Social Contagion

Principles of Complex Systems CSYS/MATH 300, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Social Contagion

Social Contagion Models

VERMONT STATE

少 Q (~ 1 of 88

Social Contagion

Social Contagion Models

References

Social Contagion

Social Contagion

Social Contagion

Social Contagion Models

Background

少 Q (~ 5 of 88

Social Contagion

Social Contagion Models

References

Outline

Social Contagion Models

Background Granovetter's model Network version Groups Chaos

References

Social Contagion

少 Q (~ 2 of 88

Social Contagion

Social Contagion Models

References

Social Contagion

Examples abound

- fashion
- striking
- ► smoking (⊞) [6]
- residential segregation [16]
- ▶ ipods
- ▶ obesity (⊞) [5]
- Harry Potter
- voting
- gossip
- Rubik's cube **
- religious beliefs
- ▶ leaving lectures

SIR and SIRS contagion possible

► Classes of behavior versus specific behavior: dieting

Social Contagion Models Background

References

LOOK AT THESE PEOPLE. GLASSY-EYED AUTOMATONS

GOING ABOUT THEIR DAILY LIVES, NEVER STOPPING

0000

TO LOOK AROUND AND THINK! I'M THE ONLY CONSCIOUS HUMAN IN A WORLD OF SHEEP.

少 q (~ 4 of 88

Framingham heart study:

Evolving network stories (Christakis and Fowler):

- ▶ The spread of quitting smoking $(\boxplus)^{[6]}$
- ► The spread of spreading (⊞) [5]
- ► Also: happiness (⊞) [8], loneliness, ...
- ▶ The book: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (⊞)

Controversy:

- ► Are your friends making you fat? (⊞) (Clive Thomspon, NY Times, September 10, 2009).
- ▶ Everything is contagious (⊞)—Doubts about the social plague stir in the human superorganism (Dave Johns, Slate, April 8, 2010).

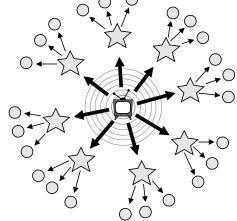
Social Contagion

Social Contagion Models

少 Q (~ 8 of 88

Social Contagion

Social Contagior Models

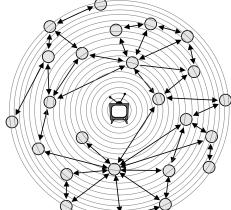

References

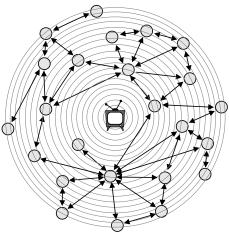
The two step model of influence [13]

The hypodermic model of influence

0.

Social Contagion




少 Q (~ 9 of 88

Social Contagion

Social Contagion

The general model of influence

Social Contagion

Social Contagior Models

夕 Q № 11 of 88

Social Contagion

References

少○12 of 88

Social Contagion

References

少 q (~ 13 of 88

Social Contagion

Two focuses for us

- ► Widespread media influence
- ▶ Word-of-mouth influence

We need to understand influence

- ▶ Who influences whom? Very hard to measure...
- ▶ What kinds of influence response functions are there?
- ▶ Are some individuals super influencers? Highly popularized by Gladwell [9] as 'connectors'
- ▶ The infectious idea of opinion leaders (Katz and Lazarsfeld) [13]

UNIVERSITY OF VERMONT

ჟqॡ 10 of 88

Social Contagion

Why do things spread?

- ▶ Because of properties of special individuals?
- ▶ Or system level properties?
- Is the match that lights the fire important?
- ▶ Yes. But only because we are narrative-making machines...
- ▶ We like to think things happened for reasons...
- ▶ Reasons for success are usually ascribed to intrinsic properties (e.g., Mona Lisa)
- System/group properties harder to understand
- ▶ Always good to examine what is said before and after the fact...

Social Contagion

Social Contagion Models

Social Contagion

Social Contagion Models

References

The dismal predictive powers of editors...

