The Amusing Law of Benford

Principles of Complex Systems CSYS/MATH 300, Spring, 2013 | \#SpringPoCS2013

Prof. Peter Dodds @peterdodds

Department of Mathematics \& Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

VACC $\begin{aligned} & \text { The } \\ & \text { UnIVERSITY } \\ & \text { ON VERMONT }\end{aligned}$

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

UNIVERSIIY VERMONT

Outline

Benford＇s Law

References

The law of first digits

Benford's Law: (\boxplus)

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

for certain sets of 'naturally' occurring numbers in base b
Around 30.1% of first digits are ' 1 ', compared to only 4.6% for ' 9 '

- First observed by Simon Newcornb ${ }^{14}$ in 1881 "Note on the Frequency of Use of the Different Digits in Natural Numbers'
- Independently discovered in 1938 by
- Newcomb almost always noted but Benford gets the stamp.

The law of first digits

Benford's Law: (\boxplus)

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

for certain sets of 'naturally' occurring numbers in base b

- Around 30.1% of first digits are ' 1 ', compared to only 4.6% for ' 9 '.
- First observed by Simon Newcomb ${ }^{[2]}$ in 1881 "Note on the Frequency of Use of the Different Digits in Natural Numbers"
- Independently discovered in 1938 by
- Newcomb almost always noted but Benford gets the stamp.

The law of first digits

Benford's Law: (\boxplus)

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

for certain sets of 'naturally' occurring numbers in base b

- Around 30.1% of first digits are ' 1 ', compared to only 4.6% for ' 9 '.
- First observed by Simon Newcomb ${ }^{[2]}$ in 1881 "Note on the Frequency of Use of the Different Digits in Natural Numbers"
- Newcomb almost always noted but Benford gets the stamp.

Benford's Law

The law of first digits

Benford's Law: (\boxplus)

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

for certain sets of 'naturally' occurring numbers in base b

- Around 30.1% of first digits are ' 1 ', compared to only 4.6% for ' 9 '.
- First observed by Simon Newcomb ${ }^{[2]}$ in 1881 "Note on the Frequency of Use of the Different Digits in Natural Numbers"
- Independently discovered in 1938 by Frank Benford (\boxplus).
- Newcomb almost always noted but Benford gets the stamp.

The law of first digits

Benford's Law: (\boxplus)

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

for certain sets of 'naturally' occurring numbers in base b

- Around 30.1% of first digits are ' 1 ', compared to only 4.6% for ' 9 '.
- First observed by Simon Newcomb ${ }^{[2]}$ in 1881 "Note on the Frequency of Use of the Different Digits in Natural Numbers"
- Independently discovered in 1938 by Frank Benford (\boxplus).
- Newcomb almost always noted but Benford gets the stamp.

Benford＇s Law－The Law of First Digits

Observed for
－Fundamental constants（electron mass，charge，etc．）
－Utility bills
－Numbers on tax returns（ha！）
－Death rates
－Street addresses
－Numbers in newspapers
$\left|\begin{array}{l}0 \\ 0\end{array}\right|$

Benford's Law-The Law of First Digits

Observed for

- Fundamental constants (electron mass, charge, etc.)
- Utility bills
- Numbers on tax returns (ha!)
- Death rates
- Street addresses
- Numbers in newspapers
- Cited as evidence of fraud (\boxplus) in the 2009 Iranian elections.

Benford's Law

Real data:

predicted frequencies

30.1	17.6	12.5	9.7	7.9	6.7	5.8	5.1	4.6

From 'The First-Digit Phenomenon' by T. P. Hill (1998) ${ }^{[1]}$

Benford's Law

Physical constants of the universe:

Taken from here (\boxplus).

Benford＇s Law

Population of countries：

Taken from here (\boxplus) ．

Essential story

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

Benford's Law
References

Essential story

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

$$
\propto \log _{b}\left(\frac{d+1}{d}\right)
$$

つの『 8 of 10

Essential story

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

$$
\begin{aligned}
& \propto \log _{b}\left(\frac{d+1}{d}\right) \\
& \propto \log _{b}(d+1)-\log _{b}(d)
\end{aligned}
$$

つの® 8 of 10

Essential story

$$
\begin{gathered}
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right) \\
\propto \log _{b}\left(\frac{d+1}{d}\right) \\
\propto \log _{b}(d+1)-\log _{b}(d)
\end{gathered}
$$

- Observe this distribution if numbers are distributed uniformly in log-space:

$$
P(\ln x) \mathrm{d}(\ln x) \propto 1 \cdot \mathrm{~d}(\ln x)
$$

ЭQく 8 of 10

Essential story

$$
\begin{gathered}
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right) \\
\propto \log _{b}\left(\frac{d+1}{d}\right) \\
\propto \log _{b}(d+1)-\log _{b}(d)
\end{gathered}
$$

- Observe this distribution if numbers are distributed uniformly in log-space:

$$
P(\ln x) \mathrm{d}(\ln x) \propto 1 \cdot \mathrm{~d}(\ln x)=x^{-1} \mathrm{~d} x
$$

Essential story

$$
\begin{gathered}
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right) \\
\propto \log _{b}\left(\frac{d+1}{d}\right) \\
\propto \log _{b}(d+1)-\log _{b}(d)
\end{gathered}
$$

- Observe this distribution if numbers are distributed uniformly in log-space:

$$
P(\ln x) \mathrm{d}(\ln x) \propto 1 \cdot \mathrm{~d}(\ln x)=x^{-1} \mathrm{~d} x
$$

- Power law distributions at work again...

Essential story

$$
P(\text { first digit }=d) \propto \log _{b}\left(1+\frac{1}{d}\right)
$$

$$
\begin{gathered}
\propto \log _{b}\left(\frac{d+1}{d}\right) \\
\propto \log _{b}(d+1)-\log _{b}(d)
\end{gathered}
$$

- Observe this distribution if numbers are distributed uniformly in log-space:

$$
P(\ln x) \mathrm{d}(\ln x) \propto 1 \cdot \mathrm{~d}(\ln x)=x^{-1} \mathrm{~d} x
$$

- Power law distributions at work again...
- Extreme case of $\gamma \simeq 1$.

Benford's law

Benford's Law

Taken from here (\boxplus).

References I

[1] T. P. Hill.
The first-digit phenomenon. American Scientist, 86:358-, 1998.
[2] S. Newcomb.
Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4:39-40, 1881. pdf (\boxplus)

JNIVERSIIY VERMON

