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net•work |ˈnetˌwərk|
noun

1 an arrangement of intersecting horizontal and vertical lines.

• a complex system of roads, railroads, or other transportation routes :

a network of railroads.

2 a group or system of interconnected people or things : a trade network.

• a group of people who exchange information, contacts, and

experience for professional or social purposes : a support network.

• a group of broadcasting stations that connect for the simultaneous

broadcast of a program : the introduction of a second TV network | [as adj. ]

network television.

• a number of interconnected computers, machines, or operations :

specialized computers that manage multiple outside connections to a network | a

local cellular phone network.

• a system of connected electrical conductors.

verb [ trans. ]

connect as or operate with a network : the stock exchanges have proven to be

resourceful in networking these deals.

• link (machines, esp. computers) to operate interactively : [as adj. ] (

networked) networked workstations.

• [ intrans. ] [often as n. ] ( networking) interact with other people to

exchange information and develop contacts, esp. to further one's

career : the skills of networking, bargaining, and negotiation.

DERIVATIVES

net•work•a•ble adjective
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Thesaurus deliciousness:

network
noun

1 a network of arteries WEB, lattice, net, matrix, mesh,

crisscross, grid, reticulum, reticulation; Anatomy plexus.

2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,

webwork.
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Ancestry:

From Keith Briggs’s excellent etymological
investigation: (�)

I Opus reticulatum:
I A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-network]
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Ancestry:

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4).’

From the OED via Briggs:
I 1658–: reticulate structures in animals
I 1839–: rivers and canals
I 1869–: railways
I 1883–: distribution network of electrical cables
I 1914–: wireless broadcasting networks
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Ancestry:

Net and Work are venerable old words:
I ‘Net’ first used to mean spider web (King Ælfréd, 888).
I ‘Work’ appear to have long meant purposeful action.

6/6/09 9:45 PMKeith Briggs: : Etymology of `network'

Page 2 of 4http://keithbriggs.info/network.html

gescylde hálgan nette (with a net-work of clouds), Cd. Th. 182, Ii; Exod. 74. [Goth, nati: O. Sax. netti,
(fisk-)net: O. Frs. nette: Icel. net; gen. pl. netja : O. H. Ger. nezzi rete.] v. æl-, boge-, breóst-, deór-,
drag-, feng-, fisc-, fleóh-, here-, bring-, inwit-, mycg-, searo-, wæl-nett, and next word.

nette, an; 
f. The net-like caul :-- Nette (under the heading de membris hominum) disceptum i. reticulum (cf. hoc
reticulum, pinguedo circa jecur [fat around liver], 704, 7), Wülck. Gl. 293,6. Nettae oligia, 35, 34. Nytte
obligia [binding, bandage], Wrt. Voc. i. 45, 18. Nette, ii. 63, 39 : disceptum, 26,19. [Icel. netja the
caul: cf. O. H. Ger. nezzi adeps [fat] intestini; pl. intestina.] v. neta.

Net has many cognates in Germanic languages and a probable one in Latin. The Germanic words are
of neuter gender (except for nót which is feminine); the Latin word is feminine. Note that the normal
Latin word for a net is rete, although there may have also been a Vulgar Latin word *tragina for a
dragnet.

language word

Gothic nati

Old
English

net(t),
netti

Middle
English

net

Modern
English

net

Modern
Dutch

net

Old High
German

nezzi

Middle
High
German

netze

Modern
High
German

Netz

Old
Frisian

nette

Old
Saxon

netti

Old
Norse

net
(netja
v.),
nót

Modern
Icelandic

net

Modern
Swedish

nät

Latin nassa

The Gothic word occurs exactly seven times in the bible. It takes the form natja in the dative. Because
Gothic is the earliest record of Germanic (from about 350), it is worth looking at all these occurrences:

6/6/09 9:45 PMKeith Briggs: : Etymology of `network'

Page 4 of 4http://keithbriggs.info/network.html

sources

Bosworth, Joseph: (Northcote Toller, T. ed.) An Anglo-Saxon Dictionary. Dictionary, Supplement and
Addenda Oxford University Press, 1st ed. n.d., reprinted 1983, 1966, 1972. [Abbreviations: Wrt. Voc. i:
T. Wright, A volume of vocabularies, 1857. Quoted by page and number of gloss. Wrt. Voc. ii: T. Wright,
A second volume of vocabularies, 1873. Quoted by page and line. Ælfc. Gr: Ælfric's Grammar. Ps. Spl.:
Psalterium Davidis Latino-Saxonicum vetus. Lk. Skt.: The gospel according to St. Luke. Mt. Kmbl.: The
gospel according to St. Matthew in Anglo-Saxon and Northumbrian versions. ed. J. M. Kemble. Jn. Skt.:
The gospel according to St. John. Som.: Dictionarium Saxonico-Latino-Anglicum, by E. Somner, Oxford
1659. Coll. Monast. Th.: Colloquium ad pueros linguae Latinae locutione exercendos ad Ælfrico
compilatum. Homl. Th.: The homilies of Ælfric. Wülck. Gl.: Anglo-Saxon and Old English vocabularies,
by Thomas Wright, edited by R. P. Wülcker, London 1884. Cd. Th.: Cædmon's metrical paraphrase, by
B. Thorpe, London 1832.]

