Lecture Three

Stories of Complex Sociotechnical Systems: Measurement, Mechanisms, and Meaning Lipari Summer School, Summer, 2012

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Outline

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

Complex Sociotechnical Systems

A Very Dismal Science

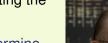
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Economics, Schmeconomics


Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,

I don't need any of this other stuff.

I could forecast the economy better than any way I know."

http://wikipedia.org

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Economics, Schmeconomics

Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

From the Daily Show (⊞) (September 18, 2007)

Jon Stewart:

"You just bummed the @*!# out of me."

• The full inteview is here (\boxplus) .

wildbluffmedia.com

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References

d > 0 dt > 0

DQ @ 4 of 137

Economics, Schmeconomics

James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach. And most of them teach a theoretical framework that has been shown to be fundamentally useless.

From the New York Times, 11/02/2008 (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

Collective Cooperation:

Standard frame:

Locally selfish behavior \rightarrow collective cooperation.

Different frame:

Locally moral/fair behaviour \rightarrow collective bad actions.

- So why do we study frame 1 instead of frame 2?
- Tragedy of the Commons is one example of frame 2.
- Better question: Who is it that studies frame 1 over frame 2...?

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Homo Economicus

 'What makes people think like Economists? Evidence on Economic Cognition from the "Survey of Americans and Economists on the Economy" '^[8] Bryan Caplan, Journal of Law and Economics, 2001

People behave like Homo economicus:

- 1. if they are well educated,
- 2. if they are male,
- 3. if their real income rose over the last 5 years,
- if they expect their real income to rise over the next 5 years,
- 5. if they have a high degree of job security,
- 6. but not because of high income nor ideological conservatism.

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQ @ 7 of 137

Wealth distribution in the United States:

Complex Sociotechnical Systems

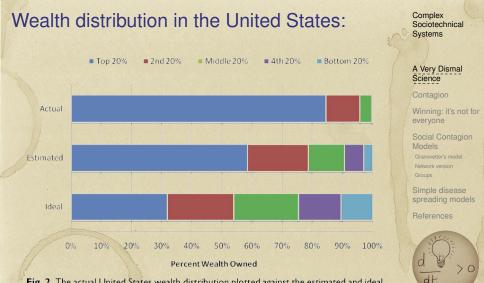
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

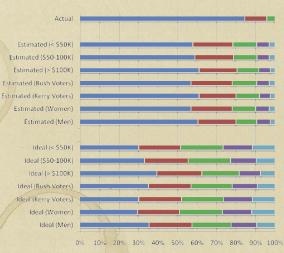
Simple disease spreading models


References

dt

Questions used in a recent study by Norton and Ariely: ^[29]

- What percentage of all wealth is owned by individuals grouped into quintiles?
- How do people believe wealth is distributed?
- How do people believe wealth should be distributed?



VERMONT

Fig. 2. The actual United States wealth distribution plotted against the estimated and ideal distributions across all respondents. Because of their small percentage share of total wealth, both the "4th 20%" value (0.2%) and the "Bottom 20%" value (0.1%) are not visible in the "Actual" distribution.

Wealth distribution in the United States:

Top 20% = 2nd 20% = Middle 20% = 4th 20% = Bottom 20%

Percent Wealth Owned

Fig. 3. The actual United States wealth distribution plotted against the estimated and ideal distributions of respondents of different income levels, political affiliations, and genders. Because of their small percentage share of total wealth, both the "4th 20%" value (0.2%) and the "Bottom 20%" value (0.1%) are not visible in the "Actual" distribution. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

This is a Collateralized Debt Obligation:

Contagion

A confusion of contagions:

- Was Harry Potter some kind of virus?
- What about Vampires?
- Did Sudoku spread like a disease?
- Language? The alphabet?^[17]
- Religion?
- Democracy...?

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

Contagion

Naturomorphisms

- "The feeling was contagious."
- "The news spread like wildfire."
- "Freedom is the most contagious virus known to man."
 - -Hubert H. Humphrey, Johnson's vice president
- "Nothing is so contagious as enthusiasm."
 —Samuel Taylor Coleridge

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

NIVERSITY 5

Social contagion

Eric Hoffer, 1902–1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation, there is the overpowering feeling that in this country we have come nearer the brotherhood of man than ever before.

► Hoffer (⊞) was an interesting fellow...

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQ @ 14 of 137

The spread of fanaticism

Hoffer's acclaimed work: "The True Believer: Thoughts On The Nature Of Mass Movements" (1951)^[20]

Quotes-aplenty:

- "We can be absolutely certain only about things we do not understand."
- "Mass movements can rise and spread without belief in a God, but never without belief in a devil."
- "Where freedom is real, equality is the passion of the masses. Where equality is real, freedom is the passion of a small minority."

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Imitation

THEY LISUALLY IMITATE FACH OTHER

www.despair.com

despair.com

Complex Sociotechnical Systems

A Very Dismal

Contagion

Winning: it's not for everyone

Simple disease spreading models

"When people are free to do as they please, they usually imitate each other."

-Eric Hoffer "The Passionate State of Mind"^[21]

The collective...

IDIOCY NEVER UNDERESTIMATE THE POWER OF STUPID PEOPLE IN LARGE GROUPS.

www.despair.com

despair.com

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

"Never Underestimate the Power of Stupid People in Large

Groups."

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

Contagion

Definitions

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'together with' + tangere 'to touch.'
- Contagion has unpleasant overtones...
- Just Spreading might be a more neutral word
- But contagion is kind of exciting...

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Examples of non-disease spreading:

Interesting infections:

► Spreading of buildings in the US... (⊞)

► Viral get-out-the-vote video. (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Contagions

Two main classes of contagion

- Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, ...
- 2. Social contagion: fashion, word usage, rumors, riots, religion, ...

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Winning: it's not for everyone

Where do superstars come from?

Rosen (1981): "The Economics of Superstars"

Examples:

- Full-time Comedians (\approx 200)
- Soloists in Classical Music
- Economic Textbooks (the usual myopic example)
- Highly skewed distributions (again)...

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

NIVERSITY 5

Superstars

Rosen's theory:

- Individual quality q maps to reward R(q)
- R(q) is 'convex' (d² $R/dq^2 > 0$)
- Two reasons:
 - 1. Imperfect substitution:

A very good surgeon is worth many mediocre ones

2. Technology:

Media spreads & technology reduces cost of reproduction of books, songs, etc.

