Mechanisms for Generating Power-Law Size Distributions I

Principles of Complex Systems CSYS/MATH 300, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

Outline

Random Walks

The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

References

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distributio

vomploo

Variable

Basics
Holtsmark's Distributio

PLIPLO

A powerful story in the rise of complexity:

structure arises out of randomness.

xamples

Variable transformation

Holtsmark's Distributio

References

Basics

A powerful story in the rise of complexity:

structure arises out of randomness.

Examples

Variable transformation Basics

Holtsmark's Distributio

References

A powerful story in the rise of complexity:

- structure arises out of randomness.
- ► Exhibit A: Random walks... (⊞)

Holtsmark's Distribution

References

The essential random walk:

- One spatial dimension.
- ▶ Time and space are discrete
- ▶ Random walker (e.g., a drunk) starts at origin x = 0.
- ▶ Step at time t is ϵ_t :

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/2 \end{array} \right.$$

Examples

Variable transformation

Holtsmark's Distributio

References

The essential random walk:

- One spatial dimension.
- ▶ Time and space are discrete
- ► Random walker (e.g., a drunk) starts at origin x = 0.
- ▶ Step at time *t* is ϵ_t :

$$\epsilon_t = \left\{ egin{array}{ll} +1 & ext{with probability 1/2} \ -1 & ext{with probability 1/2} \end{array}
ight.$$

The essential random walk:

- One spatial dimension.
- ▶ Time and space are discrete
- ▶ Random walker (e.g., a drunk) starts at origin x = 0.
- ▶ Step at time t is ϵ_t :

$$\epsilon_t = \left\{ egin{array}{ll} +1 & ext{with probability 1/2} \ -1 & ext{with probability 1/2} \end{array}
ight.$$

The essential random walk:

- One spatial dimension.
- Time and space are discrete
- ▶ Random walker (e.g., a drunk) starts at origin x = 0.
- ▶ Step at time t is ϵ_t :

$$\epsilon_t = \left\{ egin{array}{ll} +1 & \mbox{with probability 1/2} \\ -1 & \mbox{with probability 1/2} \end{array} \right.$$

Random Walks

Examples

Variable

Holtsmark's Distribution

Power-Law Mechanisms I

Displacement after *t* steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

Random Walks

vermales

Variable transformation

Basics
Holtsmark's Distribution

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle \mathbf{x}_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{j=1}^t \left\langle \epsilon_j \right\rangle = 0$$

Random Walks

Basics

Variable

PLIPLO

Power-Law Mechanisms I

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

Random Walks

Variable

Basics PLIPLO

Random Walks

vamnles

Variable transformation

Basics
Holtsmark's Distribution

References

Displacement after t steps:

$$x_t = \sum_{i=1}^t \epsilon_i$$

Expected displacement:

$$\langle x_t \rangle = \left\langle \sum_{i=1}^t \epsilon_i \right\rangle = \sum_{i=1}^t \left\langle \epsilon_i \right\rangle = 0$$

$$Var(x_t) = Var\left(\sum_{i=1}^{t} \epsilon_i\right)$$
$$= \sum_{i=1}^{t} Var(\epsilon_i) = \sum_{i=1}^{t} 1 = t$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

Random Walks

xamples

Variable transformation

Holtsmark's Distribution

$$Var(x_t) = Var\left(\sum_{i=1}^{t} \epsilon_i\right)$$
$$= \sum_{i=1}^{t} Var(\epsilon_i) = \sum_{i=1}^{t} 1 = t$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

Random Walks

The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

Holtsmark's Distribution

References

Variances sum: (⊞)*

$$Var(x_t) = Var\left(\sum_{i=1}^{t} \epsilon_i\right)$$
$$= \sum_{i=1}^{t} Var(\epsilon_i) = \sum_{i=1}^{t} 1 =$$

$$=\sum_{i=1}^t \operatorname{Var}(\epsilon_i) = \sum_{i=1}^t 1 = t$$

* Sum rule = a good reason for using the variance to measure spread; only works for independent distributions.

So typical displacement from the origin scales as

$$\sigma = t^{1/2}$$

A non-trivial power-law arises out of additive aggregation or accumulation

Power-Law Mechanisms I

Random Walks

Examples

Variable transformation Basics

Holtsmark's Distribution

So typical displacement from the origin scales as

$$\sigma = t^{1/2}$$

⇒ A non-trivial power-law arises out of additive aggregation or accumulation. Power-Law Mechanisms I

Random Walks

Examples

Basics

Variable transformation

Holtsmark's Distribution

Random walks are weirder than you might think...

For example:

- \triangleright $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- ▶ Think of a coin flip game with ten thousand tosses
- If you are behind early on, what are the chances you will make a comeback?
- ➤ The most likely number of lead changes is

Random Walks

he First Return P

Variable transformation

Holtsmark's Distribution

Holtsmark's Distribution

References

Random walks are weirder than you might think...

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- ▶ Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ► The most likely number of lead changes is...

Holtsmark's Distribution

References

Random walks are weirder than you might think...

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ► The most likely number of lead changes is...

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ► The most likely number of lead changes is...

Random Walks

Examples

Variable transformation

Holtsmark's Distribution

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ▶ The most likely number of lead changes is...

Random Walks

Examples

Variable transformation

Holtsmark's Distribution PLIPLO

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- ▶ The most likely number of lead changes is... 0.

Random Walks

Examples

Variable transformation

Holtsmark's Distribution
PLIPLO

Holtsmark's Distributio

References

Random walks are weirder than you might think...

For example:

- $\xi_{r,t}$ = the probability that by time step t, a random walk has crossed the origin r times.
- Think of a coin flip game with ten thousand tosses.
- If you are behind early on, what are the chances you will make a comeback?
- The most likely number of lead changes is... 0.

See Feller, [2] Intro to Probability Theory, Volume I

Power-Law Mechanisms I

Random Walks

Examples

Variable transformation Basics

Holtsmark's Distribution

References

In fact:

 $\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$

Even crazier:

Examples

Basics

Variable transformation

Holtsmark's Distribution

References

In fact:

$$\xi_{0,t} > \xi_{1,t} > \xi_{2,t} > \cdots$$

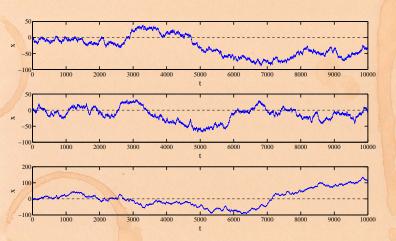
Even crazier:

The expected time between tied scores = ∞ !

