases

The End



Measuring Happiness

Data sets

Twitter

Geography

eann

Demographics

Movement

Networks

nrases

The End

Blogs

Twitter

Geography

пеаш

Demographics

Movement

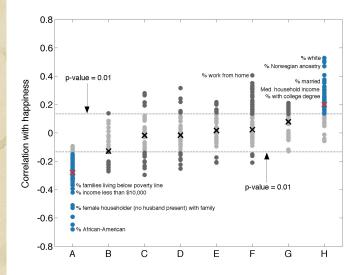
Networks

Phrases

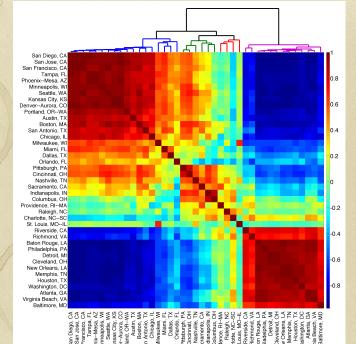
The End

oforonooc

eterences



Explore more here (⊞).



easuring

ata sets

Blogs

Goography

Health

Demographics

Movement

la harantar

hronin

The End

forences

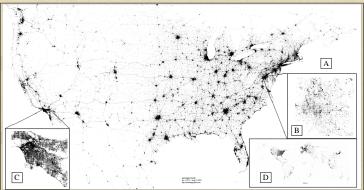


Figure 1. Each point corresponds to a geo-located tweet posted between 1/1/11 and 8/10/11. Twitter activity seems to correlate with urban areas. Note that the image contains no cartographic borders, simply a small dot for each message. Insets: A (U.S.), B (Washington, D.C.), C (Los Angeles, C.A.), and D (Earth).

- ► From "Happiness and the Patterns of Life: A Study of Geolocated Tweets", Frank et al., 2013, in review [9].
- ► See blog post here (⊞).

Measuring

Data set

Twitter

Geography

ealth

Demographics

Movement

Networks

hrases

The End

Data sets

Twitter

Geography

lealth

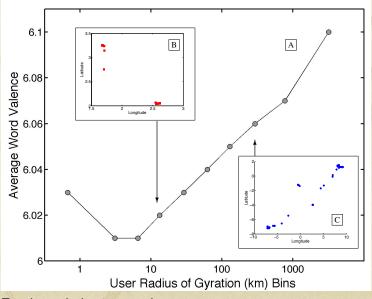
Demographics

Movement

Networks

Phrases

The End

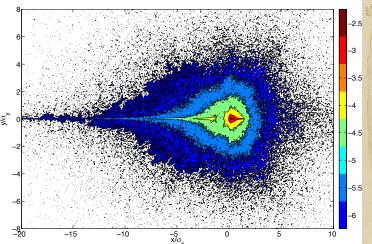


Frank et al., in preparation.

Movement

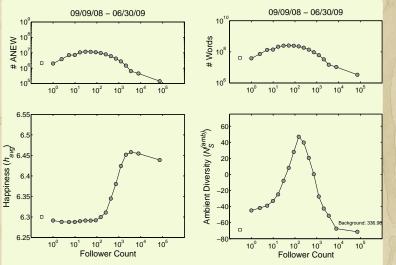
Phrases

The End



Raw movement patterns agree with cell phone data findings [10]

Twitter—popularity based on follower count:



Measuring Happiness

Blogs

Twitter

Geography

lealth

Demographics

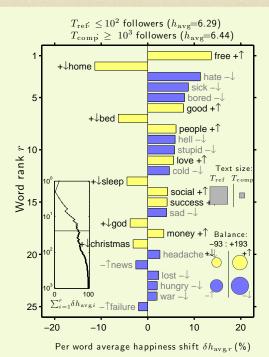
Movement

Networks

Phrases
The End

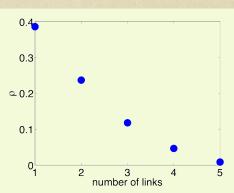
References

▶ Dunbar's number ≈ 150.





Finding Happiness



- Decay in happiness correlation in social network.
- ρ = Spearman's correlation coefficient.
- "Twitter reciprocal reply networks exhibit assortativity with respect to happiness"
 Bliss et al., Journal of Computational Science, 2012^[1]

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

The End

Phrases—Music Lyrics:

rank	order=1	order=2	order=3	order=4
1	i	and i	i know you	if you want to
2	the	in the	you know i	let me tell you
3	and	if you	and i know	tell me what you
4	you	on the	this is then	don't want to be
5	а	to the	la la la	all i need is
6	to	i know	don't want to	and i know that
7	my	you know	if i could	what can i do
8	i'm	but i	can't you see	want you to know
9	it	when i	don't know what	all i want is
10	that	when you	all the time	give it to me
11	SO	all the	why don't you	when it comes to
12	your	like a	as long as	how does it feel
13	me	this is	don't you know	you know that i
14	in	come on	there is no	don't you know that
15	no	to be	i know that	don't give a fuck
25	love	don't know	but i can't	all the things that
100	m	just like	in this world	woke up this morning

▶ J. Williams et al., in preparation.

Measuring Happiness

Blogs

Twitter

Geography

Health

Demographics

Movement Networks

Phrases

The End

Next for Happiness:

- ▶ hedonometer.org (⊞) (early 2013).
- Over 10 additional languages being scored through a new service.
- ► Four other emotions: surprise, fear, disgust, and anger.
- Other input streams (e.g., BBC)
- Expansion to phrase-based analysis.