No social element—success follows 'inherent quality'

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Superstars

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQ @ 23 of 137

Adler (1985): "Stardom and Talent"

- Assumes extreme case of equal 'inherent quality'
- Argues desire for coordination in knowledge and culture leads to differential success
- Success is then purely a social construction

Dominance hierarchies

Chase et al. (2002): "Individual differences versus social dynamics in the formation of animal dominance hierarchies"^[11]

The aggressive female Metriaclima zebra (\boxplus) :

Pecking orders for fish...

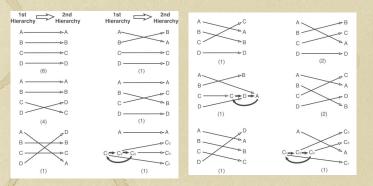
Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups


Simple disease spreading models

Dominance hierarchies

Fish forget—changing of dominance hierarchies:

22 observations: about 3/4 of the time, hierarchy changed

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Croupo

Simple disease spreading models

48 songs 30,000 participants

- How probable is a social state?
- Can we estimate variability?

Salganik et al. (2006) "An experimental study of inequality and unpredictability in an artificial cultural market" ^[33]

multiple 'worlds' Inter-world variability Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

🛛 Music Lab – Song Selection - Mozilla Firefox

🤙 • 🔿

File Edit View Go Bookmarks Tools Help

	# of down loads	[Help] [Le	ogoff] #of down loads		# of down loads
HARTSFIELD: "enough is enough"	20	GO MOREDCAI: "it does what its told"	12	UNDO: "while the world passes"	24
DEEP ENOUGH TO DIE: for the sky*	17	PARKER THEORY: "she said"	47	UP FOR NOTHING: "in sight of"	13
HE THRIFT SYNDICATE: 2003 a tragedy ^s	20	MISS OCTOBER: "pink agression"	27	SILVERFOX: "gnaw"	17
HE BROKEN PROMISE: the end in friend"	19	POST BREAK TRAGEDY: "florence"	14	STRANGER: "one drop"	10
THIS NEW DAWN: the belief above the answer"	12	FORTHFADING: "fear"	24	FAR FROM KNOWN: "route 9"	18
VOONER AT NINE: walk away"	6	THE CALEFACTION: "trapped in an orange peel"	20	STUNT MONKEY: "inside out"	46
WORAL HAZARD: waste of my He"	8	52METRO: "lockdown"	17	DANTE: "Hes mystery"	14
NOT FOR SCHOLARS: 'as seasons change"	27	SIMPLY WAITING: "went with the count"	16	FADING THROUGH: "wish me luck"	10
SECRETARY: 'keep your eyes on the ballistics"	5	STAR CLIMBER: "tell me"	38	UNKNOWN CITIZENS: "falling over"	34
RT OF KANLY: seductive intro, melodic breakdown"	10	THE FASTLANE: "til death do us part (i dont)"	31	BY NOVEMBER: "Ficould take you"	20
HYDRAULIC SANDWICH: separation anxiety*	20	A BLINDING SILENCE: "miseries and miracles"	17	DRAWN IN THE SKY: "tap the ride"	12
EMBER SKY: this upcoming winter"	25	SUM RANA: "the bolshevik bocgie"	15	SELSIUS: "stars of the city"	22
SALUTE THE DAWN: 'i am emor	13	CAPE RENEWAL: "baseball warlock v1"	12	SIBRIAN: "eye paich"	14
RYAN ESSMAKER: 'detour_(be_still)'	14	UP FALLS DOWN: "a brighter burning star"	11	EVAN GOLD: "robert downey j/"	10
BEERBONG: father to son*	12	SUMMERSWASTED: "a plan behind destruction"	17	BENEFIT OF A DOUBT: "run away"	38
HALL OF FAME: "best mistakes"	19	SILENT FILM: "all i have to say"	61	SHIPWRECK UNION:	16

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

- = ×

00

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version

Groups

Simple disease spreading models

References

dt

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

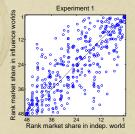
Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Groups

Simple disease spreading models

References


DQ @ 28 of 137

Experiment 1

- 🥵 😳 🚷 M Heps	www.musicle		÷ 10.		
		(Help) (Log.off)			6
NARTSPELE "enough is enough"		CD MOREDCAL "Educe what is add"	22	UNDO "White the world paramet"	
DEEP ENDUCH TO DIE- "for the vay"	10	PARKER THEORY.	4	UP FOR ROTHING	1
THE THRFT ENGLISH THE '2000 a tappety'	20	MULCOTORER.	27	ELSERION .	×
THE BROKEN PROMISE "the end in band"	19	POST BREAK TRACEON "Restor"	34	CTRANCES: 'Creating'	
"the belta channe the persons"	15	TORTWARING THEY	24	Coll F	
NOONER AT MINE		THE CALERACTER		STENT MONECT: "Inside out"	
MORAL BADARD. "Backs of my Bic"		13HETRO. "Relations"	27	CABTE "Brs mysley"	>
NOT FOR SCHOLARS	27	EMPLY WINTING	- 24	PADING TWICKER "With the lack"	
SECRETARY: "Note your eyes on the balling?"	5	STAR D.MECR.	38	UNLINGING CRIDENS	>
ARTOFRANCY: "solution nice, suited braildows"	3.0	THE FAST AND: "I MUST ID IN 101 THE RINK"	23	OF MOVEMBER: "Transit late you"	8
NYTROULE SANDACK	77	A BURGHO SALENCE: "Hereins and estades"		CRAME IN THE SAY.	23
EXERCISE?	28	SIM KARA. "Ne belahevé kengér"	28	MULTINE "Seen of the oby"	2
GALLTE THE CARNI-	10	OPE RENEWS.	10	California Trave points'	,
Free ECOMMENT: 'OCCULES INF	14	LP FALLS DOWN To Septer burning up/	33	CRAA GOLD 'Court downey I'	,
BELINEONC	12	SUMERSMASKIZ '2 plan belond de Deciken'	22	DEMENTOR A BOODT	

Experiments 2-4

e gdt ylew Ge Bookmarks Inols Help			- 12	0.0	
🛛 - 🕸 - 🖉 🖸 🚷 🖬 http://www.m	- 🔗 💿 🕎 🖬 http://www.musiclab.columbia.edu/mpiconited				
	(Help) (Log.off)			2	
	THERE BELLEY	209			
	THE FAST, AND: "Education date on part 5 dams(?	30			
	Table of the city"	10			
	Class? MONIEN "Robe aut"	94			
	61 HEVENEER: "If sould film you"	- 55			
	COTTACK .			1	
	HORALLIC SAXDALDI: Targuaden amilety	-0			
	SALENT FALM "all have to say"				
	UNCO "While the work posses"	*			
	BENEFIT OF A DOUBT. "NH 2HOY"	31			
	A BURDINE MARKE "Interim. and Interim"				
	WEST OCTOBER "yest approxim"	28			
	ATMR CLIMERY. "WRITE"	24			
	FAB FREAK CRONIN TOUR 3	22			
	Test milden"	21			
	EMER SKY	28			

Experiment 2 The second secon

Variability in final rank.