Social Contagion

Social Contagion Background

少 Q (~ 17 of 88

Social Contagion

The Mona Lisa

- ▶ "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- ▶ Not the world's greatest painting from the start...
- ► Escalation through theft, vandalism, parody, ...

Social Contagion

Messing with social connections

- Ads based on message content (e.g., Google and email)
- ► BzzAgent (⊞)
- ► Facebook's advertising: Beacon (⊞)

Social Contagion Models

References

Social Contagion

Social Contagion

References

少 Q (~ 15 of 88

Getting others to do things for you

A very good book: 'Influence' [7] by Robert Cialdini (H)

- 1. Reciprocation: The Old Give and Take ... and Take e.g., Free samples, Hare Krishnas.
- Mind
- 3. Social Proof: Truths Are Us
- Separation into groups is enough to cause problems.
- Milgram's obedience to authority experiment.
- 6. Scarcity: The Rule of the Few Prohibition.

Social Contagion

Social Contagio

References

Six modes of influence

- 2. Commitment and Consistency: Hobgoblins of the e.g., Hazing.
- e.g., Catherine Genovese, Jonestown 4. Liking: The Friendly Thief
- 5. Authority: Directed Deference

ჟqॡ 19 of 88

Timur Kuran: [14, 15] "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"

夕 Q № 16 of 88

Social contagion

- ► Cialdini's modes are heuristics that help up us get
- ▶ Useful but can be leveraged...
- ► Conspicuous Consumption (Veblen, 1912)
- ► Conspicuous Destruction (Potlatch)

Social Contagion

Social Contagion Models

Background

少 Q (~ 20 of 88

Social Contagion

Social Contagion Models

References

Social Contagion

Social Contagion

Some possible origins of thresholds: Desire to coordinate, to conform.

▶ Lack of information: impute the worth of a good or

behavior based on degree of adoption (social proof)

Economics: Network effects or network externalities Externalities = Effects on others not directly involved

► Examples: telephones, fax machine, Facebook,

▶ An individual's utility increases with the adoption level among peers and the population in general

Some important models

Social Contagion

- ► T ipping models—Schelling (1971) [16, 17, 18]
 - Simulation on checker boards
 - Idea of thresholds

Social contagion models

Thresholds

- Explore the Netlogo (⊞) implementation [21]
- ► Threshold models—Granovetter (1978) [10]
- ► Herding models—Bikhchandani, Hirschleifer, Welch $(1992)^{[1,2]}$
 - Social learning theory, Informational cascades,...

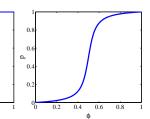
in a transaction

operating systems

Granovetter's Threshold model—definitions

- ϕ^* = threshold of an individual.
- $f(\phi_*)$ = distribution of thresholds in a population.
- ► $F(\phi_*)$ = cumulative distribution = $\int_{\phi'_*=0}^{\phi_*} f(\phi'_*) d\phi'_*$
- ϕ_t = fraction of people 'rioting' at time step t.

少 Q (~ 21 of 88


Social Contagion

Social Contagion

Background

Threshold models

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted References
- ▶ 'Others' may be everyone in a population, an individual's close friends, any reference group.
- ▶ Response can be probabilistic or deterministic.
- Individual thresholds can vary
- Assumption: order of others' adoption does not matter... (unrealistic).
- Assumption: level of influence per person is uniform (unrealistic).

- ▶ Example threshold influence response functions:
- Two states: S and I.

Social Contagion

Social Contagior Models Background

少 q (~ 23 of 88

Social Contagion

References

Social Contagion

Social Contagio Granovetter's mode

References

deterministic and stochastic ϕ = fraction of contacts 'on' (e.g., rioting)

少 Q (~ 26 of 88

through life.

Other acts of influence:

少 Q (~ 22 of 88

Threshold models

▶ At time t + 1, fraction rioting = fraction with $\phi_* \le \phi_t$.

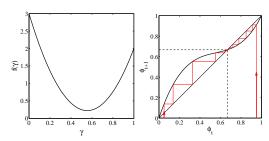
$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

ightharpoonup \Rightarrow Iterative maps of the unit interval [0, 1].