Random walks—some examples

transformation

Basics

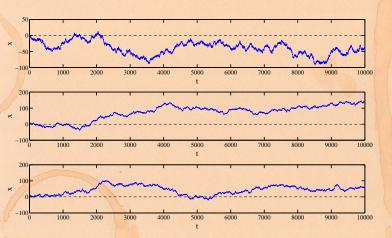


Random walks—some examples

Examples

Variable transformation

Basics Holtsmark's Distribution



Variable

PLIPLO

- What is the probability that a random walker in one
- Will our drunkard always return to the origin?
- What about higher dimensions?

Variable transformation

Holtsmark's Distribution

Poforonoos

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Holtsmark's Distribution

Poforonoos

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- ▶ What about higher dimensions?

Holtsmark's Distributi PLIPLO

References

- What is the probability that a random walker in one dimension returns to the origin for the first time after t steps?
- Will our drunkard always return to the origin?
- What about higher dimensions?

Reasons for caring:

- We will find a power-law size distribution with ar interesting exponent
- Some physical structures may result from random walks
- 3. We'll start to see how different scalings relate to each other

Random Walks

Examples

Variable transformation

Holtsmark's Distribution

Reasons for caring:

- We will find a power-law size distribution with an interesting exponent
- Some physical structures may result from random walks
- 3. We'll start to see how different scalings relate to each other

Random Walks

The First Return Pro

Examples

Variable transformation

Holtsmark's Distribution

Holtsmark's Distribution

References

Reasons for caring:

- We will find a power-law size distribution with an interesting exponent
- Some physical structures may result from random walks
- We'll start to see how different scalings relate to each other

Holtsmark's Distribution

References

Reasons for caring:

- We will find a power-law size distribution with an interesting exponent
- Some physical structures may result from random walks
- We'll start to see how different scalings relate to each other

Outline

Random Walks
The First Return Problem

Examples

Variable transformation Basics Holtsmark's Distribution

References

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

Random Walks

-100

1000

3000

4000



5000

6000

7000

8000

9000

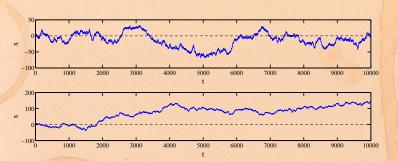
10000

Random Walks The First Return Problem

Variable

Basics

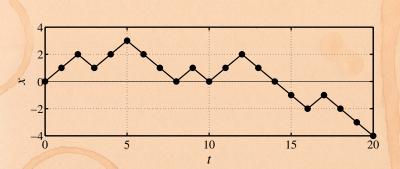
Random Walks



Again: expected time between ties = ∞ ... Let's find out why... [2]

Random Walks The First Return Problem

PLIPLO



Random Walks The First Return Problem

Variable

Basics

For random walks in 1-d:

Return can only happen when t = 2n.

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distributio

- Return can only happen when t = 2n.
- Call $P_{\text{first return}}(2n) = P_{\text{fr}}(2n)$ probability of first return at t = 2n.

Random Walks
The First Return Problem

Variable

Basics
Holtemark's Distribution

Holtsmark's Distribution PLIPLO

- Return can only happen when t = 2n.
- Call $P_{\text{first return}}(2n) = P_{\text{fr}}(2n)$ probability of first return at t = 2n.
- ightharpoonup Assume drunkard first lurches to x = 1.

Variable transformation

Holtsmark's Distribution PLIPLO

For random walks in 1-d:

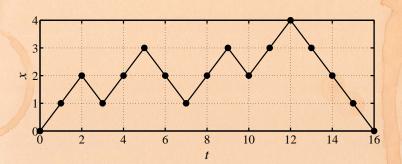
- Return can only happen when t = 2n.
- Call $P_{\text{first return}}(2n) = P_{\text{fr}}(2n)$ probability of first return at t = 2n.
- Assume drunkard first lurches to x = 1.
- ▶ The problem

$$P_{\rm fr}(2n) = 2Pr(x_t \ge 1, t = 1, \dots, 2n - 1, \text{ and } x_{2n} = 0)$$

Random Walks The First Return Problem Examples

Variable transformation

Holtsmark's Distribution PLIPLO

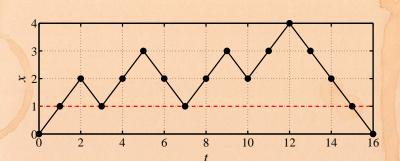


Power-Law Mechanisms I

Random Walks The First Return Problem

Variable

Basics PLIPLO

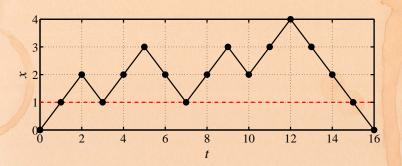


Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO



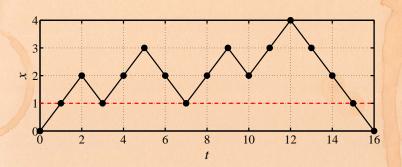
Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

References

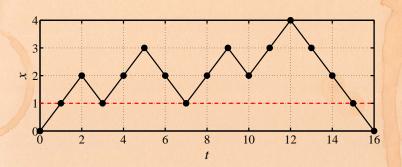
A useful restatement: $P_{fr}(2n) = 2 \cdot \frac{1}{2} Pr(x_t \ge 1, t = 1, ..., 2n - 1, \text{ and } x_1 = x_{2n-1} = 1)$



- A useful restatement: $P_{fr}(2n) = 2 \cdot \frac{1}{2} Pr(x_t \ge 1, t = 1, ..., 2n 1, \text{ and } x_1 = x_{2n-1} = 1)$
- Want walks that can return many times to x = 1.

Variable transformation

Holtsmark's Distribution
PLIPLO



- A useful restatement: $P_{fr}(2n) = 2 \cdot \frac{1}{2} Pr(x_t \ge 1, t = 1, ..., 2n 1, \text{ and } x_1 = x_{2n-1} = 1)$
- Want walks that can return many times to x = 1.
- The $\frac{1}{2}$ accounts for stepping to 2 instead of 0 at t = 2n.