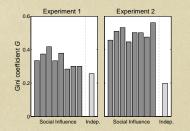
Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups


Simple disease spreading models

References

na @ 29 of 137

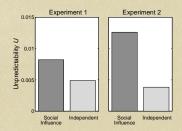
Inequality as measured by Gini coefficient:

$$G = rac{1}{(2N_{
m s}-1)}\sum_{i=1}^{N_{
m s}}\sum_{j=1}^{N_{
m s}}|m_i-m_j|$$

Complex Sociotechnical Systems

A Very Dismal Science

Contagion


Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Unpredictability

$$U = \frac{1}{N_{s}\binom{N_{w}}{2}} \sum_{i=1}^{N_{s}} \sum_{j=1}^{N_{w}} \sum_{k=j+1}^{N_{w}} |m_{i,j} - m_{i,k}|$$

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Sensible result:

 Stronger social signal leads to greater following and greater inequality.

Peculiar result:

 Stronger social signal leads to greater unpredictability.

Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following.
- 'Payola' leads to poor system performance.

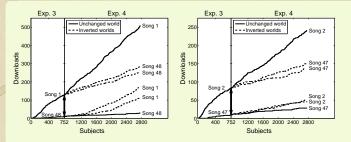
Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups


Simple disease spreading models

References

dt

Music Lab Experiment—Sneakiness

- Inversion of download count
- The 'pretend rich' get richer ...
- ... but at a slower rate

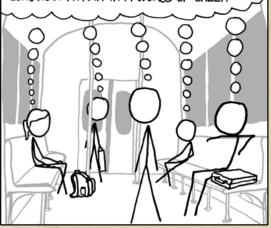
Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups


Simple disease spreading models

Social Contagion

LOOK AT THESE PEOPLE. GLASSY-EYED AUTOMATONS GOING ABOUT THEIR DAILY LIVES, NEVER STOPPING TO LOOK AROUND AND *THINK!* I'M THE ONLY CONSCIOUS HUMAN IN A WORLD OF SHEEP.

http://xkcd.com/610/ (田)

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models

Granovetter's mod Network version

Groups

Simple disease spreading models

Social Contagion

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Network version Groups

Simple disease spreading models

References

Deriversity S

Social Contagion

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Network version Groups

Simple disease spreading models

Social Contagion

Examples abound

- fashion
- striking
- ► smoking (⊞) ^[13]
- residential segregation^[34]
- ipods
- ▶ obesity (⊞) ^[12]

- Harry Potter
- voting
- gossip
- Rubik's cube \$\visits\$
- religious beliefs
- leaving lectures

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mod Network version

Simple disease

spreading models

References

dt

SIR and SIRS contagion possible

Classes of behavior versus specific behavior: dieting

Social Contagion

Two focuses for us:

- Widespread media influence
- Word-of-mouth influence

We need to understand influence:

- Who influences whom? Very hard to measure...
- What kinds of influence response functions are there?

(see Romero et al. [31], Ugander et al. [39])

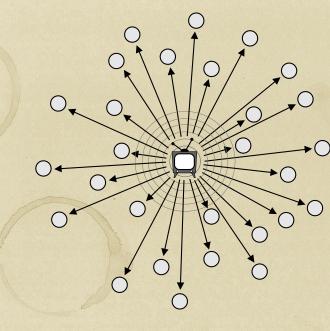
- Are some individuals super influencers?
 Highly popularized by Gladwell^[16] as 'connectors'
- The infectious idea of opinion leaders (Katz and Lazarsfeld)^[22]

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagion Models

Network version

Simple disease spreading models

The hypodermic model of influence

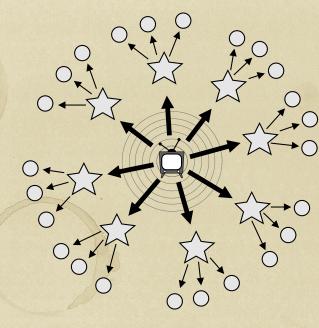
Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model


Groups

Simple disease spreading models

The two step model of influence [22]

Complex Sociotechnical Systems

A Very Dismal Science

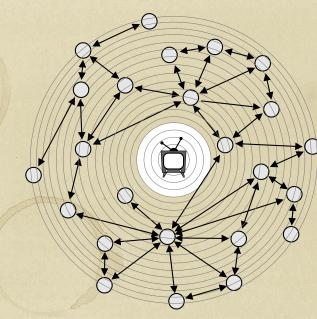
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Groups

Simple disease spreading models


References

DQ @ 40 of 137

The general model of influence

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Network version

Simple disease spreading models

References

DQC 41 of 137

Social Contagion

Why do things spread?

- Because of special individuals?
- Or system level properties?
- Is the match that lights the fire important?
- Yes. But only because we are narrative-making machines...
- We like to think things happened for reasons...
- Reasons for success are usually ascribed to intrinsic properties (e.g., Mona Lisa)
- System/group properties harder to understand—-no natural frame/metaphor
- Always good to examine what is said before and after the fact...

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mod Network version Groups

Simple disease spreading models

References

dt

Complex Sociotechnical Systems

A Very Dismal Science

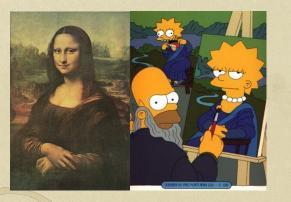
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Simple disease spreading models

References


From Pratchett's "Lords and Ladies": Granny Weatherwax (⊞) on trying to borrow the mind of a swarm of bees—

"But a swarm, a mind made up of thousands of mobile parts, was beyond her. It was the toughest test of all. She'd tried over and over again to ride on one, to see the world through ten thousand pairs of multifaceted eyes all at once, and all she'd ever got was a migraine and an inclination to make love to flowers."

(p. 42). Harper Collins, Inc. Kindle Edition.

The Mona Lisa

- "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- Not the world's greatest painting from the start...
- Escalation through theft, vandalism, parody, ...

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Network version Groups

Simple disease spreading models

The completely unpredicted fall of Eastern Europe

Timur Kuran: ^[26, 27] "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Simple disease spreading models

References

d dt >0

The dismal predictive powers of editors...