Social Contagion

Social Contagion Models Background Granovetter's model Network version Groups

References


∽ Q (~ 27 of 88

Social Contagion

Social Contagion Models

References

Threshold models

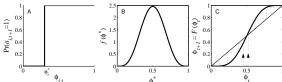
Example of single stable state model

References

Social Contagion

Social Contagion Models

少 Q (~ 30 of 88


Social Contagion

Social Contagion
Models
Background
Granovetter's model
Network version
Groups

References

Threshold models

Action based on perceived behavior of others.

- ► Two states: S and I.
- ϕ = fraction of contacts 'on' (e.g., rioting)
- ► Discrete time update (strong assumption!)
- ► This is a Critical mass model

Threshold models

Threshold models

Chaotic behavior possible [12, 11]

Implications for collective action theory:

- 2. Small individual changes ⇒ large global changes

Social Contagion

Social Contagion
Models
Background
Granovetter's model
Network version
Groups
Chaos

References

Threshold models

2 1.5 0.5 0.5 0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8

Another example of critical mass model...

Social Contagion

UNIVERSITY OF SERVICE AND SERV

Social Contagion Models Background Granovetter's model Network version Groups Chaos

References

Period doubling arises as map amplitude r is increased.

Synchronous update assumption is crucial

Threshold model on a network

Many years after Granovetter and Soong's work:

"A simple model of global cascades on random networks" D. J. Watts. Proc. Natl. Acad. Sci., 2002 [20]

- ▶ Mean field model → network model
- Individuals now have a limited view of the world

Social Contagion

Social Contagion Models

Snowballing

The Cascade Condition:

- 1. If one individual is initially activated, what is the probability that an activation will spread over a
- 2. What features of a network determine whether a

Social Contagion

少 Q (~ 37 of 88

Social Contagion

References

- network?
- cascade will occur or not?

Threshold model on a network

- Interactions between individuals now represented by a network
- ▶ Network is sparse
- ▶ Individual *i* has *k_i* contacts
- Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- ▶ Individual *i* becomes active when fraction of active contacts $\frac{a_i}{k_i} \geq \phi_i$
- ▶ Individuals remain active when switched (no recovery = SI model)

Social Contagion

UNIVERSITY OF

少 Q (~ 34 of 88

Social Contagion Models

References

▶ Start with N nodes with a degree distribution p_k

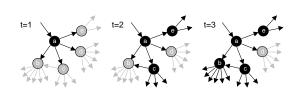
Snowballing

- ▶ Nodes are randomly connected (carefully so)
- ► Aim: Figure out when activation will propagate
- ► Determine a cascade condition

First study random networks:

少 Q (~ 35 of 88

Snowballing


ഹ ര. രം 38 of 88

Social Contagio

References

Threshold model on a network

▶ All nodes have threshold $\phi = 0.2$.

Social Contagion

Social Contagion Network version

References

Follow active links

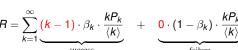
- An active link is a link connected to an activated node.
- ▶ If an infected link leads to at least 1 more infected link, then activation spreads.
- ▶ We need to understand which nodes can be activated when only one of their neigbors becomes active.

少 Q (~ 36 of 88

The most gullible

Vulnerables:

- ▶ We call individuals who can be activated by just one contact being active vulnerables
- ► The vulnerability condition for node *i*:


$$1/k_i \ge \phi_i$$

- ▶ Which means # contacts $k_i \leq |1/\phi_i|$
- ► For global cascades on random networks, must have a global cluster of vulnerables [20]
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node → critical mass → everyone.