Stamm, Friedrich Ludwig: Friedrich Ludwig Stamm's Ulfilas oder die uns erhaltenen Denkmäler der
gotischen Sprache: Text, Wörterbuch und Grammatik Ungekürzte Neuauflage, Nachdruck der Ausgabe
aus dem Jahre 1872 [Essen]: Magnus-Verlag, [1984]. ISBN: 3884001655

This page was last modified 2005 Sep 26 (Tuesday) 09:52 by 

I ‘Network’ = something built based on the idea of
natural, flexible lattice or web.

I c.f., ironwork, stonework, fretwork.
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Key Observation:

I Many complex systems
can be viewed as complex networks
of physical or abstract interactions.

I Opens door to mathematical and numerical analysis.
I Dominant approach of last decade of a

theoretical-physics/stat-mechish flavor.
I Mindboggling amount of work published on complex

networks since 1998...
I ... largely due to your typical theoretical physicist:

I Piranha physicus

I Hunt in packs.

I Feast on new and interesting ideas
(see chaos, cellular automata, ...)
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Popularity (according to ISI)

“Collective dynamics of ‘small-world’ networks” [31]

I Watts and Strogatz
Nature, 1998

I Cited ≈ 4325 times (as of June 7, 2010)

I Over 1100 citations in 2008 alone.

“Emergence of scaling in random networks” [4]

I Barabási and Albert
Science, 1999

I Cited ≈ 4769 times (as of June 7, 2010)

I Over 1100 citations in 2008 alone.

http://www.uvm.edu
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Popularity (according to ISI)

Review articles:
I S. Boccaletti et al.

“Complex networks: structure and dynamics” [6]

Times cited: 1,028 (as of June 7, 2010)

I M. Newman
“The structure and function of complex networks” [21]

Times cited: 2,559 (as of June 7, 2010)

I R. Albert and A.-L. Barabási
“Statistical mechanics of complex networks” [2]

Times cited: 3,995 (as of June 7, 2010)
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Popularity according to textbooks:

Textbooks:
I Mark Newman (Physics, Michigan)

“Networks: An Introduction” (�)
I David Easley and Jon Kleinberg (Economics and

Computer Science, Cornell)
“Networks, Crowds, and Markets: Reasoning About a
Highly Connected World” (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.amazon.com/Networks-Introduction-Mark-Newman/dp/0199206651
http://www.cs.cornell.edu/home/kleinber/networks-book/
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Popularity according to books:

The Tipping Point: How Little Things can
make a Big Difference—Malcolm Gladwell [14]

Nexus: Small Worlds and the Groundbreaking
Science of Networks—Mark Buchanan

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

13 of 127

Popularity according to books:

Linked: How Everything Is Connected to
Everything Else and What It
Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected
Age—Duncan Watts [29]
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Numerous others:
I Complex Social Networks—F. Vega-Redondo [28]

I Fractal River Basins: Chance and Self-Organization—I.
Rodríguez-Iturbe and A. Rinaldo [23]

I Random Graph Dynamics—R. Durette

I Scale-Free Networks—Guido Caldarelli

I Evolution and Structure of the Internet: A Statistical
Physics Approach—Romu Pastor-Satorras and
Alessandro Vespignani

I Complex Graphs and Networks—Fan Chung

I Social Network Analysis—Stanley Wasserman and
Kathleen Faust

I Handbook of Graphs and Networks—Eds: Stefan
Bornholdt and H. G. Schuster [8]

I Evolution of Networks—S. N. Dorogovtsev and J. F. F.
Mendes [13]
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More observations

I But surely networks aren’t new...
I Graph theory is well established...
I Study of social networks started in the 1930’s...
I So why all this ‘new’ research on networks?
I Answer: Oodles of Easily Accessible Data.
I We can now inform (alas) our theories

with a much more measurable reality.∗

I A worthy goal: establish mechanistic explanations.
∗If this is upsetting, maybe string theory is for you...

http://www.uvm.edu
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More observations

I Web-scale data sets can be overly exciting.

Witness:
I The End of Theory: The Data Deluge Makes the

Scientific Theory Obsolete (Anderson, Wired) (�)
I “The Unreasonable Effectiveness of Data,”

Halevy et al. [15].

But:
I For scientists, description is only part of the battle.
I We still need to understand.

http://www.uvm.edu
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Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each other

I e.g., people, forks in rivers, proteins, webpages,
organisms,...