Variable transformation

Holtsmark's Distribution
PLIPLO

Random Walks
The First Return Problem

Variable

PLIPLO

Use a method of images

- ▶ Define N(i,j,t) as the # of possible walks between x = i and x = i taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n = 2 steps.

- Counting problem (combinatorics/statistical mechanics)
- Use a method of images

Define N(i, j, t) as the # of possible walks between

x = t and x = t taking t steps.

▶ Consider all paths starting at x = 1 and ending at

2 steps.

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

- Use a method of images
- ▶ Define N(i, j, t) as the # of possible walks between x = i and x = j taking t steps.

Variable transformation

Holtsmark's Distribution

- Use a method of images
- Define N(i, j, t) as the # of possible walks between x = i and x = j taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n 2 steps.

Variable transformation

Holtsmark's Distribution

- Use a method of images
- ▶ Define N(i, j, t) as the # of possible walks between x = i and x = j taking t steps.
- Consider all paths starting at x = 1 and ending at x = 1 after t = 2n 2 steps.
- Subtract how many hit x = 0.

Variable transformation

Holtsmark's Distribution

Power-Law Mechanisms I

Key observation:

of t-step paths starting and ending at x = 1 and hitting x = 0 at least once

Random Walks The First Return Problem

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution

Power-Law Mechanisms I

Key observation:

of t-step paths starting and ending at x = 1 and hitting x = 0 at least once = # of t-step paths starting at x = -1 and ending at x = 1

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

of t-step paths starting and ending at x = 1and hitting x = 0 at least once = # of t-step paths starting at x = -1 and ending at x = 1

= # of t-step paths starting at x = -1 and ending at x = -1

= N(-1,1,t)

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

of t-step paths starting and ending at x = 1 and hitting x = 0 at least once = # of t-step paths starting at x = -1 and ending at x = 1= N(-1, 1, t)

So
$$N_{\text{first return}}(2n) = N(1, 1, 2n - 2) - N(-1, 1, 2n - 2)$$

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

of t-step paths starting and ending at x = 1 and hitting x = 0 at least once = # of t-step paths starting at x = -1 and ending at x = 1= N(-1, 1, t)

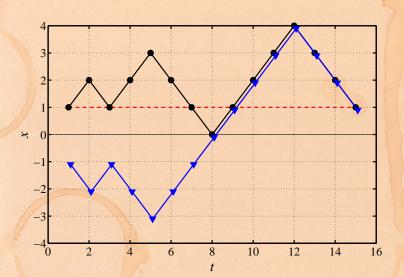
So
$$N_{\text{first return}}(2n) = N(1, 1, 2n - 2) - N(-1, 1, 2n - 2)$$

See this 1-1 correspondence visually...

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distributio



Random Walks
The First Return Problem
Examples

Variable transformation

Basics
Holtsmark's Distribution

For any path starting at x = 1 that hits 0, there is a unique matching path starting at x = -1.

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

References

Basics

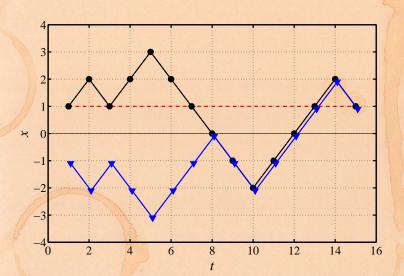
- For any path starting at x = 1 that hits 0, there is a unique matching path starting at x = -1.
- Matching path first mirrors and then tracks.

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution



Random Walks
The First Return Problem
Evamples

Variable transformation

Basics Holtsmark's Distributio

- Next problem: what is N(i, j, t)?
- # positive steps + # negative steps =
- Figure 1 steps
- > # positive steps # negative steps
- \blacktriangleright # positive steps = (t+j-l)/2.

positive steps.)

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Basics Holtemark's Distribution

Holtsmark's Distribution
PLIPLO

- Next problem: what is N(i, j, t)?
- # positive steps + # negative steps = t.

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution PLIPLO

- Next problem: what is N(i, j, t)?
- # positive steps + # negative steps = t.
- Random walk must displace by j i after t steps.

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

- Next problem: what is N(i, j, t)?
- # positive steps + # negative steps = t.
- Random walk must displace by j i after t steps.
- \blacktriangleright # positive steps # negative steps = j i.

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

positive steps + # negative steps = t.

Random walk must displace by j - i after t steps.

▶ # positive steps - # negative steps = j - i.

• # positive steps = (t + j - i)/2.

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

positive steps + # negative steps = t.

Random walk must displace by j - i after t steps.

▶ # positive steps - # negative steps = j - i.

• # positive steps = (t + j - i)/2.

1

$$N(i,j,t) = {t \choose \# \text{ positive steps}} = {t \choose (t+j-i)/2}$$

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

$$N_{\text{first return}}(2n) = N(1, 1, 2n - 2) - N(-1, 1, 2n - 2)$$

where

$$N(i,j,t) = {t \choose (t+j-i)/2}$$

Random Walks

The First Return Problem

Variable Basics

PLIPLO

Insert question from assignment 4 (⊞)

Find
$$N_{\text{first return}}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$$
.

Normalized Number of Paths gives Probability

Total number of possible naths =
$$9^2$$

$$P_{\text{first return}}(2n) = \frac{1}{22n} N_{\text{first return}}(2n)$$

$$\simeq \frac{1}{2^{2n}} \frac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

$$=\frac{1}{\sqrt{2\pi}}(2n)^{-3/2}$$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable Variable

Basics

Holtsmark's Distribution

First Returns

Insert question from assignment 4 (⊞)

Find $N_{\text{first return}}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$.

- Normalized Number of Paths gives Probability
- Total number of possible paths = 2^{2n}

$$\simeq rac{1}{2^{2n}} rac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

$$=\frac{1}{\sqrt{2\pi}}(2n)^{-3/2}$$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable

Basics

Holtsmark's Distribution
PLIPLO

First Returns

Insert question from assignment 4 (⊞)

Find $N_{\text{first return}}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$.