Social Contagion

Social Contagion

 Expected number of active edges produced by an active edge:

$$=\sum_{k=1}^{\infty}(k-1)\cdot\beta_k\cdot\frac{kP_k}{\langle k\rangle}$$

Social Contagion

Social Contagion

少 Q (~ 43 of 88

Social Contagion

Cascade condition

Back to following a link:

- A randomly chosen link, traversed in a random direction, leads to a degree k node with probability $\propto kP_k$.
- ▶ Follows from there being *k* ways to connect to a node with degree k.
- Normalization:

$$\sum_{k=0}^{\infty} k P_k = \langle k \rangle$$

▶ So

 $P(\text{linked node has degree } k) = \frac{kP_k}{\langle k \rangle}$

Social Contagion

Cascade condition

So... for random networks with fixed degree distributions, cacades take off when:

$$\sum_{k=1}^{\infty} (k-1) \cdot \beta_k \cdot \frac{k P_k}{\langle k \rangle} \geq 1.$$

- $ightharpoonup \beta_k = \text{probability a degree } k \text{ node is vulnerable.}$
- $ightharpoonup P_k = \text{probability a node has degree } k.$

Network version

Cascade condition

Next: Vulnerability of linked node

Linked node is vulnerable with probability

$$\beta_k = \int_{\phi'=0}^{1/k} f(\phi'_*) \mathrm{d}\phi'_*$$

- ▶ If linked node is vulnerable, it produces k 1 new outgoing active links
- ▶ If linked node is not vulnerable, it produces no active links.

Social Contagion

Social Contagion

Cascade condition

Two special cases:

▶ (1) Simple disease-like spreading succeeds: $\beta_k = \beta$

$$\beta \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \geq 1.$$

▶ (2) Giant component exists: $\beta = 1$

$$1 \cdot \sum_{k=1}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \ge 1.$$

少 Q (~ 45 of 88

ჟ q ← 42 of 88

Cascade condition

Putting things together:

$$R = \sum_{k=1}^{\infty} \underbrace{\frac{(k-1) \cdot \beta_k \cdot \frac{kP_k}{\langle k \rangle}}_{\text{success}}} + \underbrace{\frac{0 \cdot (1-\beta_k) \cdot \frac{kP_k}{\langle k \rangle}}_{\text{failure}}}$$

$$=\sum_{k=1}^{\infty}(k-1)\cdot\beta_k\cdot\frac{kP_k}{\langle k\rangle}$$

少 Q (~ 40 of 88

Social Contagion Models

Cascades on random networks

_ Final cascade size 0. 0. $\langle s \rangle$ Fraction of Vulnerables 0.4 0. High influence

Cascades occur

vulnerable cluster > 0. System may be

'robust-yet-fragile'.

only if size of max

'Ignorance' facilitates spreading.

Social Contagion Cascade window—summary

Social Contagion Models

UNIVERSITY OF VERMONT

少 Q (~ 46 of 88

Social Contagion

No global clusters of any kind. 2. High $\langle k \rangle$: Giant component exists but not enough

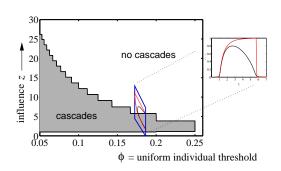
For our simple model of a uniform threshold:

vulnerables.

3. Intermediate $\langle k \rangle$: Global cluster of vulnerables exists. Cascades are possible in "Cascade window."

1. Low $\langle k \rangle$: No cascades in poorly connected networks.

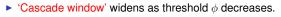
Social Contagion Models Background Granovetter's model

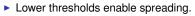


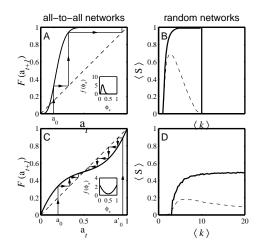
少 Q (~ 49 of 88

Social Contagion

Cascade window for random networks

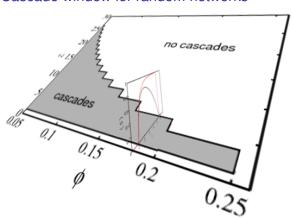



Social Contagion Models References


UNIVERSITY OF

少 Q (~ 47 of 88

All-to-all versus random networks


References

Social Contagion

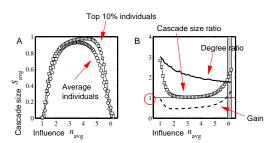
Cascade window for random networks

Social Contagion

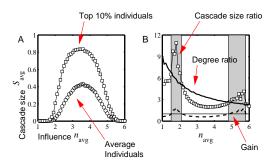
Social Contagion Models

Early adopters—degree distributions

 $P_{k,t}$ versus k


Social Contagion Models Network version

References



The multiplier effect:

- Fairly uniform levels of individual influence.
- ▶ Multiplier effect is mostly below 1.

