

Random walks

So typical displacement from the origin scales as

$$
\sigma=t^{1 / 2}
$$

\Rightarrow A non－trivial power－law arises out of additive aggregation or accumulation．

Random walks

Random walks are weirder than you might think．．．
For example：
－$\xi_{r, t}=$ the probability that by time step t ，a random walk has crossed the origin r times．
－Think of a coin flip game with ten thousand tosses．
－If you are behind early on，what are the chances you will make a comeback？
－The most likely number of lead changes is．．． 0 ．
See Feller，${ }^{[2]}$ Intro to Probability Theory，Volume I

Random walks

In fact：

$$
\xi_{0, t}>\xi_{1, t}>\xi_{2, t}>\cdots
$$

Even crazier：
The expected time between tied scores $=\infty$ ！

Power－Law Mechanisms
 Mechanisms I

Random Walks The Firss Aheoum Problem

Variable
transformation
Basics
Holtsmarks Distribuition
References
号

1 ${ }^{5}$ nawi
๑act 7 of 56

Power－Law
Mechanisms I

Random Walks
The First Relum Problem
Variable
transformation
transfor
Basics
Holsmark
Holismarks Distribuition
PLPLO
References

A
صดc 8 of 56

Power－Law
Mechanisms I

Random Walks
The Fist Revin Problem
Examples
transformation
Shlsmak＇s Distribulion
References

A

Random walks－some examples

－What is the probability that a random walker in one dimension returns to the origin for the first time after t steps？
－Will our drunkard always return to the origin？
－What about higher dimensions？

๑ดく 10 of 56

Power－Law
Mechanisms I

Random Walks
The First Peum Problem
Variable
Variable
transformation
transfor
Basics
Hollsmarks Disstribution
PUPDO
PLIPLO
References

صのく 11 of 56

Power－Law Mechanisms I

Random Walks The First Reium Problem
Examples
Variable
transformation
transformation
Hollsmarks Distribution
PLPLO
References

First returns

Reasons for caring：
1．We will find a power－law size distribution with an interesting exponent
2．Some physical structures may result from random walks
3．We＇ll start to see how different scalings relate to each other

Random Walks

Again：expected time between ties $=\infty \ldots$ Let＇s find out why．．．${ }^{[2]}$

First Returns

Power－Law
Mechanisms I

Random Walks
The Finst Aefurm Problem
Variable
transformation
Basics
Basiss
Holsmarks Distribuio
References

๑ดc 16 of 56

For random walks in 1－d：
－Return can only happen when $t=2 n$ ．
－Call $P_{\text {first return }}(2 n)=P_{\text {fr }}(2 n)$ probability of first return at $t=2 n$ ．
－Assume drunkard first lurches to $x=1$ ．
－The problem

Variable
transformation
Basics
Holssmak＇s Disstribution
PLPLO
PLPLO
References
References

Random Walks
$\underset{\text { The First Retum Problem }}{\text { Examples }}$
Power－Law Mechanisms I

$$
P_{\mathrm{fr}}(2 n)=2 \operatorname{Pr}\left(x_{t} \geq 1, t=1, \ldots, 2 n-1, \text { and } x_{2 n}=0\right)
$$

๑ดく 17 of 56

Power－Law
Mechanisms I

－A useful restatement：$P_{\mathrm{fr}}(2 n)=$
$2 \cdot \frac{1}{2} \operatorname{Pr}\left(x_{t} \geq 1, t=1, \ldots, 2 n-1\right.$ ，and $\left.x_{1}=x_{2 n-1}=1\right)$
－Want walks that can return many times to $x=1$ ．
－（The $\frac{1}{2}$ accounts for stepping to 2 instead of 0 at $t=2 n$ ．）

Random Walks The First Return Problem

Variable transformation Basics
Hollsmarks Distribulion
PLPLO References

First Returns

First Returns

－Counting problem（combinatorics／statistical mechanics）
－Use a method of images
－Define $N(i, j, t)$ as the \＃of possible walks between $x=i$ and $x=j$ taking t steps．
－Consider all paths starting at $x=1$ and ending at $x=1$ after $t=2 n-2$ steps．
－Subtract how many hit $x=0$ ．
｜civngry
صのく 18 of 56

Power－Law
Mechanisms I

Random Walks
The First Retur Problem
Variable
transformation
Hollsmarks：Diestribution
PLPLO
－
References

First Returns

First Returns

Key observation：
\＃of t－step paths starting and ending at $x=1$ and hitting $x=0$ at least once
$=\#$ of t－step paths starting at $x=-1$ and ending at $x=1$ $=N(-1,1, t)$