Measuring Happiness

Blogs

Twitter

Geography

lealth

emographics

Movement Networks

Illases

The End

"Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter" Dodds et al., PLoS ONE, 2011 [8] Much better version here: http://arxiv.org/abs/1101.5120 (⊞)

- "Twitter reciprocal reply networks exhibit assortativity with respect to happiness"
 Bliss et al., Journal of Computational Science, 2012^[1]
- "Positivity of the English Language" Kloumann et al., PLoS ONE, 2012 [14]
- "Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents" Dodds and Danforth, Journal of Happiness Studies, 2009 [7]
- language assessment by Mechanical Turk (labMT 1.0)
- ► http://www.onehappybird.com (⊞)

Measuring Happiness

Data se

Twitter

Geography

lealth

Demographics

Movement

Networks

Phrases

The End

Some press...

- "Social Scientists wade into the Tweet stream" by Greg Miller, Science, 333, 1814–1815, 2011 [18]
- "Does a Nation's Mood Lurk in Its Songs and Blogs?" by Benedict Carey New York Times, August 2009. (⊞)
 - More here: http://www.uvm.edu/~pdodds/research/ (⊞)

Measuring Happiness

Data se

Twitter

Geography

lealth

Movement

Networks

ICLIVOIRS

Phrases

The End

References I

[1] C. A. Bliss, I. M. Kloumann, K. D. Harris, C. M. Danforth, and P. S. Dodds.
Twitter reciprocal reply networks exhibit assortativity with respect to happiness.

Journal of Computational Science, 3:388–397, 2012. pdf (⊞)

[2] M. Bradley and P. Lang.
Affective norms for english words (anew): Stimuli, instruction manual and affective ratings.
Technical report c-1, University of Florida, Gainesville, FL, 1999. pdf (H)

Measuring Happiness

Blogs

Twitter

Geography

lealth

Demographics

Movement

Networks

mases

The End

References II

[3] T. Conner Christensen, L. Feldman Barrett, E. Bliss-Moreau, K. Lebo, and C. Kaschub. A practical guide to experience-sampling procedures. Journal of Happiness Studies, 4:53–78, 2003.

[4] M. Csikszentmihalyi.

Flow.

Harper & Row, New York, 1990.

[5] M. Csikszentmihalyi, R. Larson, and S. Prescott.
The ecology of adolescent activity and experience.
Journal of Youth and Adolescence, 6:281–294,
1977.

Measuring Happiness

Blogs

Twitter

Geography

lealth

emographics

Movement

Networks

Phrases

The End

References III

[6] E. Diener and M. Y. Chan. Happy people live longer: Subjective well-being contributes to health and longevity. Applied Psychhology: Health and Well-Being, 3:1-43, 2011. pdf (⊞)

P. S. Dodds and C. M. Danforth. Measuring the happiness of large-scale written expression: Songs, blogs, and presidents. Journal of Happiness Studies, 2009. doi:10.1007/s10902-009-9150-9. pdf (H)

P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. [8] Bliss, and C. M. Danforth. Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter. PLoS ONE, 6:e26752, 2011.

Twitter

Networks

The End

References IV

Draft version available at

http://arxiv.org/abs/1101.5120v4.

Accessed October 24, 2011. pdf (⊞)

[9] M. R. Frank, L. Mitchell, P. S. Dodds, and C. M. Danforth.

Happiness and the patterns of life: A study of geolocated Tweets.

http://arxiv.org/abs/1304.1296, **2013**. pdf (\boxplus)

[10] M. C. González, C. A. Hidalgo, and A.-L. Barabási.
Understanding individual human mobility patterns.
Nature, 453:779–782, 2008. pdf (⊞)

[11] W. T. Jones.

The Classical Mind.

Harcourt, Brace, Jovanovich, New York, 1970.

Measuring Happiness

Data sets

Twitter

Geography

Health

Demographics

Movement

Networks

masco

The End

References V

[12] D. Kahneman, A. B. Krueger, D. A. Schkade, N. Schwarz, and A. A. Stone. A survey method for characterizing daily life experience: The day reconstruction method. <u>Science</u>, 306(5702):1776–1780, 2004. pdf (⊞)

[13] M. A. Killingsworth and D. T. Gilbert.

A wondering mind is an unhappy mind.

Science Magazine, 330:932, 2010. pdf (H)

[14] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A. Bliss, and P. S. Dodds.

Positivity of the English language.

PLOS ONE 7:929484, 2012

PLoS ONE, 7:e29484, 2012.

Draft version available at

http://arxiv.org/abs/1108.5192. Accessed October 24, 2011. pdf (H)

Measuring Happiness

Data set

Twitter

Geography

lealth

Demographics

WOVCHICH

1114363

The End

References VI

[15] R. Layard.

Happiness.

The Penguin Press, London, 2005.

[16] S. Lyubomirsky.

The How of Happiness.

The Penguin Press, New York, 2007.

[17] C. Martinelli and S. W. Parker.

Deception and misreporting in a social program.

forthcoming in Journal of the European Economic

Association, 2007. pdf (⊞)

[18] G. Miller.

Social Scientists wade into the Tweet stream.

Science Magazine, 333:1814–1815, 2011. pdf (田)

Measuring Happiness

Blogs

Twitter

Geography

Health

Demographics

Movement

Networks

illases

The End

References VII

[19] L. Mitchell, M. R. Frank, P. S. Dodds, and C. M. Danforth.

The geography of happiness: Connecting Twitter sentiment and expression, demographics, and objective characteristics of place.

http://arxiv.org/abs/1302.3299, **2013**. pdf (田)

[20] C. Osgood, G. Suci, and P. Tannenbaum.

The Measurement of Meaning.

University of Illinois, Urbana, IL, 1957.

Measuring Happiness

Data sets

Twitter

Geography

Health

emographics

Movement

Networks

mases

The End