The multiplier effect:

Skewed influence distribution example.

Social Contagion

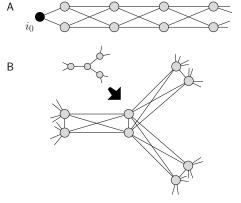
Social Contagion Models

少 Q (~ 52 of 88

Social Contagion

Social Contagion Models

References



Social Contagion

Social Contagion Models

References

Special subnetworks can act as triggers

 $ightharpoonup \phi = 1/3$ for all nodes

despair.com

The power of groups...

"A few harmless flakes working together can unleash an avalanche of destruction."

Social Contagion

Social Contagior Models

少 Q (~ 56 of 88

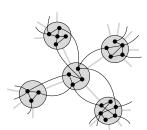
Social Contagion

Groups

References

Extensions

- Assumption of sparse interactions is good
- ▶ Degree distribution is (generally) key to a network's
- ▶ Still, random networks don't represent all networks
- ► Major element missing: group structure



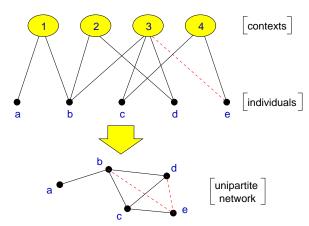
•೧ Q C № 57 of 88

Social Contagion

Group structure—Ramified random networks

p = intergroup connection probabilityq = intragroup connection probability.

References



少 q (~ 58 of 88

少 Q (~ 54 of 88

Bipartite networks

Social Contagion

Social Contagion Models Background Granovetter's model Groups

少 Q (~ 59 of 88

Generalized affiliation model networks with triadic closure

- ▶ Connect nodes with probability $\propto \exp^{-\alpha d}$ where
 - α = homophily parameter and
- d = distance between nodes (height of lowest common ancestor)
- ightharpoonup = intergroup probability of friend-of-friend
- τ_2 = intragroup probability of friend-of-friend connection

Social Contagion

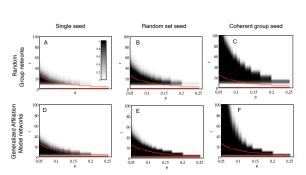
Social Contagion Models Background Granovetter's model Network version Groups

Context distance

Social Contagion

Social Contagion Models Groups

References

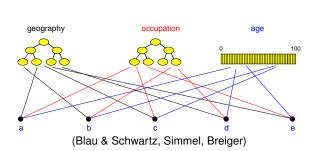


少 Q № 60 of 88

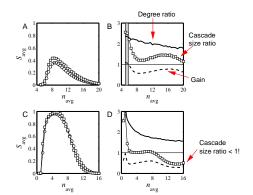
Cascade windows for group-based networks

Social Contagion

Social Contagion Models Groups Chaos


References

Generalized affiliation model


Social Contagion

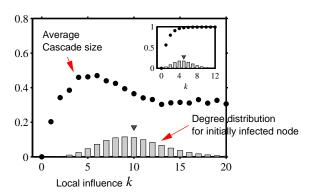
Social Contagion Models Groups

Multiplier effect for group-based networks:

▶ Multiplier almost always below 1.

Social Contagion

Social Contagio Models Groups


References

少 Q (~ 64 of 88

Assortativity in group-based networks

- ▶ The most connected nodes aren't always the most 'influential.'
- ▶ Degree assortativity is the reason.