So $N_{\text {first return }}(2 n)=N(1,1,2 n-2)-N(-1,1,2 n-2)$
See this 1－1 correspondence visually．．．

First Returns

First Returns

－For any path starting at $x=1$ that hits 0 ， there is a unique matching path starting at $x=-1$ ．
－Matching path first mirrors and then tracks．
Random Walks
The First Repumproblem
Examples
Variable
transformation
Basics
Holsmarks Distribuion
PLPLO
References

Power－Law
 Mechanisms I

Random Walks The First Retum Problem

Variable

Vansformation
\qquad We now have

$$
N_{\text {first return }}(2 n)=N(1,1,2 n-2)-N(-1,1,2 n-2)
$$

where

$$
N(i, j, t)=\binom{t}{(t+j-i) / 2}
$$

First Returns

Insert question from assignment 4 （ \boxplus ）
Find $N_{\text {first return }}(2 n) \sim \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}}$ ．
－Normalized Number of Paths gives Probability
－Total number of possible paths $=2^{2 n}$
－

$$
\begin{aligned}
& P_{\text {first return }}(2 n)=\frac{1}{2^{2 n}} N_{\text {first return }}(2 n) \\
& \quad \simeq \frac{1}{2^{2 n}} \frac{2^{2 n-3 / 2}}{\sqrt{2 \pi} n^{3 / 2}} \\
& \quad=\frac{1}{\sqrt{2 \pi}}(2 n)^{-3 / 2}
\end{aligned}
$$

 systems．

Random walks on

On networks：
－On networks，a random walker visits each node with frequency \propto node degree
－Equal probability still present： walkers traverse edges with equal frequency．

A
صดc 27 of 56

Power－Law
Mechanisms I

Random Walks The Fifst Retum Problem

Variable Variable transformation Basics Holsmarks Distrituxtion PLPLIO

 ReferencesHigher dimensions：
－Walker in $d=2$ dimensions must also return
－Walker may not return in $d \geq 3$ dimensions
－For $d=1, \gamma=3 / 2 \rightarrow\langle t\rangle=\infty$
－Even though walker must return，expect a long wait．．．

Power－Law
Mechanisms I

Random Walks
The First Retumproblem
Examples
Variable
transformation
transformatio
Basics
Holsmarks Distribulion
PLPLO
References
－$P(t)$ is normalizable
－Recurrence：Random walker always returns to origin
－Moral：Repeated gambling against an infinitely wealthy opponent must lead to ruin．

First Returns

Power－Law
Mechanisms Mechanisms I

Random Walks The First Return Problom

Variable
transformation
Basiss
Holsmain
PLIPLO
References

๑ดく 29 of 56

Power－Law
Mechanisms I

Random Walks The First Rewurn Problem

Variable
Variable
transformation
Basics
Hotrsmark＇s Distribution
References

わのく 30 of 56

Power－Law
Mechanisms I

Random Walks
The First Returm Problem
Examples

\section*{Variable} | transformation |
| :--- |
| Basics | Holssmak＇s Disstribution

PLIPLO References
－Triangular lattice
－＇Flow＇is southeast or southwest with equal probability．

のดく 28 of 56
－Creates basins with random walk boundaries
－Observe Subtracting one random walk from another gives random walk with increments

$$
\epsilon_{t}=\left\{\begin{array}{cl}
+1 & \text { with probability } 1 / 4 \\
0 & \text { with probability } 1 / 2 \\
-1 & \text { with probability } 1 / 4
\end{array}\right.
$$

－Basin length ℓ distribution：$P(\ell) \propto \ell^{-3 / 2}$

Connections between Exponents

－For a basin of length ℓ ，width $\propto \ell^{1 / 2}$
－Basin area $a \propto \ell \cdot \ell^{1 / 2}=\ell^{3 / 2}$
－Invert：$\ell \propto a^{2 / 3}$
－ $\mathrm{d} \ell \propto \mathrm{d}\left(a^{2 / 3}\right)=2 / 3 a^{-1 / 3} \mathrm{~d} a$
－ $\operatorname{Pr}($ basin area $=a) \mathrm{d} a$
$=\operatorname{Pr}($ basin length $=\ell) \mathrm{d} \ell$
$\propto \ell^{-3 / 2} \mathrm{~d} \ell$
$\propto\left(a^{2 / 3}\right)^{-3 / 2} a^{-1 / 3} \mathrm{~d} a$
$=a^{-4 / 3} \mathrm{~d} a$
$=a^{-\tau} \mathrm{d} a$

