
Principles of Complex Systems, CSYS/MATH 300

University of Vermont, Spring 2013

Assignment 5 • code name: Stayin’ Alive (�)

Dispersed: Friday, February 22, 2013.

Due: By start of lecture, 11:30 am, Thursday, February 28, 2013.

Some useful reminders:

Instructor: Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 1:00 pm to 4:00 pm, Wednesday

Course website: http://www.uvm.edu/∼pdodds/teaching/courses/2013-01UVM-300

All parts are worth 3 points unless marked otherwise. Please show all your working

clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related TEX variant).

1. The discrete version of HOT theory:

From lectures, we had the follwoing.

Cost: Expected size of ‘fire’ in a d-dimensional lattice:

Cfire ∝
Nsites∑
i=1

(piai)ai =

Nsites∑
i=1

pia
2
i ,

where ai = area of ith site’s region, and pi = avg. prob. of fire at site in ith site’s

region.

From lectures, the constraint for building and maintaining (d− 1)-dimensional

firewalls in d-dimensions is

Cfirewalls ∝
Nsites∑
i=1

a
(d−1)/d
i a−1

i ,

where we are assuming isometry.

Using Lagrange Multipliers, safety goggles, rubber gloves, a pair of tongs, and a

maniacal laugh, determine that:

pi ∝ a−γi = a
−(2+1/d)
i .
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http://www.youtube.com/watch?v=A3b9gOtQoq4
http://www.uvm.edu/~pdodds/teaching/courses/2013-01UVM-300


2. (3 + 3 + 3) Highly Optimized Tolerance:

This question is based on Carlson and Doyle’s 1999 paper “Highly optimized

tolerance: A mechanism for power laws in design systems” [1]. In class, we made

our way through a discrete version of a toy HOT model of forest fires. This paper

revolves around the equivalent continuous model’s derivation.

Our interest is in Table I on p. 1415:

We will assume that the local event size is inversely re-
lated to the local density or cost of the resource, so that
A(x)!R"!(x), where typically ! is positive. This relation-
ship arises naturally in systems with spatial geometry "e.g.,
in the forest fire analogy#, where in d dimensions we can
think of R(x) as being (d"1)-dimensional separating barri-
ers. In that case A(x)$R"d(x). In some systems the rela-
tionship between A(x) and R(x) is difficult to define
uniquely, and in some cases reduces to a value judgement.
Here our spatially motivated assumption that A(x)
!R"!(x) is important for obtaining power law distributions.
If we assume an exponential relationship between the size of
an event and its cost %e.g., A$ln(R)&, we obtain a sharp
cutoff in the distribution of events. In essence, this is because
it becomes extremely inexpensive to restrict large events be-
cause the cost of resources decreases faster than the size of
the event to any power. Alternately, one could define a cost
function for cases in which there is a large social or ethical
premium "e.g., loss of life# associated with large events. This
could lead to a cutoff in the distribution due to a rapid rise in
the total allocation of resources to prevent large events. In
this case, the heavy tails would occur in the cost C and not in
the event size A.
To obtain the HOT state we simply minimize the ex-

pected cost %Eq. "1#& subject to the constraint %Eq. "2#&. Sub-
stituting the relationship A(x)!R"!(x) into Eq. "1#, we ob-
tain

E"A'#!!
X
p"x#R"'!"x#dx. "3#

Combining this with Eq. "2#, we minimize E(A') using the
variational principle by solving

(!
X
%p"x#R"'!"x#")R"x#&dx!0. "4#

Thus the optimal relationship between the local probability
and constrained resource is given by

p"x#R"'!"1"x#!const. "5#

From this we obtain

p"x#$R'!#1"x#$A""'#1/!#"x#$A"*"x#, "6#

where *!'#1/! . This relation should be viewed as the
local rule which sets the best placements of the resource. As
expected, greater resources are devoted to regions of high
probability.
As function of x, Eq. "6# shows that p(x) and A(x) scale

as a power law. However, we want to obtain the distribution
P(A) as a function of the area A rather than the local coor-
dinate x. It is convenient to focus on cumulative distribution,
Pcum(A), which is the sum of P(A) for regions of size
greater than or equal to A. We express the tails of Pcum(A) as

Pcum"A #!!
A"x#$A

p"x#dx!!
p"x#%A"*

p"x#dx, "7#

where the integral is evaluated over the subset of x in which
the local value A(x) is greater than the specified value A.