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups

Simple disease spreading models

References

d d dt > c

the set

Getting others to do things for you

From 'Influence'^[14] by Robert Cialdini (⊞)

Six modes of influence:

- 1. Reciprocation: *The Old Give and Take... and Take*; e.g., Free samples, Hare Krishnas.
- 2. Commitment and Consistency: *Hobgoblins of the Mind*; e.g., Hazing.
- Social Proof: *Truths Are Us*;
 e.g., Jonestown (⊞),
 Kitty Genovese (⊞) (contested).
- Liking: The Friendly Thief; e.g., Separation into groups is enough to cause problems.
- Authority: Directed Deference;
 e.g., Milgram's obedience to authority experiment. (⊞)
- 6. Scarcity: The Rule of the Few; e.g., Prohibition.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Network version Groups

Simple disease spreading models

Social Contagion

- Cialdini's modes are heuristics that help up us get through life.
- Very useful but can be leveraged...

Messing with social connections

- Ads based on message content (e.g., Google and email)
- ► BzzAgent (⊞)
- ► Facebook's advertising: Beacon (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Network version

Simple disease spreading models

References

dt

Thomas Schelling (\boxplus) (Economist/Nobelist):

[youtube] (⊞)

Tipping models—Schelling (1971)^[34, 35, 36]

- Simulation on checker boards
- Idea of thresholds
- Threshold models—Granovetter (1978)^[19]
- Herding models—Bikhchandani, Hirschleifer, Welch (1992)^[4, 5]
 - Social learning theory, Informational cascades,...

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Network version Groups

Simple disease spreading models

Social contagion models

Thresholds

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group.
- Response can be probabilistic or deterministic.
- Individual thresholds can vary
- Assumption: order of others' adoption does not matter... (unrealistic).
- Assumption: level of influence per person is uniform (unrealistic).

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mod Network version Groups

Simple disease spreading models

References

2 9 0 50 of 137

Social Contagion

Some possible origins of thresholds:

- Inherent, evolution-devised inclination to coordinate, to conform, to imitate.^[3]
- Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
- Economics: Network effects or network externalities
 - Externalities = Effects on others not directly involved in a transaction
 - Examples: telephones, fax machine, Facebook, operating systems
 - An individual's utility increases with the adoption level among peers and the population in general

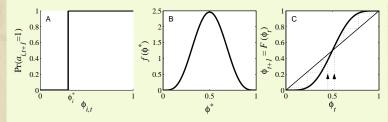
Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version


Simple disease spreading models

References

DQ @ 51 of 137

Action based on perceived behavior of others:

- Two states: Susceptible and Infected.
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time update (strong assumption!)
- This is a Critical mass model
- Many other kinds of dynamics are possible.

Implications for collective action theory:

- 1. Collective uniformity $\not\rightarrow$ individual uniformity
- 2. Small individual changes \rightarrow large global changes

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models

Granovetter's model Network version Groups

Simple disease spreading models

Threshold model on a network

Many years after Granovetter and Soong's work:

"A simple model of global cascades on random networks" D. J. Watts. Proc. Natl. Acad. Sci., 2002^[40]

- Mean field model \rightarrow network model
- Individuals now have a limited view of the world

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

References

dt

DQ @ 55 of 137

Threshold model on a network

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has k_i contacts
- Influence on each link is reciprocal and of unit weight
- Each individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- ► Individual *i* becomes active when fraction of active contacts ^{*a*_i}/_{*k*_i} ≥ φ_i
- Individuals remain active when switched (no recovery = SI model)

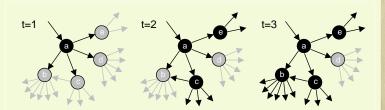
Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models


Granovetter's mode

Network version Groups

Simple disease spreading models

Threshold model on a network

• All nodes have threshold $\phi = 0.2$.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

Snowballing

The Cascade Condition:

- 1. If one individual is initially activated, what is the probability that an activation will spread over a network?
- 2. What features of a network determine whether a cascade will occur or not?

First study random networks:

- Start with N nodes with a degree distribution p_k
- Nodes are randomly connected (carefully so)
- Aim: Figure out when activation will propagate
- Determine a cascade condition

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

Snowballing

Follow active links

- An active link is a link connected to an activated node.
- If an infected link leads to at least 1 more infected link, then activation spreads.
- We need to understand which nodes can be activated when only one of their neigbors becomes active.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

References

dt

NIVERSITY 5

The most gullible

Vulnerables:

- We call individuals who can be activated by just one contact being active vulnerables
- The vulnerability condition for node i:

 $1/k_i \ge \phi_i$

- Which means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$
- For global cascades on random networks, must have a global cluster of vulnerables^[40]
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

Back to following a link:

- A randomly chosen link, traversed in a random direction, leads to a degree k node with probability ~ kP_k.
- Follows from there being k ways to connect to a node with degree k.
- Normalization:

So

$$\sum_{k=0}^{\infty} k P_k = \langle k \rangle$$

$$P(\text{linked node has degree } k) = \frac{kP_k}{\langle k \rangle}$$

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

References

dt

990 61 of 137

NIVERSITY 6

Next: Vulnerability of linked node

Linked node is vulnerable with probability

$$eta_k = \int_{\phi'_*=0}^{1/k} f(\phi'_*) \mathrm{d} \phi'_*$$

- If linked node is vulnerable, it produces k 1 new outgoing active links
- If linked node is not vulnerable, it produces no active links.

Complex Sociotechnical Systems

A Very Dismal Science

Contagion

Winning: it's not for everyone

Social Contagion Models

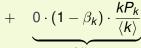
Granovetter's model

Network version Groups

Simple disease spreading models

References

dt


NIVERSITY 9

Putting things together:

Expected number of active edges produced by an active edge:

$$R = \sum_{k=1}^{\infty} \underbrace{(k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle}}_{K}$$

success

failure

$$=\sum_{k=1}^{\infty}(k-1)\cdot\beta_k\cdot\frac{kP_k}{\langle k\rangle}$$

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

So... for random networks with fixed degree distributions, cacades take off when:

$$R = \sum_{k=1}^{\infty} (k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle} \ge 1.$$

β_k = probability a degree *k* node is vulnerable. *P_k* = probability a node has degree *k*.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

References

dt

UNIVERSITY S

Two special cases:

▶ (1) Simple disease-like spreading succeeds: $\beta_k = \beta$

$$eta \cdot \sum_{k=1}^{\infty} (k-1) \cdot rac{k P_k}{\langle k
angle} \geq 1.$$

• (2) Giant component exists: $\beta = 1$

$$1 \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \geq 1.$$

Complex Sociotechnical Systems

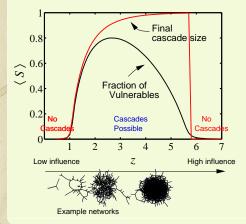
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode


Network version Groups

Simple disease spreading models

Cascades on random networks

- Cascades occur only if size of max vulnerable cluster > 0.
- System may be 'robust-yet-fragile'.
- 'Ignorance' facilitates spreading.