Social Contagion

Social Contagion Models Groups

少 Q ← 65 of 88

Social Contagion

Social Contagior Models

Groups

References

Chaotic contagion:

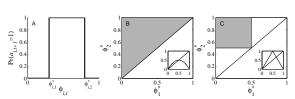
- ▶ What if individual response functions are not monotonic?
- Consider a simple deterministic version:
- Node i has an 'activation threshold' φ_{i,1} ... and a 'de-activation threshold' $\phi_{i,2}$
- Nodes like to imitate but only up to a limit—they don't want to be like everyone else.

Social Contagion

Social Contagion

References

•2 Q № 69 of 88


Social Contagion

Social contagion

Summary

- 'Influential vulnerables' are key to spread.
- ► Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Seems that cascade condition is a global one.
- ▶ Most extreme/unexpected cascades occur in highly connected networks
- 'Influentials' are posterior constructs.
- ► Many potential influentials exist.

Two population examples:

- Chaos References
- ▶ Randomly select $(\phi_{i,1}, \phi_{i,2})$ from gray regions shown in plots B and C.
- Insets show composite response function averaged over population.
- ▶ We'll consider plot C's example: the tent map.

References

Social contagion

Implications

- ► Focus on the influential vulnerables.
- ▶ Create entities that can be transmitted successfully through many individuals rather than broadcast from one 'influential.'
- ▶ Only simple ideas can spread by word-of-mouth. (Idea of opinion leaders spreads well...)
- Want enough individuals who will adopt and display.
- ► Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- ▶ Entities can be novel or designed to combine with others, e.g. block another one.

Chaotic contagion

Social Contagion

UNIVERSITY VERMONT 少 Q (~ 66 of 88

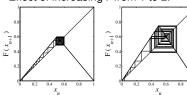
Social Contagion

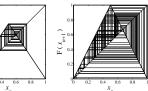
Definition of the tent map:

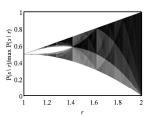
$$F(x) = \begin{cases} rx \text{ for } 0 \le x \le \frac{1}{2}, \\ r(1-x) \text{ for } \frac{1}{2} \le x \le 1. \end{cases}$$

▶ The usual business: look at how F iteratively maps the unit interval [0, 1].

少 Q (~ 71 of 88






少 Q (~ 67 of 88

The tent map

Effect of increasing r from 1 to 2.

Chaotic behavior

Take r = 2 case:

Orbit diagram:

Chaotic behavior increases as map slope r is increased.

Social Contagion

Social Contagion Models

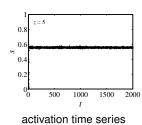
少 Q (> 72 of 88

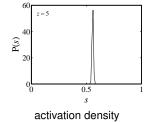
Social Contagion

Social Contagion Models Chaos

References

- ▶ What happens if nodes have limited information?
- As before, allow interactions to take place on a sparse random network.
- ▶ Vary average degree $z = \langle k \rangle$, a measure of information

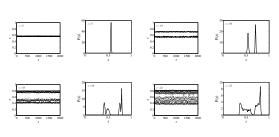

少 Q (~ 73 of 88


Social Contagion

Social Contagion Models Background Granovetter's model Network version Groups

References

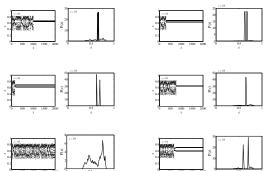
Invariant densities—stochastic response **functions**



Invariant densities—stochastic response functions

Social Contagion

Social Contagion Models Background Granovetter's model Network version


References

Invariant densities—deterministic response functions for one specific network with

 $\langle k \rangle = 18$

Social Contagion

Social Contagion Models Chaos

References

少 Q ← 76 of 88 Social Contagion

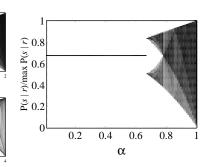
Social Contagion

References

Invariant densities—stochastic response **functions**

Trying out higher values of $\langle k \rangle$...

