Why Complexify?

Principles of Complex Systems
CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Universality

Symmetry Breaking

The Big Theory

Final words

or your onsideration

These slides brought to you by:

Why Complexify?

Universality

Symmetry

The Big Theory

Final words

Symmetry Breaking

The Big Theory

Final words

For your consideration

References

Universality
Symmetry
Breaking

The Big Theory

Final words

or your

Universality (⊞):

- ► The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ▶ Key figure: Leo Kadanoff (⊞).

Examples:

► The Central Limit Theorem:

$$P(x; \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx$$

- ▶ Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Universality (⊞):

- ► The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ► Key figure: Leo Kadanoff (⊞).

Examples:

► The Central Limit Theorem:

$$P(x; \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx$$

- ► Navier Stokes equation for fluids.
- ▶ Nature of phase transitions in statistical mechanics.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Universality (⊞):

- ► The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ► Key figure: Leo Kadanoff (⊞).

Examples:

► The Central Limit Theorem:

$$P(x; \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} dx.$$

- ► Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.

Symmetry Breaking

The Big Theory

Final words

For your consideration

Universality (⊞):

- ► The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ► Key figure: Leo Kadanoff (⊞).

Examples:

▶ The Central Limit Theorem:

$$P(x; \mu, \sigma) \mathrm{d}x = \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-(x-\mu)^2/2\sigma^2} \mathrm{d}x.$$

- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.

Symmetry Breaking

The Big Theory

Final words

For your consideration

Universality (⊞):

- ► The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ► Key figure: Leo Kadanoff (⊞).

Examples:

► The Central Limit Theorem:

$$P(x; \mu, \sigma) \mathrm{d}x = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \mathrm{d}x.$$

- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.

Symmetry Breaking

The Big Theory

Final words

For your consideration

Symmetry

The Big Theory

Final words

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- ► How universal is universality?
- What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- How universal is universality?
- What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

The Big Theory

Final words

or your consideration

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- ► How universal is universality?
- ► What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- ► How universal is universality?
- What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- Sometimes details don't matter too much.
- Many-to-one mapping from micro to macro
- Suggests not all possible behaviors are available at higher levels of complexity.

Large questions:

- How universal is universality?
- What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- ► Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- ► The big three: Experiment + Theory + Simulations
- ▶ Works for many very different 'fluids':
 - ▶ the atmosphere,
 - oceans
 - ▶ blood.
 - galaxies
 - ▶ the earth's mantle..
 - ▶ and ball bearings on lattices...?

Symmetry Breaking

The Big Theory

Final words

or your onsideration

- ► Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- The big three: Experiment + Theory + Simulations.
- ▶ Works for many very different 'fluids':
 - ▶ the atmosphere,
 - oceans
 - ▶ blood.
 - galaxies
 - ▶ the earth's mantle..

Universality

Symmetry Breaking

The Big Theory

Final words

or your consideration

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- ► The big three: Experiment + Theory + Simulations.
- Works for many very different 'fluids':
 - ▶ the atmosphere.
 - oceans
 - ▶ blood,
 - galaxies
 - ▶ the earth's mantle..

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- ► The big three: Experiment + Theory + Simulations.
- Works for many very different 'fluids':
 - the atmosphere,
 - oceans,
 - ▶ blood.
 - galaxies,
 - ▶ the earth's mantle...
 - and ball bearings on lattices...?

Universality

Symmetry Breaking

The Big Theory

Final words

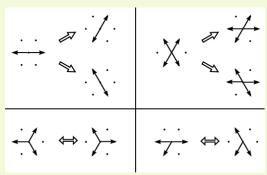
For your consideration

- ► Fluid mechanics = One of the great successes of understanding complex systems.
- Navier-Stokes equations: micro-macro system evolution.
- ► The big three: Experiment + Theory + Simulations.
- Works for many very different 'fluids':
 - the atmosphere,
 - oceans,
 - blood,
 - galaxies,
 - the earth's mantle...
 - and ball bearings on lattices...?