Under what conditions does this relationship lead to
heavy tails? Certainly not all p(x) lead to power laws in
P(A) %equivalently, Pcum(A), which has power law tails if
P(A) has power law tails, with one power higher in the
exponent&. For example, if p(x) is concentrated within a fi-
nite region, then the resource would optimally be concen-
trated within that region, and the distribution P(A) would a
priori have zero weight for events greater than the area as-
sociated with the mass concentration of p(x). Here the most
extreme case is a point mass at a particular location, p(x)
!((x"x*), which could be enclosed by a high density of
the resource, so that all activity is confined to x*. Alter-
nately, if p(x) is spatially uniform, then R(x) and A(x)
would be uniformly distributed, and P(A) would be a point
mass at a fixed area determined by the resource constraint
and the system size.
While counterexamples such as those we have just de-

scribed can be constructed, a broad class of distributions
p(x) leads to heavy tails in P(A). The case for d!1 with
monotonic p(x) and restricting X to x$0 is particularly
simple "and forms the basis for the more general case#. In
this special case, the change of variables from p(x) to P(A)
is straightforward, and we obtain

Pcum"A #!!
p"1"A"*#

+

p"x#dx!pcum„p"1"A"*#… , "8#

where pcum(x) is the tail of the cumulative distribution for
the probability of hits and p"1 is the inverse function of p, so
that p"1(A"*) is the value of x for which p(x)!A"*.
We can use Eq. "8# to directly compute the tail of

Pcum(A) for standard p(x), such as power laws, exponen-
tials, and Gaussians. Table I summarizes the results, where
we look only at tails in the distributions of x and A, and drop
constants. We obtain a power distribution for Pcum(A) in
each case, with a logarithmic correction for the Gaussian.
For higher dimensions, suppose that the tails of p(x) can

be bounded above and below by

pl" "x"#,p"x#,pu" "x"#, "9#

where "x" denotes the magnitude of x. The specific form of
Eq. "9# effectively reduces the change of variables to quasi-
one-dimensional computations. With this assumption, Eq. "7#
can be bounded below by

TABLE I. In the HOT state, power law distributions of the
region sizes Pcum(A) are obtained for a broad class of probability
distributions of the hits p(x), including power law, exponential, and
Gaussian distributions as shown here.

p(x) pcum(x) Pcum(A)

x"(q#1) x"q A"*(1"1/q)

e"x e"x A"*

e"x2 x"1e"x2 A"*% log(A)&"1/2
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and Equation 8 on the same page:

P≥(A) =

∫ ∞
p−1(A−γ)

p(x)dx = p≥
(
p−1

(
A−γ

))
,

where γ = α + 1/β and we’ll write P≥ for Pcum.

Please note that P≥(A) for x−(q+1) is not correct. Find the right one!

Here, A(x) is the area connected to the point x (think connected patch of trees

for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as

A(x)α which in turn occurs with probability p(x). The function p−1 is the inverse

function of p.

Resources associated with point x are denoted as R(x) and area is assumed to

scale with resource as A(x) ∼ R−β(x).

Finally, p≥ is the complementary cumulative distribution function for p.

As per the table, determine p≥(x) and P≥(A) for the following (3 pts each):

(a) p(x) = cx−(q+1),

(b) p(x) = ce−x, and

(c) p(x) = ce−x
2
.

Note that you should incorporate a constant of proportionality c, which is not

shown in the paper.

3. The next two questions continue on with the Google data set we first examined in

Assignment 1.

Using the CCDF and standard linear regression, measure the exponent γ − 1 as a

function of the upper limit of the scaling window, with a fixed lower limit of

kmin = 200.
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Please plot γ as a function of kmax, including 95% confidence intervals.

Note that the break in scaling should mess things up but we’re interested here in

how stable the estimate of γ is up until the break point.

Comment on the stability of γ over variable window sizes.

Pro Tip: your upper limit values should be distributed evenly in log space.

4. (3 + 3 + 3)

Estimating the rare:

Google’s raw data is for word frequency k ≥ 200 so let’s deal with that issue now.

From Assignment 2, we had for word frequency in the range 200 ≤ k ≤ 107, a fit

for the CCDF of

N≥k ∼ 3.46× 108k−0.661,

ignoring errors.

(a) Using the above fit, create a complete hypothetical Nk by expanding Nk

back for k = 1 to k = 199, and plot the result in double-log space (meaning

log-log space).

(b) Compute the mean and variance of this reconstructed distribution.

(c) Estimate:

i. the hypothetical fraction of words that appear once out of all words

(think of words as organisms here),

ii. the hypothetical total number and fraction of unique words in Google’s

data set (think at the species level now),

iii. and what fraction of total words are left out of the Google data set by

providing only those with counts k ≥ 200 (back to words as organisms).

References

[1] J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power

laws in designed systems. Phys. Rev. E, 60(2):1412–1427, 1999.

3


