Why Complexify?

Principles of Complex Systems CSYS/MATH 300, Spring, 2013 | #SpringPoCS2013

Prof. Peter Dodds @peterdodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Why Complexify?

Universality

The Big Theory Final words

References

Limits to what's possible:

Universality (⊞):

- ▶ The property that the macroscopic aspects of a system do not depend sensitively on the system's details.
- ► Key figure: Leo Kadanoff (⊞).

Examples:

► The Central Limit Theorem:

$$P(x; \mu, \sigma) \mathrm{d}x = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} \mathrm{d}x.$$

- Navier Stokes equation for fluids.
- Nature of phase transitions in statistical mechanics.

Why Complexify?

Universality

Symmetry Breaking

Final words

For your consideration

References

The Big Theory

少 Q (~ 4 of 28

Why Complexify?

Universality

The Big Theory

For your consideration

References

▶ Sometimes details don't matter too much.

Many-to-one mapping from micro to macro

Suggests not all possible behaviors are available

These slides brought to you by:

Why Complexify?

UNIVERSITY VERMONT

少 Q (~ 1 of 28

Universality

The Big Theory

For your consideration References

Large questions:

Universality

► How universal is universality?

at higher levels of complexity.

▶ What are the possible long-time states (attractors) for a universe?

Universality

Symmetry Breaking

Final words

For your consideration

References

The Big Theory

Outline

Universality

Symmetry Breaking

The Big Theory

Final words

For your consideration

References

Why Complexify?

UNIVERSITY VERMONT

少 Q (~ 2 of 28

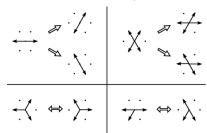
Universality Symmetry Breaking The Big Theory

Final words

References

Fluid mechanics

- ► Fluid mechanics = One of the great successes of understanding complex systems.
- ▶ Navier-Stokes equations: micro-macro system
- ▶ The big three: Experiment + Theory + Simulations.
- Works for many very different 'fluids':
 - the atmosphere,
 - oceans.
 - blood,
 - galaxies,
 - the earth's mantle...
 - and ball bearings on lattices...?



少 Q (~ 6 of 28

Lattice gas models

Collision rules in 2-d on a hexagonal lattice:

- ► Lattice matters...
- ▶ No 'good' lattice in 3-d.
- Upshot: play with 'particles' of a system to obtain new or specific macro behaviours.

Why Complexify?

Universality

Symmetry Breaking The Big Theory Final words For your

References

少 Q (~ 7 of 28

Why Complexify?

Universality

The Big Theory

Final words

For your consideration

References

Hexagons—Giant's Causeway: (⊞)

http://www.physics.utoronto.ca/

Why Complexify?

Universality

Symmetry Breaking The Big Theory Final words For your consideration

少 Q (~ 10 of 28

Hexagons—Honeycomb: (⊞)

- Orchestrated? Or an accident of bees working hard?
- ► See "On Growth and Form" by D'Arcy Wentworth Thompson (⊞). [4, 5]

Hexagons run amok:

► Graphene (⊞): single layer of carbon molecules in a perfect

hexagonal lattice (super strong).

► Chicken wire (⊞) ...

Why Complexify?

Universality

Breaking
The Big Theory

Final words
For your consideration
References

Hexagons—Giant's Causeway: (⊞)

http://newdesktopwallpapers.info

Why Complexify?

UNIVERSITY OF VERMONT

少 Q (~ 8 of 28

Universality

Symmetry Breaking The Big Theory Final words

For your consideration References

クへで 9 of 28

Whimsical but great example of real science:

"How Cats Lap: Water Uptake by Felis catus" (\boxplus) Reis et al., Science, 2010.

Amusing interview here (⊞)

Universality

Symmetry Breaking The Big Theory Final words For your consideration

少 q (~ 12 of 28

Symmetry Breaking

Philip Anderson (H)—"More is Different," Science, 1972 [1]

- Argues against idea that the only real scientists are those working on the fundamental laws.
- Symmetry breaking → different laws/rules at different scales...

2006 study → "most creative physicist in the world" (⊞)

Why Complexify?

Universality

Symmetry Breaking The Big Theory

Final words

References

UNIVERSITY VERMONT

夕 Q № 13 of 28

▶ Page 291–292 of Sornette [3]:

Symmetry Breaking

- Renormalization \equiv Anderson's hierarchy. ▶ But Anderson's hierarchy is not a simple one: the rules change.
- Crucial dichotomy between evolving systems following stochastic paths that lead to (a) inevitable or (b) particular destinations (states).

Why Complexify?

Universality

The Big Theory

Final words For your consideration References

UNIVERSITY OF

夕 Q № 16 of 28

Universality

Symmetry Breaking

The Big Theory

For your consideration

References

Why Complexify?

Symmetry Breaking

"Elementary entities of science X obey the laws of science Y"

- X
- solid state or many-body physics
- chemistry
- molecular biology
- cell biology

Anderson:

hypothesis.

matter.

- psychology
- social sciences

Symmetry Breaking

- elementary particle physics
- solid state many-body physics
- chemistry
- molecular biology

▶ [the more we know about] "fundamental laws, the

Scale and complexity thwart the constructionist

► Accidents of history and path dependence (⊞)

problems of the rest of science."

less relevance they seem to have to the very real

- physiology
- psychology

Why Complexify?