Connections between Exponents

－Both basin area and length obey power law distributions
－Observed for real river networks
－Typically： $1.3<\tau<1.5$ and $1.5<\gamma<2$
－Smaller basins more allometric（ $h>1 / 2$ ）
－Larger basins more isometric（ $h=1 / 2$ ）

```
Power-Law 
Random Walks
    The Fisst Return Problem
    Examples
Variable
transformation
Basics
M,
LPLO
References
－Hack＇s law \({ }^{[3]}\) ：
where \(0.5 \lesssim h \lesssim 0.7\)
－Redo calc with \(\gamma, \tau\) ，and \(h\) ．
```

Amixuriv
のаल 33 of 56

Power－Law
 Mechanisms I

月童路
๑ดく 34 of 56

Power－Law
Mechanisms I

Random Walks
The First Retum Problem
Examples
Variable
transformation
Basics
Holsmarks Distrituxion
References

Connections between Exponents

With more detailed description of network structure， $\tau=1+h(\gamma-1)$ simplifies：

$$
\begin{gathered}
\tau=2-h \\
\gamma=1 / h
\end{gathered}
$$

－Only one exponent is independent
－Simplify system description
－Expect scaling relations where power laws are found
－Characterize universality class with independent exponents

$$
\begin{aligned}
& \text { Connections between Exponents } \\
& \text { - Given } \\
& \qquad \ell \propto a^{h}, P(a) \propto a^{-\tau} \text {, and } P(\ell) \\
& \text { • } \mathrm{d} \ell \propto \mathrm{~d}\left(a^{h}\right)=h a^{h-1} \mathrm{~d} a \\
& \text { - } \operatorname{Pr}(\text { basin area }=a) \mathrm{d} a \\
& =\operatorname{Pr}(\mathrm{b} a \sin \text { length }=\ell) \mathrm{d} \ell \\
& \quad \propto \ell^{-\gamma} \mathrm{d} \ell \\
& \quad \propto\left(a^{h}\right)^{-\gamma} a^{h-1} \mathrm{~d} a \\
& =a^{-(1+h(\gamma-1))} \mathrm{d} a \\
& \\
& \quad \tau=1+h(\gamma-1)
\end{aligned}
$$

A
صのく 37 of 56

Power－Law
Mechanisms I

Random Walks
The Fist Return Problem
Examples
Variable
transformatio
transformation
Basics
Holsmarks Distribution
PLIPLO
References Power－Law
Mechanisms I

Other First Returns

Failure
－A very simple model of failure／death：
－$x_{t}=$ entity＇s＇health＇at time t
－x_{0} could be >0 ．
－Entity fails when x hits 0 ．

Streams
－Dispersion of suspended sediments in streams．
－Long times for clearing．

More than randomness

－Can generalize to Fractional Random Walks
－Levy flights，Fractional Brownian Motion －In 1－d，

$$
\sigma \sim t^{\alpha}
$$

$\alpha>1 / 2$－superdiffusive
$\alpha<1 / 2$－subdiffusive
－Extensive memory of path now matters．．．

Variable Transformation

Understand power laws as arising from 1．elementary distributions（e．g．，exponentials） 2．variables connected by power relationships

Power－Law
Mechanisms I

Random Walks
The First Retur Problem
Examples
Variable
transformation
Basics
Bastes
Holsmart
pulp
References
（n）inio
つのく 39 of 56

Power－Law
Mechanisms
Mechanisms I

Random Walks
The First Return Problem
Examples
Variable
transformatio
transfor
Basics
Basics
Holsmarks Distribuition
なーM
References

2．UNVIRRSTTY
صดc 40 of 56

Power－Law
Mechanisms I

Random Walks
The First Retum Problem
Variable
Variabsformation
Basics
Hillsmaks Distribution
Plupio
References
References

๑ดc 42 of 56

Variable Transformation
－Random variable X with known distribution P_{X}
－Second random variable Y with $y=f(x)$ ．
－$P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x$ $\sum_{y \mid f(f)=y} P_{x}\left(f^{-1}(y)\right)_{\left|f^{\prime \prime}(f-1(y))\right|}^{\text {dy }}$ Figre．．．
－Often easier to do by hand．．．

General Example

Assume relationship between x and y is 1－1．
－Power－law relationship between variables： $y=c x^{-\alpha}, \alpha>0$
－Look at y large and x small

$$
\mathrm{d} y=\mathrm{d}\left(c x^{-\alpha}\right)
$$

$$
=c(-\alpha) x^{-\alpha-1} \mathrm{~d} x
$$

invert： $\mathrm{d} x=\frac{-1}{c \alpha} x^{\alpha+1} \mathrm{~d} y$

$$
\mathrm{d} x=\frac{-1}{c \alpha}\left(\frac{y}{c}\right)^{-(\alpha+1) / \alpha} \mathrm{d} y
$$

$$
\mathrm{d} x=\frac{-c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y
$$