- Normalized Number of Paths gives Probability
- Total number of possible paths = 2^{2n}

•

$$P_{\text{first return}}(2n) = \frac{1}{2^{2n}} N_{\text{first return}}(2n)$$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution

Insert question from assignment 4 (⊞)

Find
$$N_{\text{first return}}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$$
.

- Normalized Number of Paths gives Probability
- Total number of possible paths = 2^{2n}

$$P_{\text{first return}}(2n) = \frac{1}{2^{2n}} N_{\text{first return}}(2n)$$

$$\simeq rac{1}{2^{2n}} rac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

Random Walks The First Return Problem

Variable transformation

Basics
Holtsmark's Distribution

First Returns

Insert question from assignment 4 (⊞)

Find $N_{\text{first return}}(2n) \sim \frac{2^{2n-3/2}}{\sqrt{2\pi}n^{3/2}}$.

- Normalized Number of Paths gives Probability
- Total number of possible paths = 2^{2n}

$$P_{\text{first return}}(2n) = \frac{1}{2^{2n}} N_{\text{first return}}(2n)$$

$$\simeq rac{1}{2^{2n}} rac{2^{2n-3/2}}{\sqrt{2\pi} n^{3/2}}$$

$$=\frac{1}{\sqrt{2\pi}}(2n)^{-3/2}$$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples Variable

transformation Basics

Holtsmark's Distribution
PLIPLO

Random Walks
The First Return Problem

Variable

PLIPLO

Same scaling holds for continuous space/time walks.

 $P(t) \propto t^{-3/2}, \ \gamma = 3/2$

- ► P(t) is normalizable
- Recurrence: Random walker always returns to origin
- Moral. Repeated gambling against an infinitely

Same scaling holds for continuous space/time walks.

$$P(t) \propto t^{-3/2}, \ \gamma = 3/2$$

- \triangleright P(t) is normalizable
- Recurrence: Random walker always returns to origin
- Moral. Repeated gambling against an infinitely

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

Same scaling holds for continuous space/time walks.

$$P(t) \propto t^{-3/2}, \ \gamma = 3/2$$

- ▶ P(t) is normalizable
- Recurrence: Random walker always returns to origin
- Moral

wealthy apparent must lead to this

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution
PLIPLO

$$P(t) \propto t^{-3/2}, \ \gamma = 3/2$$

- ▶ P(t) is normalizable
- ▶ Recurrence: Random walker always returns to origin
- ► Moral. Repeated gambling again

Variable transformation

Holtsmark's Distribution

Same scaling holds for continuous space/time walks.

$$P(t) \propto t^{-3/2}, \ \gamma = 3/2$$

- ▶ P(t) is normalizable
- Recurrence: Random walker always returns to origin
- Moral: Repeated gambling against an infinitely wealthy opponent must lead to ruin.

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

Higher dimensions:

- \blacktriangleright Walker in d=2 dimensions must also return
- ▶ Walker may not return in $d \ge 3$ dimensions
- ▶ For d = 1, $\gamma = 3/2 \rightarrow \langle t \rangle = \infty$
- ► Even though walker must return, expect a long wait...

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

Higher dimensions:

- ▶ Walker in d = 2 dimensions must also return
- ▶ Walker may not return in $d \ge 3$ dimensions
- ▶ For d = 1, $\gamma = 3/2 \rightarrow \langle t \rangle = \infty$
- ► Even though walker must return, expect a long wait...

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

- ▶ Walker in d = 2 dimensions must also return
- ▶ Walker may not return in $d \ge 3$ dimensions
- ▶ For d = 1, $\gamma = 3/2 \rightarrow \langle t \rangle = \infty$
- ► Even though walker must return, expect a long wait...

Variable transformation

Holtsmark's Distribution PLIPLO

- ▶ Walker in d = 2 dimensions must also return
- ▶ Walker may not return in $d \ge 3$ dimensions
- ▶ For d = 1, $\gamma = 3/2 \rightarrow \langle t \rangle = \infty$
- Even though walker must return, expect a long wait...

Variable transformation

Holtsmark's Distribution PLIPLO

- In any finite volume, a random walker will visit every site with equal probability
- ► Random walking

 Diffusion
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

Variable transformation

Holtsmark's Distribution

- In any finite volume, a random walker will visit every site with equal probability
- ► Random walking = Diffusion
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

Variable transformation

Holtsmark's Distribution

- In any finite volume, a random walker will visit every site with equal probability
- ▶ Random walking ≡ Diffusion
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

transformation

Holtsmark's Distribution

- In any finite volume, a random walker will visit every site with equal probability
- ► Random walking ≡ Diffusion
- Call this probability the Invariant Density of a dynamical system
- Non-trivial Invariant Densities arise in chaotic systems.

/ariable ransformation

Holtsmark's Distribution

On networks:

- \blacktriangleright On networks, a random walker visits each node with frequency \propto node degree
- Equal probability still present: walkers traverse edges with equal frequence

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

On networks:

- \blacktriangleright On networks, a random walker visits each node with frequency \propto node degree
- Equal probability still present: walkers traverse edges with equal frequency.

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

Outline

Random Walks

The First Return Problem

Examples

Variable transformation
Basics
Holtsmark's Distributio

References

Power-Law Mechanisms I

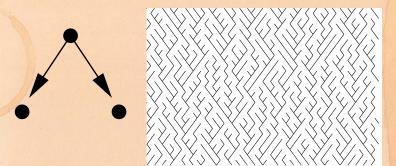
Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distributi

Scheidegger Networks [4, 1]



- ► Triangular lattice
- 'Flow' is southeast or southwest with equal probability.