Universality

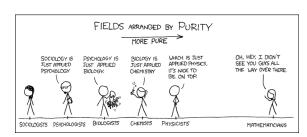
Symmetry Breaking The Big Theory

For your consideration References

少 Q (~ 14 of 28

Why Complexify?

Universality


Symmetry Breaking

Final words

For your consideration

The Big Theory

More is different:

http://xkcd.com/435/ (⊞)

A real science of complexity:

Symmetry breaking/

Accidents of history

A real theory of everything anything:

2. It's about the increase of complexity

1. Is not just about the ridiculously small stuff...

Why Complexify?

Universality

The Big Theory

Final words

For your consideration

References

Second law of thermodynamics: we're toast in the long run.

VS.

Universality

- So how likely is the local complexification of structure we enjoy?
- ► How likely are the Big Transitions?

Complexification—the Big Transitions:

- ▶ Big Bang.
- ness.
- ▶ Big Replicate.

Why complexify?

Brian Arthur

Algorithms (SETA)?

- Big Life.
- ► Big Word.
 - - - ▶ Big Social.
 - Big Awareness.

Why Complexify?

3 Frames for

Complexity

The whole is form different from the sum of the points

* Framing

Universality

The Big Theory Final words

References

夕 Q № 19 of 28

Universality

The Big Theory

For your consideration

少 Q ← 20 of 28

Homo narrativus—What's the Story?:

measure

A WEIGHTED RANDOM NUMBER GENERATOR JUST PRODUCED A NEW BATCH OF NUMBERS. LET'S USE THEM TO BUILD NARRATIVES!

ALL SPORTS COMMENTARY http://xkcd.com/904/ (⊞)

► Mechanisms = Evolution equations, algorithms, stories, ...

of systems conceptually Enally Enally

hard

Soft& Squishy Sciences

paritative micro-macro

Why Complexify?

theory of anything"

emergence

► Rollover zing: "Also, all financial analysis. And, more directly, D&D."

Why Complexify?

Universality Symmetry Breaking

The Big Theory

Final words For your consideration

References

夕 Q (~ 22 of 28

Why Complexify?

Universality Symmetry

The Big Theory

For your consideration References

少 Q (~ 23 of 28

Why Complexify?

(Sir Terry) Pratchett's (⊞) Narrativium (⊞):

Universality Symmetry Breaking

The Big Theory Final words

▶ "The most common element on the disc, although not included in the list of the standard five: earth, fire, air, water and surprise. It ensures that everything runs properly as a story."

▶ "A little narrativium goes a long way: the simpler the story, the better you understand it. Storytelling is the opposite of reductionism: 26 letters and some rules of grammar are no story at all."

"Heroes only win when outnumbered, and things which have a one-in-a-million chance of succeeding often do so."

Universality Symmetry Breaking

The Big Theory Final words

For your consideration References

- ▶ Big Random-
- ► Big Story.
- ▶ Big
- ▶ Big God.
- ▶ Big Evolve.

"Why do things become more complex?" [2]

▶ Complexification ≡ evolution of algorithms?

▶ Differential equations and stories ⊂ Algorithms.

▶ Life is a loaded word: The Search for Extraterrestrial

Scientific American, 268, 92, 1993.

- Number.
- ▶ Big Make.
- ► Big Science.
- ► Big Data.
- ▶ Big Information.
- ▶ Big Algorithm.
- ▶ Big Connection.

Why Complexify?

References

Why Complexify?

Driving complexity's trajectory: ▶ Big Bang

► Randomness leads to replicating structures; ► Biological evolution;

Why complexify?

- Sociocultural evolution;
- ► Technological evolution;
- ► Sociotechnological evolution.

The absolute basics:

Why Complexify?

Universality

The Big Theory

Final words

References

References II

[5] D. W. Thompson.

On Growth and Form — Abridged Edition.

Cambridge University Press, Great Britain, 1961.

Why Complexify?

Universality The Big Theory

Final words For your consideration

References

Modern basic science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

Beware your assumptions:

Don't use tools/models because they're there, or because everyone else does...

少 Q (~ 25 of 28

Next:

Spring 2014: Complex Networks (CSYS/MATH 303)

- ▶ Branching networks (rivers, cardiovascular systems)
- ► Redistribution networks (airlines, post)
- ► Structure detection for complex systems
- Contagion
- ► Random networks-arama
- ▶ Distributed Search
- ► Organizational networks
- ▶ Deeper investigations of scale-free networks
- ▶ and more...

Why Complexify?

Universality

The Big Theory Final words

For your consideration

References

UNIVERSITY VERMONT 少 Q ← 26 of 28

Why Complexify?

Universality

Symmetry Breaking

References I

[1] P. W. Anderson.

More is different.

Science, 177(4047):393-396, 1972. pdf (⊞)

[2] W. B. Arthur.

Why do things become more complex? Scientific American, 268:92, 1993. pdf (⊞)

[3] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 1st edition, 2003.

[4] D. W. Thompson.

On Growth and From.

Cambridge University Pres, Great Britain, 2nd edition, 1952.

少 Q (~ 27 of 28