Complex Sociotechnical Systems

A Very Dismal Science

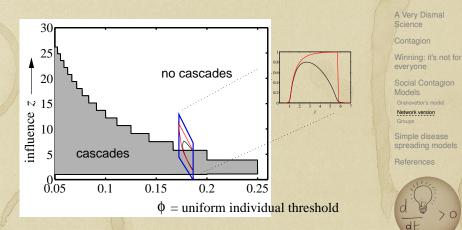
Contagio

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups

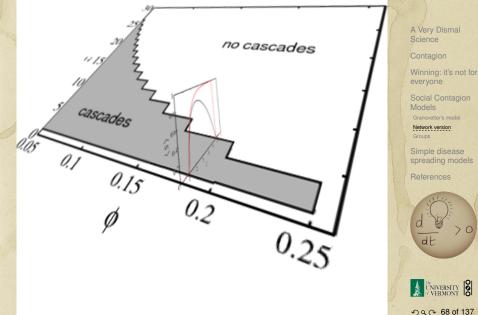

Simple disease spreading models

References

dt

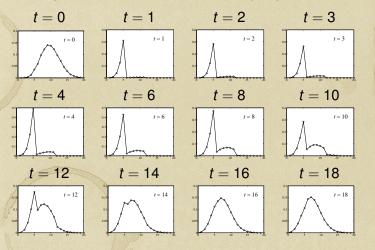
Cascade window for random networks

Complex


Sociotechnical Systems

VERMONT

- ► 'Cascade window' widens as threshold φ decreases.
- Lower thresholds enable spreading.


Cascade window for random networks

Complex Sociotechnical Systems

Early adopters are not well connected:

Degree distributions of nodes adopting at time t:

 $P_{k,t}$ versus k

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

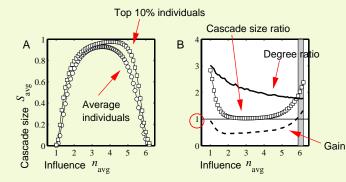
Social Contagion Models

Granovetter's mode

Network version Groups

Simple disease spreading models

References


d d d t >0

VERMONT

う a c 69 of 137

The multiplier effect:

"Influentials, Networks, and Public Opinion Formation"^[41] Journal of Consumer Research, Watts and Dodds, 2007.

- Fairly uniform levels of individual influence.
- Multiplier effect is mostly below 1.

Complex Sociotechnical Systems

A Very Dismal Science

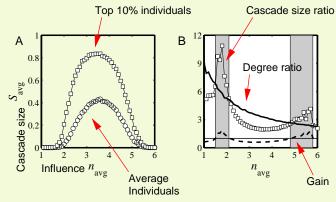
Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups


Simple disease spreading models

References

dt > 0 dt > 0

DQ @ 70 of 137

The multiplier effect:

Skewed influence distribution example.

Complex Sociotechnical Systems

A Very Dismal Science

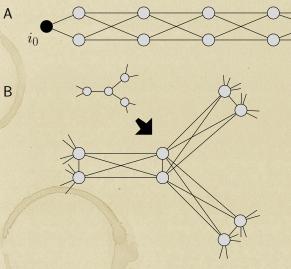
Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's mode

Network version Groups


Simple disease spreading models

References

d d d d t >0

Special subnetworks can act as triggers

• $\phi = 1/3$ for all nodes

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Granovetter's model

Network version Groups

Simple disease spreading models

References

Dac 72 of 137

The power of groups...

A Few Harmless Flakes Working Together Can Unleash an Avalanche of Destruction.

www.despair.com

"A few harmless flakes working together can unleash an avalanche of destruction." Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

despair.com

Incorporating social context:

- Assumption of sparse interactions is good
- Degree distribution is (generally) key to a network's function
- Still, random networks don't represent all networks
- Major element missing: group structure
- "Threshold Models of Social Influence" [42]
 Watts and Dodds, 2009.
 Oxford Handbook of Analytic Sociology.
 Eds. Hedström and Bearman.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups

Simple disease spreading models

Group structure—Ramified random networks

Complex Sociotechnical Systems

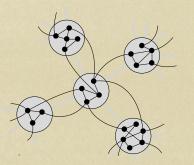
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups


Simple disease spreading models

References

DQ @ 76 of 137

p = intergroup connection probability q = intragroup connection probability.

Bipartite networks

b

а

а

2

b

С

С

3

4

d

d

е

Complex Sociotechnical Systems

Contagio

contexts

individuals

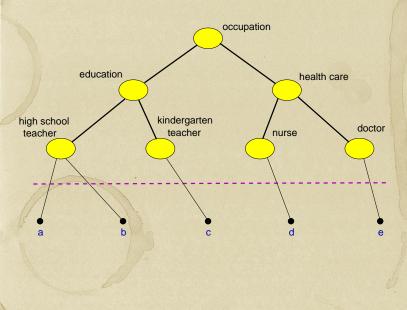
Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups

Simple disease spreading models

References


dt

Deriversity S

unipartite network

е

Context distance

Complex Sociotechnical Systems

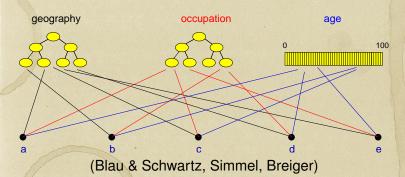
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups


Simple disease spreading models

References

dt >0

Deriversity S

Generalized affiliation model

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Groups

Simple disease spreading models

References

d d dt >0

VERMONT 8

Generalized affiliation model networks with triadic closure

Connect nodes with probability $\propto \exp^{-\alpha d}$ where

 α = homophily parameter and

d = distance between nodes (height of lowest common ancestor)

- τ₁ = intergroup probability of friend-of-friend connection
- τ₂ = intragroup probability of friend-of-friend connection

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models

Network version

Groups

Simple disease spreading models

Cascade windows for group-based networks

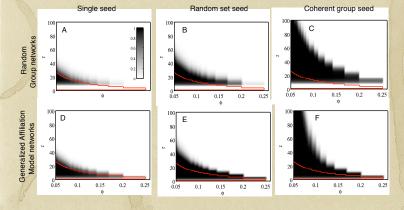
Complex Sociotechnical Systems

A Very Dismal Science

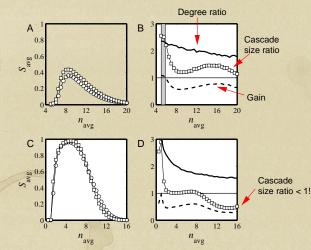
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version


Groups

Simple disease spreading models


References

d d dt > c

VERMONT

Multiplier effect for group-based networks:

Multiplier almost always below 1.