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distributio

Scheidegger Networks

- Creates basins with random walk boundaries
- Observe Subtracting one random walk from another dives random walk with increments

{ +1 with probability 1/4
0 with probability 1/2
-1 with probability 1/4

Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

- Creates basins with random walk boundaries
- Observe Subtracting one random walk from another gives random walk with increments

$$\epsilon_t = \begin{cases} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{cases}$$

Variable

transformation

Holtsmark's Distribution

- Creates basins with random walk boundaries
- Observe Subtracting one random walk from another gives random walk with increments

$$\epsilon_t = \left\{ \begin{array}{ll} +1 & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \\ -1 & \text{with probability } 1/4 \end{array} \right.$$

Basin length ℓ distribution: $P(\ell) \propto \ell^{-3/2}$

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ► Basin area a x t t'
- Invert: $\ell \propto a^{2/3}$
- $/ \, d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- Pr(basin area = a)da = Pr(basin length = l)dl $\propto \ell^{-3/2} d\ell$ $\propto (a^{2/3})^{-3/2} a^{-1/3} da$
 - $=a^{-4/3}da$
 - $=a^{-\tau}\mathrm{d}a$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation Basics

Holtsmark's Distribution

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- $(\triangleright d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- ightharpoonup Pr(basin area = a)da

$$= F(\text{dash}) = (0.3/2.10)$$

$$\propto \ell^{-3/2} d\ell$$

$$\propto (a^{2/3})^{-3/2}a^{-1/3}{
m d}a$$

$$= a^{-4/3} da$$

$$= a^{- au} \mathrm{d}a$$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Examples

Variable transformation Basics

Holtsmark's Distributio

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{\epsilon/2}) = 2/3a^{-1/2}da$
- ightharpoonup Pr(basin area = a) da

$$\propto \ell^{-3/2} d\ell$$

$$\propto (a^{2/3})^{-3/2}a^{-1/3}{
m d}a$$

$$= a^{-4/3} da$$

$$= a^{- au} \mathrm{d}a$$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable

transformation
Basics

Holtsmark's Distribution PLIPLO

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- ► Pr(basin area = a)da

$$\propto \ell^{-3/2} d\ell$$

 $\propto (a^{2/3})^{-3/2} a^{-1/3} da$
 $= a^{-4/3} da$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $ightharpoonup \mathrm{d}\ell \propto \mathrm{d}(a^{2/3}) = 2/3a^{-1/3}\mathrm{d}a$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable

Basics Holtsmark's Distribution

PLIPLO

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$ $\propto \ell^{-3/2}d\ell$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

- ▶ For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $ightharpoonup \mathrm{d}\ell \propto \mathrm{d}(a^{2/3}) = 2/3a^{-1/3}\mathrm{d}a$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$ $\propto \ell^{-3/2}d\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}da$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$ $\propto \ell^{-3/2}d\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}da$ = $a^{-4/3}da$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

- For a basin of length ℓ , width $\propto \ell^{1/2}$
- ▶ Basin area $a \propto \ell \cdot \ell^{1/2} = \ell^{3/2}$
- Invert: $\ell \propto a^{2/3}$
- $d\ell \propto d(a^{2/3}) = 2/3a^{-1/3}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)\text{d}\ell$ $\propto \ell^{-3/2}\text{d}\ell$ $\propto (a^{2/3})^{-3/2}a^{-1/3}\text{d}a$ = $a^{-4/3}\text{d}a$ = $a^{-\tau}\text{d}a$

Random Walks
The First Return Problem
Examples

Variable

Basics
Holtsmark's Distribution

- Both basin area and length obey power law distributions

Power-Law Mechanisms I

Random Walks

Examples

Variable

- Both basin area and length obey power law distributions
- Observed for real river networks
- ▶ Typically: $4.3 < \tau < 1.5$ and $1.5 < \gamma < 2$
- Smaller basins more allometric (h >
- ▶ Larger basins more isometric (h = 1/2)

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution PLIPLO

- Both basin area and length obey power law distributions
- Observed for real river networks
- ▶ Typically: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$

Random Walks

Examples

Power-Law

Mechanisms I

Lxampioo

Variable transformation

Holtsmark's Distributio
PLIPLO

Basics
Holtemark's Distribution

Holtsmark's Distribution

- Both basin area and length obey power law distributions
- Observed for real river networks
- ▶ Typically: $1.3 < \tau < 1.5$ and $1.5 < \gamma < 2$
- Smaller basins more allometric (h > 1/2)
- ▶ Larger basins more isometric (h = 1/2)

Generalize relationship between area and length

Hack's law [3]

where $0.5 \le h \le 0.7$

Redo calc with ¬, ¬, and h

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation Basics

Holtsmark's Distribution

- Generalize relationship between area and length
- Hack's law [3]:

$$\ell \propto a^h$$

where
$$0.5 \lesssim h \lesssim 0.7$$

▶ Redo calc with ∞. 7. and h.

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

- Generalize relationship between area and length
- ► Hack's law [3]:

$$\ell \propto a^h$$

where $0.5 \lesssim h \lesssim 0.7$

▶ Redo calc with γ , τ , and h.

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable

Basics Holtsmark's Distribution

PLIPLO

Given

$$\ell \propto a^h, \; P(a) \propto a^{- au}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

 $d\ell \propto d(a'') = ha''^{-1}da$

- ▶ Pr(basin area = a)da
 - $=Pr(\mathsf{basin}|\mathsf{length}=\ell)\mathsf{d}\ell$
 - $\propto \ell^{-\gamma} d\ell$
 - $\propto (a^h)^{-\gamma}a^{h-1}\mathrm{d}a$
 - $a^{-(1+h(\gamma-1))}da$

 $= 1 + h(\gamma - 1)$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution PLIPLO

Given

$$\ell \propto a^h, \; P(a) \propto a^{- au}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

$$d\ell \propto d(a^h) = ha^{h-1}da$$

ightharpoonup Pr(basin area = a)da

 $=Pr(ext{basin length}=\ell) ext{d}\ell$

$$\propto \ell^{-\gamma} d\ell$$

$$\propto (a^h)^{-\gamma} a^{h-1} da$$

$$= a^{-(1+h(\gamma-1))} da$$

 $=1+h(\gamma-1)$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable

transformation Basics

Holtsmark's Distribution PLIPLO

Given

$$\ell \propto a^h, \ P(a) \propto a^{-\tau}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$

- $d\ell \propto d(a^h) = ha^{h-1}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$

Random Walks
The First Return Problem

Examples Variable

transformation Basics

Holtsmark's Distribution PLIPLO

Given

$$\ell \propto a^h, \; P(a) \propto a^{-\tau}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

- $d\ell \propto d(a^h) = ha^{h-1}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$ $\propto \ell^{-\gamma}d\ell$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Examples Variable

transformation Basics

Holtsmark's Distribution PLIPLO

Given

$$\ell \propto a^h, \; P(a) \propto a^{-\tau}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