Universality

Symmetry Breaking

The Big Theory


Final words

For your consideration

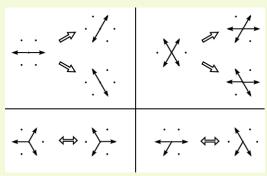
Collision rules in 2-d on a hexagonal lattice:

- ▶ Lattice matters...
- ▶ No 'good' lattice in 3-d.
- ▶ Upshot: play with 'particles' of a system to obtain new or specific macro behaviours.

Symmetry Breaking

The Big Theory

Final words


For your consideration

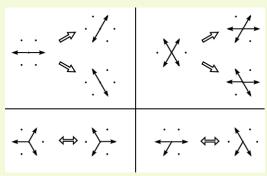
Collision rules in 2-d on a hexagonal lattice:

- ► Lattice matters...
- ► No 'good' lattice in 3-d.
- ▶ Upshot: play with 'particles' of a system to obtain new or specific macro behaviours.

Symmetry Breaking

The Big Theory

Final words


For your consideration

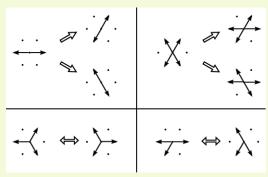
Collision rules in 2-d on a hexagonal lattice:

- Lattice matters...
- ► No 'good' lattice in 3-d.
- ▶ Upshot: play with 'particles' of a system to obtain new or specific macro behaviours.

Symmetry Breaking

The Big Theory

Final words


For your consideration

Collision rules in 2-d on a hexagonal lattice:

- Lattice matters...
- ► No 'good' lattice in 3-d.
- ▶ Upshot: play with 'particles' of a system to obtain new or specific macro behaviours.

Symmetry Breaking

The Big Theory

Final words

For your consideration

Hexagons—Honeycomb: (⊞)

- Orchestrated? Or an accident of bees working hard?

Why Complexify?

Universality

Symmetry

The Big Theory

Final words

Hexagons—Honeycomb: (⊞)

- Orchestrated? Or an accident of bees working hard?
- ► See "On Growth and Form" by D'Arcy Wentworth Thompson (⊞). [4, 5]

Why Complexify?

Universality

Symmetry Breaking

The Big Theory

Final words

or your onsideration

Hexagons—Giant's Causeway: (⊞)

http://newdesktopwallpapers.info

Why Complexify?

Universality

Symmetry Breaking

The Big Theory

Final words

or your onsideration

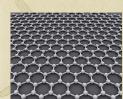
Hexagons—Giant's Causeway: (⊞)

http://www.physics.utoronto.ca/

Why Complexify?

Universality

Symmetry Breaking


The Big Theory

Final words

- ► Graphene (⊞): single layer of carbon molecules in a perfect hexagonal lattice (super strong).
- ► Chicken wire (⊞) . . .

Symmetry Breaking

The Big Theory

Final words

For your consideration

Why Complexify?

"How Cats Lap: Water Uptake by Felis catus" (⊞) Reis et al., Science, 2010.

A Study of Cat Lapping

Adult cats and dogs are unable to create suction in their mouths and must use their tongues to drink. A dog will scoop up liquid with the back of its tongue, but a cat will only touch the surface with the smooth tip of its tongue and pull a column of liquid into its mouth.

Source: Science

DEO BY ROMAN STOCKER, SUNGHWAN JUNG, JEFFREY M, ARISTOFF AND PEDRO M, REIS

Amusing interview here (⊞)

Universality

Symmetry

The Big Theory

Final words

Philip Anderson (⊞)—"More is Different," Science, 1972 [1]

- Argues against idea that
- ▶ Symmetry breaking →

Symmetry Breaking

The Big Theory

Final words

Philip Anderson (⊞)—"More is Different," Science, 1972 [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- ➤ Symmetry breaking → different laws/rules at different scales...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Philip Anderson (⊞)—"More is Different," Science, 1972 1.

- Argues against idea that the only real scientists are those working on the fundamental laws.
- ▶ Symmetry breaking → different laws/rules at different scales...