Complex Sociotechnical Systems

A Very Dismal Science

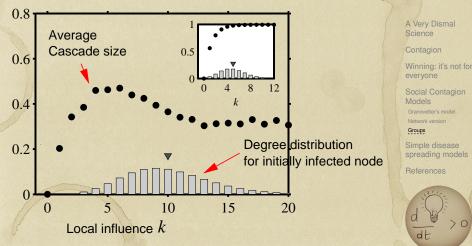
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Network version

Groups


Simple disease spreading models

References

VERMONT

Assortativity in group-based networks

Complex

Sociotechnical Systems

NIVERSITY 9

DQ @ 83 of 137

- The most connected nodes aren't always the most 'influential.'
- Degree assortativity is the reason.

Social contagion

Summary

- 'Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Vulnerable groups may greatly facilitate spread.
- Seems that cascade condition is a global one.
- Most extreme/unexpected cascades occur in highly connected networks.
- 'Influentials' are posterior constructs.
- Many potential 'influentials' exist.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model

Groups

Simple disease spreading models

Social contagion

Implications

- Focus on the influential vulnerables.
- Create entities that can be transmitted successfully through many individuals rather than broadcast from one 'influential.'
- Only simple ideas can spread by word-of-mouth. (Idea of opinion leaders spreads well...)
- Want enough individuals who will adopt and display.
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Entities can be novel or designed to combine with others, e.g. block another one.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

Mathematical Epidemiology

The standard SIR model [28]

- = basic model of disease contagion
- Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

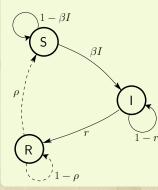
Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version


Simple disease spreading models

Mathematical Epidemiology

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQC 87 of 137

Mathematical Epidemiology

Original models attributed to

- 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^[23, 25, 24]
- Coupled differential equations with a mass-action principle

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Differential equations for continuous model

$$\frac{d}{dt}S = -\beta IS + \rho R$$
$$\frac{d}{dt}I = \beta IS - rI$$
$$\frac{d}{dt}R = rI - \rho R$$

 β , *r*, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Simple disease spreading models

References

DQ @ 89 of 137

Reproduction Number R₀

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- Probability of transmission = β
- ► At time t = 1, single Infective remains infected with probability 1 - r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References

NIVERSITY 6

Reproduction Number R₀

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1 - r)} = \beta / r$$

For S_0 initial infectives $(1 - S_0 = R_0 \text{ immune})$:

 $R_0 = S_0 \beta / r$

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQ @ 91 of 137

For the continuous version

Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{I} = \beta \mathbf{S}\mathbf{I} - \mathbf{r}\mathbf{I}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I = (\beta S - r)I$$

Number of infectives grows initially if

 $\beta S(0) - r > 0 : \beta S(0) > r : \beta S(0)/r > 1$

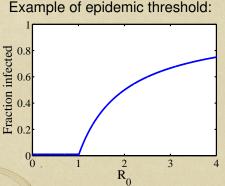
Same story as for discrete model.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

References

Da @ 93 of 137

- Continuous phase transition.
- Fine idea from a simple model.

Many variants of the SIR model:

- SIS: susceptible-infective-susceptible
- SIRS: susceptible-infective-recovered-susceptible
- compartment models (age or gender partitions)
- more categories such as 'exposed' (SEIRS)
- recruitment (migration, birth)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Disease spreading models

For novel diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number R_0 ?

 R_0 approximately same for all of the following:

- ▶ 1918-19 "Spanish Flu" \sim 500,000 deaths in US
- 1957-58 "Asian Flu" ~ 70,000 deaths in US
- ▶ 1968-69 "Hong Kong Flu" \sim 34,000 deaths in US
- 2003 "SARS Epidemic" ~ 800 deaths world-wide

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

Size distributions

Size distributions are important elsewhere:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- Epidemics?

Power laws distributions are common but not obligatory...

Really, what about epidemics?

- Simply hasn't attracted much attention.
- Data not as clean as for other phenomena.

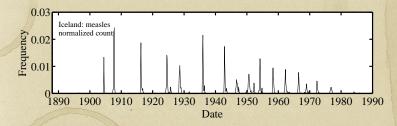
Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups


Simple disease spreading models

Feeling III in Iceland

Caseload recorded monthly for range of diseases in Iceland, 1888-1990

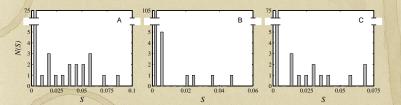
 Treat outbreaks separated in time as 'novel' diseases. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups


Simple disease spreading models

Really not so good at all in Iceland

Epidemic size distributions N(S) for Measles, Rubella, and Whooping Cough.

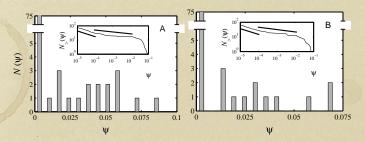
Spike near S = 0, relatively flat otherwise.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

Measles & Pertussis

Insert plots:

Complementary cumulative frequency distributions:

$$N(\Psi' > \Psi) \propto \Psi^{-\gamma+1}$$

Limited scaling with a possible break.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Power law distributions

Measured values of γ :

- measles: 1.40 (low Ψ) and 1.13 (high Ψ)
- pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)
- Expect $2 \le \gamma < 3$ (finite mean, infinite variance)
- When $\gamma < 1$, can't normalize
- Distribution is quite flat.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

200 100 of 137

Resurgence—example of SARS

160 D 120 # New cases 80 40 0. Nov 16 '02 Dec 16 '02 Feb 14 '03 Mar 16 '03 Apr 15, '03 May 15, '03 Jun 14, '03 Jan 15, '03 Date of onset

- Epidemic slows... then an infective moves to a new context.
- Epidemic discovers new 'pools' of susceptibles: Resurgence.
- Importance of rare, stochastic events.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

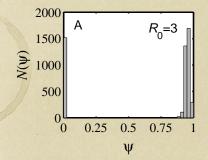
Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

The challenge

So... can a simple model produce

- 1. broad epidemic distributions and
- 2. resurgence?


Complex Sociotechnical Systems

A Very Dismal

Winning: it's not for everyone

Simple disease spreading models

Size distributions

Simple models typically produce bimodal or unimodal size distributions. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

d > 0 at > 0

Vermont 8

This includes network models: random, small-world, scale-free, ...