- $d\ell \propto d(a^h) = ha^{h-1}da$
- ► Pr(basin area = a) da= $Pr(\text{basin length} = \ell) d\ell$ $\propto \ell^{-\gamma} d\ell$ $\propto (a^h)^{-\gamma} a^{h-1} da$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

Given

$$\ell \propto a^h, \; P(a) \propto a^{-\tau}, \; {\rm and} \; P(\ell) \propto \ell^{-\gamma}$$

- $d\ell \propto d(a^h) = ha^{h-1}da$
- ► Pr(basin area = a)da= $Pr(\text{basin length} = \ell)d\ell$ $\propto \ell^{-\gamma}d\ell$ $\propto (a^h)^{-\gamma}a^{h-1}da$ = $a^{-(1+h(\gamma-1))}da$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distributio

Given

$$\ell \propto a^h, \ P(a) \propto a^{-\tau}, \ {\rm and} \ P(\ell) \propto \ell^{-\gamma}$$

- $d\ell \propto d(a^h) = ha^{h-1}da$
- ► Pr(basin area = a) da= $Pr(\text{basin length} = \ell) d\ell$ $\propto \ell^{-\gamma} d\ell$ $\propto (a^h)^{-\gamma} a^{h-1} da$ = $a^{-(1+h(\gamma-1))} da$

$$\tau = 1 + h(\gamma - 1)$$

Power-Law Mechanisms I

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distributio

With more detailed description of network structure, $\tau = 1 + h(\gamma - 1)$ simplifies:

$$\tau = 2 - h$$

$$\gamma = 1/h$$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distributio

$$\tau = 2 - h$$

$$\gamma = 1/h$$

Only one exponent is independent

Random Walks
The First Return Problem
Examples

Variable

Holtsmark's Distribution

References

Basics

$$\tau = 2 - h$$

$$\gamma = 1/h$$

- Only one exponent is independent
- Simplify system description

Random Walks
The First Return Problem
Examples

Examples

Variable transformation

Holtsmark's Distributio
PLIPLO

$$\tau = 2 - h$$

$$\gamma = 1/h$$

- Only one exponent is independent
- Simplify system description
- Expect scaling relations where power laws are found

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution PLIPLO

$$\tau = 2 - h$$

$$\gamma = 1/h$$

- Only one exponent is independent
- Simplify system description
- Expect scaling relations where power laws are found
- Characterize universality class with independent exponents

Random Walks
The First Return Problem
Examples

Variable

Holtsmark's Distributio

Holtsmark's Distribution

References

Failure

- A very simple model of failure/death:
- \rightarrow x_t = entity's 'health' at time t
- $ightharpoonup x_0$ could be > 0.
- Entity fails when x hits 0.

Streams

- Dispersion of suspended sediments in streams.
- ► Long times for clearing.

- A very simple model of failure/death:
- $\rightarrow x_t$ = entity's 'health' at time t
- $ightharpoonup x_0$ could be > 0.
- Entity fails when x hits 0.

Streams

- Dispersion of suspended sediments in streams.
- Long times for clearing.

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

Can generalize to Fractional Random Walks

Power-Law Mechanisms I

Random Walks

Examples

Variable transformation

Holtsmark's Distribution

- Can generalize to Fractional Random Walks
- Levy flights, Fractional Brownian Motion

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

- Can generalize to Fractional Random Walks
- Levy flights, Fractional Brownian Motion
- ► In 1-d,

 $\sigma \sim t^{\alpha}$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

- Can generalize to Fractional Random Walks
- Levy flights, Fractional Brownian Motion
- ► In 1-d,

$$\sigma \sim t^{\alpha}$$

```
\alpha > 1/2 — superdiffusive \alpha < 1/2 — subdiffusive
```

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples Variable

transformation Basics

Holtsmark's Distribution PLIPLO

- Can generalize to Fractional Random Walks
- Levy flights, Fractional Brownian Motion
- ► In 1-d,

$$\sigma \sim t^{\alpha}$$

- $\alpha > 1/2$ superdiffusive $\alpha < 1/2$ subdiffusive
- Extensive memory of path now matters...

Random Walks
The First Return Problem

Examples

Variable transformation

Holtsmark's Distribution

Outline

Random Walks
The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution

References

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distributio

Power-Law Mechanisms I

Random Walks The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distribution

References

Understand power laws as arising from

1. elementary distributions (e.g., exponentials)

Basics
Holtsmark's Distribution

Deferences

Understand power laws as arising from

- 1. elementary distributions (e.g., exponentials)
- 2. variables connected by power relationships

Random variable X with known distribution P_X

Figure...

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distribution

- Random variable X with known distribution P_x
- Second random variable Y with y = f(x).

Figure...

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation Basics

Holtsmark's Distribution

- Random variable X with known distribution P_x
- Second random variable Y with y = f(x).

$$P_{y}(y)dy = P_{x}(x)dx$$

$$= \sum_{y|f(x)=y} P_{x}(f^{-1}(y)) \frac{dy}{|f'(f^{-1}(y))|} Figure...$$

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distributio
PLIPLO

- Second random variable Y with y = f(x).
- $P_{y}(y)dy = P_{x}(x)dx$ $= \sum_{y|f(x)=y} P_{x}(f^{-1}(y)) \frac{dy}{|f'(f^{-1}(y))|} Figure...$
- Often easier to do by hand...

Random Walks
The First Return Problem

Variable transformation

Basics
Holtsmark's Distributio

Power-law relationship between variables:

$$y = cx^{-\alpha}, \, \alpha > 0$$

▶ Look at y large and x small

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation

Basics Holtsmark's Distributio

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

Random Walks
The First Beturn Proble

The First Return Problem Examples

transformation
Basics

Holtsmark's Distributio

References

Variable

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

Random Walks

The First Return Problem Examples

transformation
Basics

Holtsmark's Distribution

References

Variable

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha-1}\mathrm{d}x$$

Random Walks
The First Beturn Proble

The First Return Problem Examples

transformation
Basics

Holtsmark's Distributio

References

Variable

Assume relationship between x and y is 1-1.