Symmetry Breaking

The Big Theory

Final words

Philip Anderson (⊞)—"More is Different," Science, 1972 [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- ➤ Symmetry breaking → different laws/rules at different scales...

Universality

Symmetry Breaking

The Big Theory

Final words

consideration

References

2006 study \rightarrow "most creative physicist in the world" (\boxplus)

"Elementary entities of science X obey the laws of science Y"

- X
- solid state or many-body physics
- chemistry
- molecular biology
- cell biology
- 1
- psychology
- social sciences

- Y
- elementary particle physics
- solid state many-body physics
- chemistry
- molecular biology
- ÷
- physiology
- psychology

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Anderson:

- ► [the more we know about] "fundamental laws, the less relevance they seem to have to the very real problems of the rest of science."
- Scale and complexity thwart the constructionist hypothesis.
- ► Accidents of history and path dependence (⊞) matter.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Anderson:

- [the more we know about] "fundamental laws, the less relevance they seem to have to the very real problems of the rest of science."
- Scale and complexity thwart the constructionist hypothesis.
- ► Accidents of history and path dependence (⊞) matter.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Symmetry Breaking

Anderson:

- [the more we know about] "fundamental laws, the less relevance they seem to have to the very real problems of the rest of science."
- Scale and complexity thwart the constructionist hypothesis.
- ► Accidents of history and path dependence (⊞) matter.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Page 291–292 of Sornette [3]: Renormalization \equiv Anderson's hierarchy.

- ▶ But Anderson's hierarchy is not a simple one: the
- Crucial dichotomy between evolving systems

Symmetry Breaking

The Big Theory

Symmetry Breaking

- Page 291–292 of Sornette [3]: Renormalization ≡ Anderson's hierarchy.
- But Anderson's hierarchy is not a simple one: the rules change.
- Crucial dichotomy between evolving systems following stochastic paths that lead to
 (a) inevitable or (b) particular destinations (state

niversality

Symmetry Breaking

The Big Theory

Final words

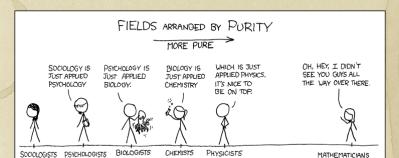
or your

Symmetry Breaking

- Page 291–292 of Sornette [3]: Renormalization ≡ Anderson's hierarchy.
- ▶ But Anderson's hierarchy is not a simple one: the rules change.
- Crucial dichotomy between evolving systems following stochastic paths that lead to
 (a) inevitable or (b) particular destinations (states).

Universality

Symmetry Breaking


The Big Theory

Final words

or your

http://xkcd.com/435/ (H)

Symmetry Breaking

The Big Theory

A real theory of everything anything:

- Second law of thermodynamics: we're toast in the
- ► So how likely is the local complexification of structure
- ► How likely are the Big Transitions?

The Big Theory

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

VS.

Universality

- Second law of thermodynamics: we're toast in the long run.
- ► So how likely is the local complexification of structure we enjoy?
- ► How likely are the Big Transitions?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

VS.

Universality

- ► Second law of thermodynamics: we're toast in the long run.
- ► So how likely is the local complexification of structure we enjoy?
- ► How likely are the Big Transitions?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

VS.

Universality

- Second law of thermodynamics: we're toast in the
- ► So how likely is the local complexification of structure
- ► How likely are the Big Transitions?

The Big Theory

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

VS.

Universality

- Second law of thermodynamics: we're toast in the long run.
- ► So how likely is the local complexification of structure we enjoy?
- ► How likely are the Big Transitions?

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

vs.

Universality

- Second law of thermodynamics: we're toast in the long run.
- ➤ So how likely is the local complexification of structure we enjoy?
- ► How likely are the Big Transitions?

Universality

Symmetry Breaking

The Big Theory

Final words

or your consideration

A real theory of everything anything:

- 1. Is not just about the ridiculously small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ Accidents of history

VS.