- Exceptions:
 - 1. Forest fire models
 - 2. Sophisticated metapopulation models

Burning through the population

Forest fire models: [30]

- Rhodes & Anderson, 1996
- The physicist's approach: "if it works for magnets, it'll work for people..."

A bit of a stretch:

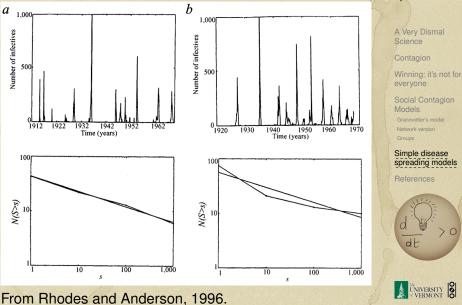
- Epidemics ≡ forest fires spreading on 3-d and 5-d lattices.
- 2. Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.
- 3. Original forest fire model not completely understood.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagion Models Granovetter's model Network version

Simple disease spreading models

Size distributions

DQC 105 of 137

00

Complex Sociotechnical Systems

Sophisticated metapopulation models

- Community based mixing: Longini (two scales).
- Eubank et al.'s EpiSims/TRANSIMS—city simulations.
- Spreading through countries—Airlines: Germann et al., Corlizza et al.
- Vital work but perhaps hard to generalize from...
- Create a simple model involving multiscale travel
- Multiscale models suggested by others but not formalized (Bailey, Cliff and Haggett, Ferguson et al.)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

Size distributions

Complex Sociotechnical Systems

A Very Dismal Science

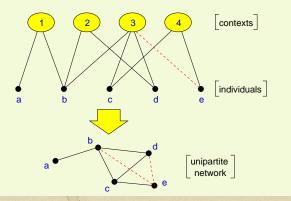
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References


Der Montersity

Very big question: What is N?

- Should we model SARS in Hong Kong as spreading in a neighborhood, in Hong Kong, Asia, or the world?
- For simple models, we need to know the final size beforehand...

Improving simple models

Contexts and Identities—Bipartite networks

- boards of directors
- movies
- transportation modes (subway)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

References

dt

2 CA 108 of 137

Improving simple models

Idea for social networks: incorporate identity.

Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Age
- Recreational activities

Groups are crucial...

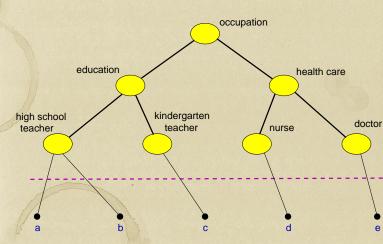
- formed by people with at least one similar attribute
- ► Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.^[43]

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagio Models Granovetter's model Network version

Simple disease spreading models

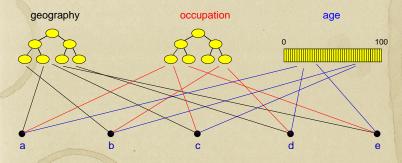
Infer interactions/network from identities

Distance makes sense in identity/context space.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior


Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Generalized context space

(Blau & Schwartz^[6], Simmel^[37], Breiger^[7])

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups Simple disease

spreading models

References

Dec 111 of 137

A toy agent-based model

Geography—allow people to move between contexts:

- Locally: standard SIR model with random mixing
- discrete time simulation
- β = infection probability
- γ = recovery probability
- P = probability of travel
- Movement distance: $Pr(d) \propto exp(-d/\xi)$
- ξ = typical travel distance

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

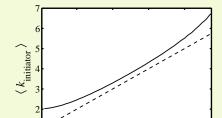
Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

A toy agent-based model Schematic:

Complex Sociotechnical Systems


A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version

Simple disease spreading models

Model output

- Define P_0 = Expected number of infected individuals leaving initially infected context.
- Need P₀ > 1 for disease to spread (independent of R₀).
- Limit epidemic size by restricting frequency of travel and/or range

Complex Sociotechnical Systems

A Very Dismal Science

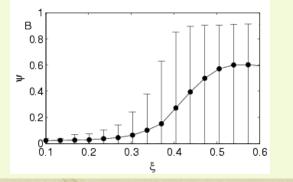
Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References


dt

UNIVERSITY S

Model output

Varying ξ :

 Transition in expected final size based on typical movement distance (sensible) Complex Sociotechnical Systems

A Very Dismal Science

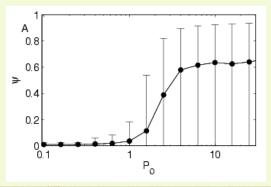
Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

References


dt

DQ @ 115 of 137

Model output

Varying P_0 :

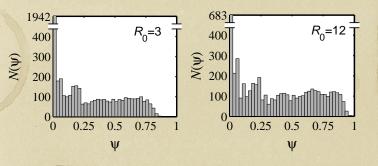
- Transition in expected final size based on typical number of infectives leaving first group (also sensible)
- Travel advisories: ξ has larger effect than P_0 .

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone


Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

Example model output: size distributions

Flat distributions are possible for certain ξ and P.
 Different R₀'s may produce similar distributions
 Same epidemic sizes may arise from different R₀'s

Complex Sociotechnical Systems

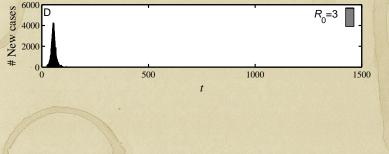
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models


1010101003

SQC 117 of 137

Model output—resurgence

Standard model:

Complex Sociotechnical Systems

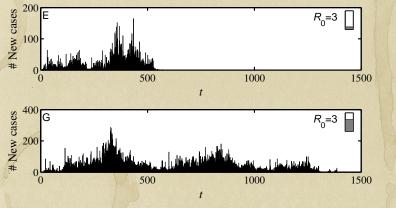
A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version

Simple disease spreading models


References

d dt >0

VERMONT 8

Model output—resurgence

Standard model with transport:

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Groups

Simple disease spreading models

References

d t >0

Dec 119 of 137

The upshot

Simple multiscale population structure + stochasticity

leads to

resurgence

+ broad epidemic size distributions

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version

Groups

Simple disease spreading models

References

DQC 120 of 137

Conclusions

- For this model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple
- We haven't even included normal social responses such as travel bans and self-quarantine.
- The reproduction number R_0 is not terribly useful.
- R₀, however measured, is not informative about
 - 1. how likely the observed epidemic size was,
 - 2. and how likely future epidemics will be.
- Problem: R₀ summarises one epidemic after the fact and enfolds movement, the price of bananas, everything.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Conclusions

- Disease spread highly sensitive to population structure
- Rare events may matter enormously (e.g., an infected individual taking an international flight)
- More support for controlling population movement (e.g., travel advisories, quarantine)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagio Models Granovetter's model Network version Groups

Simple disease spreading models

Conclusions

What to do:

- Need to separate movement from disease
- R₀ needs a friend or two.
- Need R₀ > 1 and P₀ > 1 and ξ sufficiently large for disease to have a chance of spreading

More wondering:

- Exactly how important are rare events in disease spreading?
- Again, what is N?