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$\mathrm{d}y = \mathrm{d}\left(\mathbf{c}\mathbf{x}^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha-1}\mathrm{d}x$$

invert:
$$dx = \frac{-1}{c\alpha}x^{\alpha+1}dy$$

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distributio

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$\mathrm{d}y=\mathrm{d}\left(cx^{-\alpha}\right)$$

$$= c(-\alpha)x^{-\alpha-1}\mathrm{d}x$$

invert:
$$dx = \frac{-1}{c\alpha}x^{\alpha+1}dy$$

$$dx = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} dy$$

Random Walks

The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distributio
PLIPLO

General Example

Assume relationship between x and y is 1-1.

- Power-law relationship between variables: $y = cx^{-\alpha}$, $\alpha > 0$
- Look at y large and x small

$$dy = d(cx^{-\alpha})$$
$$= c(-\alpha)x^{-\alpha-1}dx$$

invert:
$$dx = \frac{-1}{C\alpha}x^{\alpha+1}dy$$

$$\mathrm{d}x = \frac{-1}{c\alpha} \left(\frac{y}{c}\right)^{-(\alpha+1)/\alpha} \mathrm{d}y$$

$$\mathrm{d}x = \frac{-c^{1/\alpha}}{\alpha} y^{-1-1/\alpha} \mathrm{d}y$$

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Basics
Holtsmark's Distributio
PLIPLO

General Example

Now make transformation:

$$P_y(y)dy = P_x(x)dx$$

Power-Law Mechanisms I

Random Walks

Variable

Basics PLIPLO

General Example

Now make transformation:

$$P_y(y)dy = P_x(x)dx$$

$$P_{y}(y)dy = P_{x}\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)\frac{dx}{\alpha}y^{-1-1/\alpha}dy$$

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distributio PLIPLO

Now make transformation:

$$P_y(y)dy = P_x(x)dx$$

$$P_{y}(y)dy = P_{x}\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)\frac{dx}{\alpha}y^{-1-1/\alpha}dy$$

▶ If $P_x(x)$ → non-zero constant as x → 0 then

$$P_y(y) \propto y^{-1-1/\alpha}$$
 as $y \to \infty$.

Power-Law Mechanisms I

Random Walks

The First Return Probler Examples

Variable transformation

Basics
Holtsmark's Distribution
PLIPLO

$$P_y(y)\mathrm{d}y=P_x(x)\mathrm{d}x$$

$$P_{y}(y)dy = P_{x}\left(\left(\frac{y}{c}\right)^{-1/\alpha}\right)\frac{dx}{\alpha}y^{-1-1/\alpha}dy$$

▶ If $P_x(x)$ → non-zero constant as x → 0 then

$$P_y(y) \propto y^{-1-1/\alpha}$$
 as $y \to \infty$.

If $P_x(x) \to x^{\beta}$ as $x \to 0$ then

$$P_y(y) \propto y^{-1-1/\alpha-\beta/\alpha}$$
 as $y \to \infty$.

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Basics Holtsmark's Distribution PLIPLO

Example

Exponential distribution

Given
$$P_x(x) = \frac{1}{\lambda} e^{-x/\lambda}$$
 and $y = cx^{-\alpha}$, then

$$P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$$

Power-Law Mechanisms I

Random Walks

The First Return Problem
Examples

Variable transformation

Basics
Holtsmark's Distributio

Given
$$P_x(x) = \frac{1}{\lambda} e^{-x/\lambda}$$
 and $y = cx^{-\alpha}$, then

$$P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$$

Exponentials arise from randomness...

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution

Exponential distribution

Given
$$P_x(x) = \frac{1}{\lambda}e^{-x/\lambda}$$
 and $y = cx^{-\alpha}$, then

$$P(y) \propto y^{-1-1/\alpha} + O\left(y^{-1-2/\alpha}\right)$$

- Exponentials arise from randomness...
- More later when we cover robustness.

Random Walks

The First Return Problem
Examples

Variable transformation

Basics
Holtsmark's Distributio

Outline

Random Walks
The First Return Problem
Examples

Variable transformation

Racine

Holtsmark's Distribution

PLIPLO

References

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution

- Select a random point in the universe \vec{x}
 - (possible all of space-time)
- ► Measure the force of gravity

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution

- Select a random point in the universe \vec{x}
- (possible all of space-time)

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

- Select a random point in the universe \vec{x}
- (possible all of space-time)
- Measure the force of gravity $F(\vec{x})$

Random Walks

Variable

- Select a random point in the universe \vec{x}
- (possible all of space-time)
- Measure the force of gravity $F(\vec{x})$
- Observe that $P_F(F) \sim F^{-5/2}$.

Random Walks

Variable

Ingredients [5]

Matter is concentrated in stars:

- F is distributed unevenly
- > Probability of being a distance / from a single star a

 - Assume stars are distributed randomly in space (nons2)
- Assume only one star has significant effect at 2
- Law of gravity
- ✓ invert

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Holtsmark's Distribution
PLIPLO

Random Walks

Holtsmark's Distribution

Variable

Matter is concentrated in stars:

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r)\mathrm{d}r \propto r^2\mathrm{d}r$$

- Assume stars are distributed randomly in space
- Assume only one star has significant effect at >
- ► Law of gravity
- invert

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r)\mathrm{d}r \propto r^2\mathrm{d}r$$

- Assume stars are distributed randomly in space (oops?)
- ▶ Assume only one star has significant effect at \vec{x} .

▶ Law of gravity

▶ inveri

Random Walks
The First Return Problem

Variable transformation

Holtsmark's Distribution
PLIPLO

Matter is concentrated in stars:

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r)\mathrm{d}r \propto r^2\mathrm{d}r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- Law of gravity:

$$F \propto r^{-2}$$

invert

Random Walks
The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution
PLIPLO

- F is distributed unevenly
- Probability of being a distance r from a single star at $\vec{x} = \vec{0}$:

$$P_r(r)\mathrm{d}r \propto r^2\mathrm{d}r$$

- Assume stars are distributed randomly in space (oops?)
- Assume only one star has significant effect at \vec{x} .
- Law of gravity:

$$F \propto r^{-2}$$

▶ invert:

$$r \propto F^{-1/2}$$

Random Walks The First Return Problem

Examples Variable

transformation

Holtsmark's Distribution
PLIPLO

 $\mathrm{d}F \propto \mathrm{d}(r^{-2})$

 $-\infty r^{-3} dr$

 $dr \propto r^3 dF$

 $\propto F^{-3/2} \mathrm{d}F$

Power-Law Mechanisms I

Random Walks

The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution

 $\mathrm{d}F \propto \mathrm{d}(r^{-2})$

 $\propto r^{-3} dr$

Power-Law Mechanisms I

Random Walks

Variable Basics

Holtsmark's Distribution

 $\mathrm{d}F \propto \mathrm{d}(r^{-2})$

 $\propto r^{-3} dr$

► invert:

 $dr \propto r^3 dF$

Power-Law Mechanisms I

Random Walks
The First Return Problem

Examples

Variable transformation Basics

Holtsmark's Distribution PLIPLO

$\mathrm{d}F \propto \mathrm{d}(r^{-2})$

$$\propto r^{-3} dr$$

▶ invert:

$$\mathrm{d}r \propto r^3 \mathrm{d}F$$

$$\propto F^{-3/2} \mathrm{d}F$$

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

Using
$$r \propto F^{-1/2}$$
, $dr \propto F^{-3/2}dF$ and $P_r(r) \propto r^2$

$$\mathrm{d}r \propto F^{-3/2} \mathrm{d}F$$

$$P_r(r) \propto r^2$$

$$P_F(F)dF = P_r(r)dr$$

Power-Law Mechanisms I

Random Walks

Variable

Basics

Holtsmark's Distribution PLIPLO

Using
$$r \propto F^{-1/2}$$
, $dr \propto F^{-3/2}dF$ and $P_r(r) \propto r^2$

$$\mathrm{d}r \propto F^{-3/2} \mathrm{d}F$$

$$P_r(r) \propto r^2$$

$$P_F(F)dF = P_r(r)dr$$

$$\propto P_r(F^{-1/2})F^{-3/2}{\rm d}F$$

Power-Law Mechanisms I

Random Walks

Variable Basics

Holtsmark's Distribution PLIPLO

Using
$$r \propto F^{-1/2}$$
, $dr \propto F^{-3/2}dF$ and $P_r(r) \propto r^2$

$$\mathrm{d}r \propto F^{-3/2} \mathrm{d}F$$

$$P_F(F)dF = P_r(r)dr$$

$$\propto P_r(F^{-1/2})F^{-3/2}dF$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

Power-Law Mechanisms I

Random Walks

Variable Basics

Using
$$r \propto F^{-1/2}$$
, $dr \propto F^{-3/2}dF$ and $P_r(r) \propto r^2$

$$\mathrm{d}r \propto F^{-3/2} \mathrm{d}F$$

$$P_r(r) \propto r^2$$

$$P_F(F)\mathrm{d}F = P_r(r)\mathrm{d}r$$

$$\propto P_r(F^{-1/2})F^{-3/2}dF$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

$$= F^{-1-3/2} dF$$

Power-Law Mechanisms I

Random Walks

Variable Basics

Using
$$r \propto F^{-1/2}$$
, $dr \propto F^{-3/2}dF$ and $P_r(r) \propto r^2$

$$\mathrm{d}r \propto F^{-3/2} \mathrm{d}F$$

$$P_r(r) \propto r^2$$

$$P_F(F)\mathrm{d}F = P_r(r)\mathrm{d}r$$

$$\propto P_r(F^{-1/2})F^{-3/2}dF$$

$$\propto \left(F^{-1/2}\right)^2 F^{-3/2} \mathrm{d}F$$

$$= F^{-1-3/2} dF$$

$$= F^{-5/2} dF$$

Power-Law Mechanisms I

Random Walks

Variable Basics

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$

- Mean is finite
- ➤ Variance = a
- A-wild-distribution
- Random sampling of space usually safe but can end badly.

Power-Law Mechanisms I

Random Walks

The First Return Problem
Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$

- ► Mean is finite
- Variance =
- ► A-wild-distribution
- Random sampling of space usually safe but can end badly...

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$

- Mean is finite
- ▶ Variance = ∞

Random sampling of space usually safe

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$

- Mean is finite
- ▶ Variance = ∞
- A wild distribution

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

$$P_F(F) = F^{-5/2} \mathrm{d}F$$

$$\gamma = 5/2$$

- Mean is finite
- ▶ Variance = ∞
- A wild distribution
- Random sampling of space usually safe but can end badly...

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation Basics

Holtsmark's Distribution
PLIPLO

Outline

Random Walks
The First Return Problem
Examples

Variable transformation

Basics

Holtsmark's Distribution

PLIPLO

References

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution

PLIPLO

Caution!

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- Yet another homunculus argument (⊞)
- ▶ Don't do this!!! (slap, slap)
- ► Wexneed mechanisms

Power-Law Mechanisms I

Random Walks
The First Return Problem

Variable transformation Basics

Holtsmark's Distribution PLIPLO

- Explain a power law as resulting from another unexplained power law.
- ➤ Yet another homunculus argument (⊞
- ▶ Don't do this!!! (slap. slap)
- ► Wermeed mechanisms

Random Walks
The First Return Problem

The First Return Problem
Examples

Variable transformation

Holtsmark's Distribution

PLIPLO

Caution!

- ► PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- Yet another homunculus argument (⊞)...
- ▶ Don't do this!!! (slap, slap)
- ► Westered mechanisms!

Power-Law Mechanisms I

Random Walks

The First Return Problem Examples

Variable transformation

Holtsmark's Distribution PLIPLO

Basics
Holtsmark's Distribution

PLIPLO

- PLIPLO = Power law in, power law out
- Explain a power law as resulting from another unexplained power law.
- Yet another homunculus argument (⊞)...
- Don't do this!!! (slap, slap)
- We need mechanisms!

[2] W. Feller.

An Introduction to Probability Theory and Its

Applications, volume I.

John Wiley & Sons, New York, third edition, 1968.

[3] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf (⊞)

Random Walks
The First Return Problem
Examples

transformation Basics

Variable

Holtsmark's Distribution

References II

Power-Law Mechanisms I

[4] A. E. Scheidegger.

The algebra of stream-order numbers.

United States Geological Survey Professional Paper,
525-B:B187–B189, 1967. pdf (⊞)

Random Walks
The First Return Problem
Examples

Variable ransformation

Holtsmark's Distribution

References

[5] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