Universality

- Second law of thermodynamics: we're toast in the long run.
- So how likely is the local complexification of structure we enjoy?
- How likely are the Big Transitions?

Universality

Symmetry Breaking

The Big Theory

Final words

or your consideration

Complexification—the Big Transitions:

- Big Bang.
- Big Randomness.
- ▶ Big Replicate.
- ▶ Big Life.
- ▶ Big Evolve.

- Big Word.
- Big Story.
- Big Number.
- ▶ Big God.
- Big Make.

- ▶ Big Science.
- Big Data.
- ▶ Big Information.
- Big Algorithm.
- Big Connection.
- Big Social.
- Big Awareness.

Symmetry

Breaking

The Big Theory

Final words

For your consideration

Why complexify?

"Why do things become more complex?" [2] Brian Arthur Scientific American, 268, 92, 1993.

- Complexification ≡ evolution of algorithms?
- ▶ Differential equations and stories ⊂ Algorithms.
- ► Life is a loaded word: The Search for Extraterrestrial Algorithms (SETA)?

Universality

Symmetry Breaking

The Big Theory

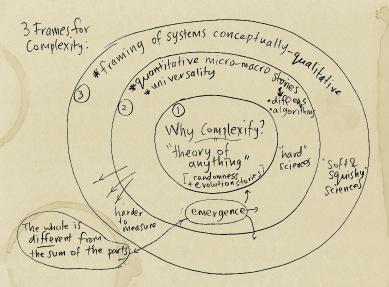
Final words

or your consideration

Why complexify?

Driving complexity's trajectory:

- Big Bang
- Randomness leads to replicating structures;
- Biological evolution;
- Sociocultural evolution:
- Technological evolution;
- Sociotechnological evolution.


Symmetry

The Big Theory

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

ALL SPORTS COMMENTARY

http://xkcd.com/904/(H)

- Mechanisms = Evolution equations, algorithms, stories, ...

The Big Theory

ALL SPORTS COMMENTARY

http://xkcd.com/904/(H)

- Mechanisms = Evolution equations, algorithms, stories, ...
- Rollover zing: "Also, all financial analysis. And, more directly, D&D."

The Big Theory

- "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."
- "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."
- ► "Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so."

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

- "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."
- "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

"Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so." Universality

Symmetry Breaking

The Big Theory

Final words

or your

References

24 of 28

- "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."
- "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

"Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so." Universality

Symmetry Breaking

The Big Theory

Final words

or your onsideration

- "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."
- "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

"Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so." Universality

Symmetry

The Big Theory

For your

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.

The Big Theory

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

Beware your assumptions:

Don't use tools/models because they're there, or because everyone else does...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

Beware your assumptions:

Don't use tools/models because they're there, or because everyone else does...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

Beware your assumptions:

Don't use tools/models because they're there, or because everyone else does...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Next:

Spring 2014: Complex Networks (CSYS/MATH 303)

- ▶ Branching networks (rivers, cardiovascular systems
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- ▶ Contagion
- Random networks-arama
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Next:

Spring 2014: Complex Networks (CSYS/MATH 303)

- Branching networks (rivers, cardiovascular systems)
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- Contagion
- Random networks-arama
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

Next:

Spring 2014: Complex Networks (CSYS/MATH 303)

- Branching networks (rivers, cardiovascular systems)
- Redistribution networks (airlines, post)
- Structure detection for complex systems
- Contagion
- Random networks-arama
- Distributed Search
- Organizational networks
- Deeper investigations of scale-free networks
- and more...

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

[1] P. W. Anderson.

More is different.

Science, 177(4047):393–396, 1972. pdf (⊞)

[2] W. B. Arthur.
Why do things become more complex?
Scientific American, 268:92, 1993. pdf (⊞)

[3] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

[4] D. W. Thompson.

On Growth and From.

Cambridge University Pres, Great Britain, 2nd edition, 1952.

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

[5] D. W. Thompson. On Growth and Form — Abridged Edition. Cambridge University Press, Great Britain, 1961. Symmetry

The Big Theory

Final words

For your