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[18]
- Spread of rumors (Daley & Kendall, 1965)^[15]
- Diffusion of innovations (Bass, 1969)^[2]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References I

- [1] M. Adler. Stardom and talent. <u>American Economic Review</u>, pages 208–212, 1985. pdf (⊞)
- [2] F. Bass.

A new product growth model for consumer durables. Manage. Sci., 15:215–227, 1969. pdf (\boxplus)

[3] A. Bentley, M. Earls, and M. J. O'Brien. I'll Have What She's Having: Mapping Social Behavior. MIT Press, Cambridge, MA, 2011.

 S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades.
 J. Polit. Econ., 100:992–1026, 1992. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References II

[5] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades.

J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)

[6] P. M. Blau and J. E. Schwartz. <u>Crosscutting Social Circles</u>. Academic Press, Orlando, FL, 1984.

[7] R. L. Breiger.
 The duality of persons and groups.
 <u>Social Forces</u>; 53(2):181–190, 1974. pdf (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References III

[8] B. Caplan.

What makes people think like economists? evidence on economic cognition from the "survey of americans and economists on the economy". <u>Journal of Law and Economics</u>, 44:395–426, 2001. pdf (\boxplus)

 J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems.
 Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

[10] J. M. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems.

Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References IV

[11] I. D. Chase, C. Tovey, D. Spangler-Martin, and M. Manfredonia.

Individual differences versus social dynamics in the formation of animal dominance hierarchies. <u>Proc. Natl. Acad. Sci.</u>, 99(8):5744–5749, 2002. pdf (⊞)

 [12] N. A. Christakis and J. H. Fowler. The spread of obesity in a large social network over 32 years.
 <u>New England Journal of Medicine</u>, 357:370–379, 2007. pdf (田)

 [13] N. A. Christakis and J. H. Fowler. The collective dynamics of smoking in a large social network. <u>New England Journal of Medicine</u>, 358:2249–2258, 2008. pdf (⊞) Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References V

[14] R. B. Cialdini.
 <u>Influence: Science and Practice</u>.
 Allyn and Bacon, Boston, MA, 4th edition, 2000.

[15] D. J. Daley and D. G. Kendall.
 Stochastic rumours.
 J. Inst. Math. Appl., 1:42–55, 1965.

[16] M. Gladwell. <u>The Tipping Point.</u> Little, Brown and Company, New York, 2000.

[17] J. Gleick. <u>The Information: A History, A Theory, A Flood</u>. Pantheon, 2011. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References VI

[18] W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204:225–228, 1964.

[19] M. Granovetter.
 Threshold models of collective behavior.
 Am. J. Sociol., 83(6):1420–1443, 1978. pdf (⊞)

[20] E. Hoffer. <u>The True Believer: On The Nature Of Mass</u> <u>Movements</u>.

Harper and Row, New York, 1951.

[21] E. Hoffer. <u>The Passionate State of Mind: And Other</u> <u>Aphorisms</u>. <u>Buccaneer Books</u>, 1954. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References VII

[22] E. Katz and P. F. Lazarsfeld. <u>Personal Influence</u>. The Free Press, New York, 1955.

W. O. Kermack and A. G. McKendrick.
 A contribution to the mathematical theory of epidemics.
 Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf (⊞)

[24] W. O. Kermack and A. G. McKendrick.
 A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.
 Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References

990 131 of 137

UNIVERSITY 6

References VIII

[25] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. <u>Proc. R. Soc. Lond. A</u>, 138(834):55–83, 1927. pdf (⊞)

[26] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989. World Politics, 44:7–48, 1991. pdf (⊞)

[27] T. Kuran.

Private Truths, Public Lies: The Social Consequences of Preference Falsification.

Harvard University Press, Cambridge, MA, Reprint edition, 1997.

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References IX

[28] J. D. Murray. <u>Mathematical Biology</u>. Springer, New York, Third edition, 2002.

 [29] M. I. Norton and D. Ariely. Building a better America—One wealth quintile at a time.
 Perspectives on Psychological Science, 6:9–12, 2011. pdf (⊞)

[30] C. J. Rhodes and R. M. Anderson. Power laws governing epidemics in isolated populations. Nature, 381:600–602, 1996. pdf (⊞) Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References

DQ @ 133 of 137

UNIVERSITY 6

References X

[31] D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on Twitter. In Proceedings of World Wide Web Conference,

2011. pdf (⊞)

[32] S. Rosen. The economics of superstars. <u>Am. Econ. Rev.</u>, 71:845–858, 1981. pdf (⊞)

[33] M. J. Salganik, P. S. Dodds, and D. J. Watts. An experimental study of inequality and unpredictability in an artificial cultural market. Science, 311:854–856, 2006. pdf (⊞) Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References XI

[34] T. C. Schelling. Dynamic models of segregation. J. Math. Sociol., 1:143–186, 1971. pdf (⊞)

[35] T. C. Schelling.

Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. $pdf (\boxplus)$

[36] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

 [37] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902. Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

References XII

[38] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

 [39] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg.
 Structural diversity in social contagion.
 Proc. Natl. Acad. Sci., 109:5962–5966, 2012. pdf (⊞)

[40] D. J. Watts.
 A simple model of global cascades on random networks.
 Proc. Natl. Acad. Sci., 99(9):5766–5771, 2002.
 pdf (⊞)

Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagion Models Granovetter's model Network version Groups

Simple disease spreading models

References XIII

[41] D. J. Watts and P. S. Dodds. Influentials, networks, and public opinion formation. <u>Journal of Consumer Research</u>, 34:441–458, 2007. pdf (⊞)

 [42] D. J. Watts and P. S. Dodds. Threshold models of social influence. In P. Hedström and P. Bearman, editors, <u>The Oxford</u> <u>Handbook of Analytical Sociology</u>, chapter 20, pages 475–497. Oxford University Press, Oxford, UK, 2009. pdf (⊞)

[43] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf (⊞) Complex Sociotechnical Systems

A Very Dismal Science

Contagior

Winning: it's not for everyone

Social Contagior Models Granovetter's model Network version Groups

Simple disease spreading models