少 q (~ 77 of 88


Invariant densities—deterministic response functions

Trying out higher values of $\langle k \rangle \dots$

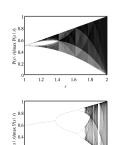
Social Contagion

Social Contagion Models

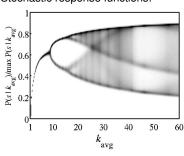
Bifurcation diagram: Asynchronous updating

Social Contagion

Social Contagion Models References


夕 Q ← 81 of 88

Social Contagion


Social Contagion Models

References

Connectivity leads to chaos:

Stochastic response functions:

Social Contagion

UNIVERSITY OF VERMONT

少 Q (~ 78 of 88

Social Contagion Models Chaos

References

Social Contagion

References I

- S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ., 100:992-1026, 1992.
- [2] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)
- J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in designed systems. Phys. Rev. E, 60(2):1412-1427, 1999. pdf (⊞)

Social Contagion

Social Contagio

References

Chaotic behavior in coupled systems

Coupled maps are well explored (Kaneko/Kuramoto):

$$x_{i,n+1} = f(x_{i,n}) + \sum_{j \in \mathcal{N}_i} \delta_{i,j} f(x_{j,n})$$

- $ightharpoonup \mathcal{N}_i = \text{neighborhood of node } i$
- 1. Node states are continuous
- 2. Increase δ and neighborhood size $|\mathcal{N}|$

⇒ synchronization

But for contagion model:

- 1. Node states are binary
- 2. Asynchrony remains as connectivity increases

Social Contagion Models

References II

- J. M. Carlson and J. Dovle.
 - Highly optimized tolerance: Robustness and design in complex systems.

Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

- N. A. Christakis and J. H. Fowler.
 - The spread of obesity in a large social network over 32 years.

New England Journal of Medicine, 357:370-379, 2007. pdf (⊞)

N. A. Christakis and J. H. Fowler.

The collective dynamics of smoking in a large social

New England Journal of Medicine, 358:2249-2258, 2008. pdf (⊞)

∙) q (~ 83 of 88

少 Q (~ 80 of 88

References III

References IV

[11] M. Granovetter and R. Soong.

[12] M. S. Granovetter and R. Soong.

consumer demand.

[13] E. Katz and P. F. Lazarsfeld. Personal Influence.

The Free Press, New York, 1955.

7:83-99, 1986

[7] R. B. Cialdini. Influence: Science and Practice. Allyn and Bacon, Boston, MA, 4th edition, 2000.

J. H. Fowler and N. A. Christakis. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. BMJ, 337:article #2338, 2008. pdf (⊞)

[9] M. Gladwell. The Tipping Point. Little, Brown and Company, New York, 2000.

[10] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf (⊞)

Threshold models of diversity: Chinese restaurants, residential segregation, and the spiral of silence. Sociological Methodology, 18:69–104, 1988. pdf (⊞)

Threshold models of interpersonal effects in

Journal of Economic Behavior & Organization,

Formulates threshold as function of price, and introduces exogenous supply curve. pdf (⊞)

Social Contagion

Social Contagion Models

References

References VI

[17] T. C. Schelling.

Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf (⊞)

[18] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

[19] D. Sornette.

References VII

[21] U. Wilensky.

Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

[20] D. J. Watts. A simple model of global cascades on random

Netlogo segregation model.

networks.

Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf (⊞)

http://ccl.northwestern.edu/netlogo/

models/Segregation. Center for Connected

Northwestern University, Evanston, IL., 1998.

Learning and Computer-Based Modeling,

Social Contagion

Social Contagior

Models

References

少 Q (~ 87 of 88

Social Contagion Models

Social Contagion

◆9 4 0 85 of 88

Social Contagion

Social Contagion

References

Social Contagion Models

References

References V

[14] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989. World Politics, 44:7–48, 1991. pdf (⊞)

[15] T. Kuran.

Private Truths, Public Lies: The Social Consequences of Preference Falsification. Harvard University Press, Cambridge, MA, Reprint edition, 1997.

[16] T. C. Schelling.

Dynamic models of segregation. J. Math. Sociol., 1:143-186, 1971.

少 Q (~ 86 of 88

Social Contagion

References