General Example
Now make transformation：

$$
P_{y}(y) \mathrm{d} y=P_{x}(x) \mathrm{d} x
$$

$$
P_{y}(y) \mathrm{d} y=P_{x} \overbrace{\left(\left(\frac{y}{c}\right)^{-1 / \alpha}\right)}^{(x)} \overbrace{\frac{c^{1 / \alpha}}{\alpha} y^{-1-1 / \alpha} \mathrm{d} y}^{\mathrm{d} x}
$$

－If $P_{x}(x) \rightarrow$ non－zero constant as $x \rightarrow 0$ then

$$
P_{y}(y) \propto y^{-1-1 / \alpha} \text { as } y \rightarrow \infty
$$

－If $P_{x}(x) \rightarrow x^{\beta}$ as $x \rightarrow 0$ then

$$
P_{y}(y) \propto y^{-1-1 / \alpha-\beta / \alpha} \text { as } y \rightarrow \infty
$$

Example

Exponential distribution
Given $P_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda}$ and $y=c x^{-\alpha}$ ，then

$$
P(y) \propto y^{-1-1 / \alpha}+O\left(y^{-1-2 / \alpha}\right)
$$

－Exponentials arise from randomness．．
－More later when we cover robustness．

Gravity
－Select a random point in the universe \vec{x}
－（possible all of space－time）
－Measure the force of gravity $F(\vec{x})$
－Observe that $P_{F}(F) \sim F^{-5 / 2}$ ．

Ingredients ${ }^{[5]}$

Matter is concentrated in stars：
－F is distributed unevenly
－Probability of being a distance r from a single star at $\vec{x}=\overrightarrow{0}$ ：

$$
P_{r}(r) \mathrm{d} r \propto r^{2} \mathrm{~d} r
$$

－Assume stars are distributed randomly in space （oops？）
－Assume only one star has significant effect at \vec{x} ．
－Law of gravity：

$$
F \propto r^{-2}
$$

－invert：

$$
r \propto F^{-1 / 2}
$$

1
わのく 48 of 56

Power－Law
Mechanisms I

Random Walks
The Fivst Retum Problem
Examples
Variable
transformation
Basics
Holsmarks Distribulon
pliplios
References
Power－Law
Mechanisms I

Random Walks
The Fists Return Problem
Variable
transformation
Basics
Bastss
Holsmat
PuIPIO
References

のดく 46 of 56

Power－Law
Mechanisms

Random Waks
The First Return Problem
Examples
Variable
transformation
Basics
Holsmakrs Sistrituwion
PLPLIO
References

Caution！

－PLIPLO＝Power law in，power law out
－Explain a power law as resulting from another unexplained power law．
－Yet another homunculus argument (\boxplus) ．．．
－Don＇t do this！！！（slap，slap）
－We need mechanisms！

References I

［1］P．S．Dodds and D．H．Rothman． Scaling，universality，and geomorphology． Annu．Rev．Earth Planet．Sci．，28：571－610， 2000. pdf（ \boxplus ）
［2］W．Feller．
An Introduction to Probability Theory and Its Applications，volume I．
John Wiley \＆Sons，New York，third edition， 1968.
［3］J．T．Hack．
Studies of longitudinal stream profiles in Virginia and Maryland． United States Geological Survey Professional Paper， 294－B：45－97，1957．pdf（ \boxplus ）

References II

［4］A．E．Scheidegger．
The algebra of stream－order numbers．
United States Geological Survey Professional Paper， 525－B：B187－B189，1967．pdf（ \boxplus ）
［5］D．Sornette．
Critical Phenomena in Natural Sciences．
Springer－Verlag，Berlin，2nd edition， 2003.

Power－Law
Mechanisms

Random Walks The Fisst Return Problem Examples
transformation
Basics
Holtemart
PLPIP
References

๑Qく 54 of 56

Power－Law
Mechanisms I

Random Walks
The First Retum Problem
Examples
Variable
transformation
transformation
Basics
Basics
Holsmarks Distribulion PLPLO
References

2
つのल 55 of 56

Power－Law
Mechanisms I

Random Walks
The First Retum Problem
Examples
Variable
transformation
Basics
Holsmarks Distriturion
PLPlol
References

๑ac 56 of 56

