Data from our man Zipf

Principles of Complex Systems CSYS/MATH 300, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Data from our man Zipf

Zipf in brief Zipfian empirics References

200 1 of 20

Outline

Zipf in brief

Zipfian empirics

References

Data from our man Zipf

Zipf in brief Zipfian empirics References

Dac 2 of 20

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949
 Cambridge, MA^[2]
- Bonus field of study: Glottometrics. (III)
 Bonus 'word' word: Glossolalia. (III)

Harvard, Refe

Data from our man Zipf

In brief:

- \blacktriangleright Zipf (\boxplus) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

- "Human Behavior and the Principle of Least Effort"
- ► Bonus 'word' word: Glossolalia. (⊞)

Data from our man Zipf

Zipf in brief **Zipfian empirics**

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949
 Cambridge, MA^[2]
- ► Bonus field of study: Glottometrics. (⊞)
- ▶ Bonus 'word' word: Glossolalia. (⊞)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949
 Cambridge, MA^[2]
- Bonus field of study: Glottometrics. (III)
 Bonus 'word' word: Glossolalia. (III)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

 "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949
 Cambridge, MA^[2]

Bonus field of study: Glottometrics. (III)
 Bonus 'word' word: Glossolalia. (III)

Data from our man Zipf

In brief:

- ► Zipf (⊞) (1902–1950) was a linguist at Harvard, specializing in Chinese languages.
- Unusual passion for statistical analysis of texts.
- Studied human behavior much more generally...

Zipf's masterwork:

- "Human Behavior and the Principle of Least Effort" Addison-Wesley, 1949
 Cambridge, MA^[2]
- ▶ Bonus field of study: Glottometrics. (⊞)
- ▶ Bonus 'word' word: Glossolalia. (⊞)

Data from our man Zipf

Human Behavior/Principle of Least Effort:

From the Preface—

Nearly twenty-five years ago it occurred to me that we might gain considerable insight into the mainsprings of human behavior if we viewed it purely as a natural phenomenon like everything else in the universe, ...

And-

... the expressed purpose of this book is to establish The Principle of Least Effort as the primary principle that governs our entire individual and collective behavior ...

Data from our man Zipf

Human Behavior/Principle of Least Effort:

From the Preface—

Nearly twenty-five years ago it occurred to me that we might gain considerable insight into the mainsprings of human behavior if we viewed it purely as a natural phenomenon like everything else in the universe, ...

And—

... the expressed purpose of this book is to establish The Principle of Least Effort as the primary principle that governs our entire individual and collective behavior ... Data from our man Zipf

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself.*"

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure...*"

Data from our man Zipf

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself.*"

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure*..." Data from our man Zipf

The Principle of Least Effort:

Zipf's framing (p. 1):

"... a person in solving his immediate problems will view these against the background of his probable future problems *as estimated by himself.*"

"... he will strive ... to minimize the *total work* that he must expend in solving *both* his immediate problems *and* his probable future problems."

"[he will strive to] minimize the *probable average rate of his work-expenditure...*"

Data from our man Zipf

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- City sizes
- # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- # marriages vs. distance

Observed general dependency of 'interactions' between cities A and B on P_AP_B/D_{AB} where P_A and P_B are population size and D_{AB} is distance between A and B. Data from our man Zipf

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- City sizes
- # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- # marriages vs. distance
- Observed general dependency of 'interactions' between cities A and B on P_AP_B/D_{AB} where P_A and P_B are population size and D_{AB} is distance between A and B.

Data from our man Zipf

Rampaging research

Within Human Behavior and the Principle of Least Effort:

- City sizes
- # retail stores in cities
- # services (barber shops, beauty parlors, cleaning, ...)
- # people in occupations
- # one-way trips in cars and trucks vs. distance

- # new items by dateline
- weight moved between cities by rail
- # telephone messages between cities
- # people moving vs. distance
- # marriages vs. distance
- ► Observed general dependency of 'interactions' between cities *A* and *B* on *P_AP_B/D_{AB}* where *P_A* and *P_B* are population size and *D_{AB}* is distance between *A* and *B*. ⇒ 'Gravity Law.'

Data from our man Zipf

▶ vocabulary balance: $f \sim r^{-1} \rightarrow r \cdot f \sim \text{constant}$ (*f* = frequency, *r* = rank).

TABLE 2–1 Arbitrary Ranks with Frequencies in James Joyce's <i>Ulysses</i> (Hanley Index)			
10	2,653	26,530	265,500
20	1,311	26,220	262,200
30	926	27,780	277,800
40	717	28,680	286,800
50	556	27,800	278,800
100	265	26,500	265,000
200	133	26,600	266,000
300	84	25,200	252,000
400	62	24,800	248,000
500	50	25,000	250,000
1,000	26	26,000	260,000
2,000	12	24,000	240,000
3,000	8	24,000	240,000
4,000	6	24,000	240,000
5,000	5	25,000	250,000
10,000	2	20,000	200,000
20,000	1	20,000	200,000
29,899	1	29,899	298,990

Data from our man Zipf

Zipf in brief

Zipfian empirics

DQC 7 of 20

• $f \sim r^{-1}$ for word frequency:

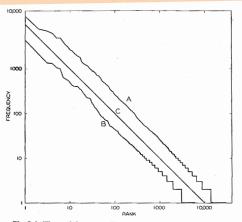


Fig. 2-1. The rank-frequency distribution of words. (A) The James Joyce data; (B) the Eldridge data; (C) ideal curve with slope of negative unity. Data from our man Zipf

Zipf in brief

Zipfian empirics

DQ @ 8 of 20

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
 Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.

 Optimal for listener if all pieces of information correspond to different words (or morphemes).
 Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
 Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.

- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- ▶ No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

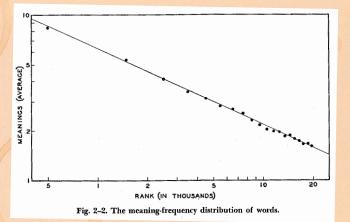
Forces of Unification and Diversification:

- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Forces of Unification and Diversification:


- Easiest for the speaker to use just one word.
 - Encoding is simple but decoding is hard
- Zipf uses the analogy of tools: one tool for all tasks.
- Optimal for listener if all pieces of information correspond to different words (or morphemes).
- Analogy: a specialized tool for every task.
 - Decoding is simple but encoding is hard
- Zipf thereby argues for a tension that should lead to an uneven distribution of word usage.
- No formal theory beyond this...

Data from our man Zipf

Zipf in brief

Number of meanings $m_r \propto f_r^{1/2}$ where *r* is rank and f_r is frequency.

Data from our man Zipf

Zipf in brief

Zipfian empirics References

IVERSITY

Article length in the Encyclopedia Britannica:

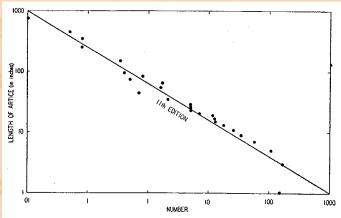


Fig. 5-3. The number of different articles of like length in samples of the 11th edition of the *Encyclopaedia Britannica*. Lengths in inches.

(?) slope of -3/5 corresponds to $\gamma = 5/3$.

Data from our man Zipf

Zipf in brief

Zipfian empirics

Population size of districts:

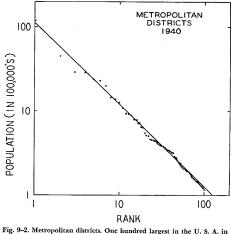


Fig. 9-2. Metropolitan districts. One hundred largest in the U. S. A. in 1940, ranked in the order of decreasing population size.

• $\alpha = 1$ corresponds to $\gamma = 1 + 1/\alpha = 2$.

Data from our man Zipf

Zipf in brief

Zipfian empirics

DQ @ 12 of 20

Number of employees in organizations

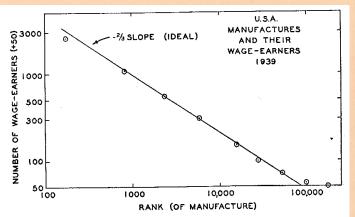
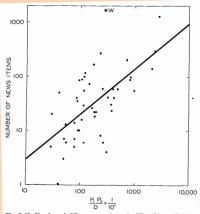
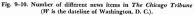


Fig. 9-8. Manufactures and their wage earners in the U. S. A. in 1939, with the manufactures ranked in the order of their decreasing number of wage earners.

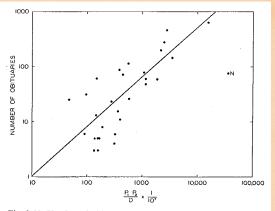

•
$$\alpha = 2/3$$
 corresponds to $\gamma = 1 + 1/\alpha = 5/2$.

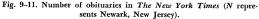

Data from our man Zipf

Zipfian empirics

Dac 13 of 20

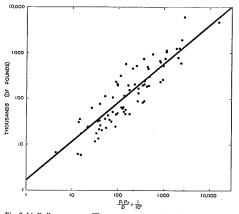
- # news items as a function of population P₂ of location in the Chicago Tribune
- D = distance, P₁ = Chicago's population
- Solid line = +1 exponent.

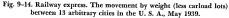

Data from our man Zipf


Zipf in brief

Zipfian empirics

- # obituaries in the New York Times for locations with population P₂.
- D = distance, P₁ = New York's population
- Solid line = +1 exponent.


Data from our man Zipf


Zipf in brief

Zipfian empirics

Dac 15 of 20

- Movement of stuff between cities
- $D = \text{distance}, P_1 \text{ and } P_2 = \text{city populations}.$
- Solid line = +1 exponent.

Data from our man Zipf

Zipf in brief

Zipfian empirics References

Dac 16 of 20

- Length of trip versus frequency of trip.
- Solid line = -1/2 exponent corresponds to $\gamma = 2$.

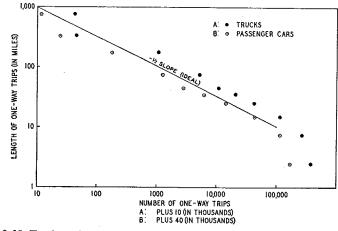
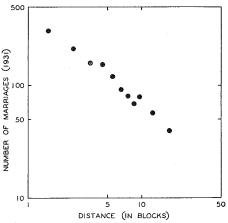


Fig. 9-19. Trucks and passenger cars: the number of one-way trips of like length.

Data from our man Zipf


Zipf in brief

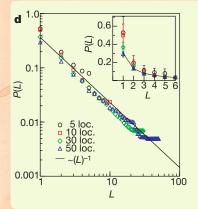
Zipfian empirics

Dac 17 of 20

The probability of marriage?

γ = 1?

Data from our man Zipf


Zipf in brief

Zipfian empirics

20 CP 18 of 20

Recent Zipf action:

- Probability of people being in certain locations follows a Zipfish law...
- From Gonzàlez et al., Nature (2008)
 "Understanding individual human mobility patterns"^[1]

Data from our man Zipf

Zipf in brief

References I

Data from our man Zipf

Zipf in brief Zipfian empirics

References

 M. C. González, C. A. Hidalgo, and A.-L. Barabási. Understanding individual human mobility patterns. <u>Nature</u>, 453:779–782, 2008. pdf (⊞)

[2] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

20 of 20