Links = Connections between nodes
I Links may be directed or undirected.
I Links may be binary or weighted.

Other spiffing words: vertices and edges.

http://www.uvm.edu
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Super Basic definitions

Node degree = Number of links per node
I Notation: Node i ’s degree = ki .
I ki = 0,1,2,. . . .
I Notation: the average degree of a network = 〈k〉

(and sometimes z)
I Connection between number of edges m and

average degree:

〈k〉 =
2m
N

.

I Defn: Ni = the set of i ’s ki neighbors

http://www.uvm.edu
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Super Basic definitions

Adjacency matrix:
I We represent a directed network by a matrix A with

link weight aij for nodes i and j in entry (i , j).
I e.g.,

A =


0 1 1 1 0
0 0 1 0 1
1 0 0 0 0
0 1 0 0 1
0 1 0 1 0


I (n.b., for numerical work, we always use sparse

matrices.)

http://www.uvm.edu
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Examples

So what passes for a complex network?
I Complex networks are large (in node number)
I Complex networks are sparse (low edge to node

ratio)
I Complex networks are usually dynamic and evolving
I Complex networks can be social, economic, natural,

informational, abstract, ...

http://www.uvm.edu
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Examples

Physical networks

I River networks
I Neural networks
I Trees and leaves
I Blood networks

I The Internet
I Road networks
I Power grids

I Distribution (branching) versus redistribution
(cyclical)

http://www.uvm.edu
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Examples

Interaction networks
I The Blogosphere
I Biochemical

networks
I Gene-protein

networks
I Food webs: who

eats whom
I The World Wide

Web (?)
I Airline networks
I Call networks

(AT&T)
I The Media

datamining.typepad.com (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://datamining.typepad.com
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Examples

Interaction networks:
social networks

I Snogging
I Friendships
I Acquaintances
I Boards and

directors
I Organizations
I facebook (�)

twitter (�), (Bearman et al., 2004)

I ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough*).

http://www.uvm.edu
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Examples
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Examples
Relational networks

I Consumer purchases
(Wal-Mart: ≈ 1 petabyte = 1015 bytes)

I Thesauri: Networks of words generated by meanings
I Knowledge/Databases/Ideas
I Metadata—Tagging: del.icio.us (�) flickr (�)

11/14/2006 09:04 PMdel.icio.us/url/830cfc21af4d02c392aa6ad04e93b93e

Page 1 of 65http://del.icio.us/url/830cfc21af4d02c392aa6ad04e93b93e?settagview=cloud

del.icio.us / url
popular | recent

login | register | help

 del.icio.us  search

common tags     cloud | list

community  daily  dictionary  education  encyclopedia
english  free  imported  info  information  internet  knowledge

learning  news  reference  research  resource

resources  search  tools  useful  web  web2.0  wiki

wikipedia

related items - show !

posting history

» first posted by weblook to util

Nov ‘06

by faithfulsprig to reference

by Penfoldio to wikipedia

by vishinator to wikipedia

by mmayes to research

by markcameron1 to system:unfiled

by hirewad to system:unfiled

by yeager.eng to firefox:toolbar

by bandaids to reference

by ingee to system:unfiled

by hdnev6 to system:unfiled

by hopabonk to encyclopedia

by TianCaiWuDi to system:unfiled

by k9entertainment to system:unfiled

by llshoemaker to wikipedia

by tvn to imported kennis

by papaluukas to system:unfiled

by ureshi to system:unfiled

by malph to reference encyclopedia

by salar15 to system:unfiled

by RobRemi to wikipedia wiki knowledge encyclopedia

» del.icio.us history for http://en.wikipedia.org/wiki/Main_Page

check url

Main Page - Wikipedia, the free
encyclopedia
http://en.wikipedia.org/wiki/Main_Page

this url has been saved by 16283 people. 
save this to your bookmarks »

user notes
Nov ‘06

all the knoweldge
- Penfoldio

facts
- mmayes

I would not survive without Wikipedia, it knows
everything, and I want to learn everything.

- RobRemi

The internet encyclopedia
- limannka

The mother of all wikis
- Username314

Wikipedia
- lancepickens

ALWAYS useful!
- AmritS

Free Online Encyclopedia, User contributed articles
- Maluvia

Welcome to Wikipedia, the free encyclopedia that
anyone can edit.

- sanders_d

The Free Encyclopedia
- puffseeker

Very good encycolopedia
- slams

Knowledge
- neilbriody

Miscellaneous Info
- sahing

free online encyclopedia

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://del.icio.us
http://www.flickr.com
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Clickworthy Science:

Results and Discussion

According to the above mentioned methodology we constructed
a map of science that visualizes the relationships between journals
according to user clickstreams. We first discuss the visual structure
of the map, and then attempt to validate the structural features of
its underlying clickstream model by comparing the latter to journal
centrality rankings and an alternative model of journal relations
derived from classification data.

A clickstream map of science
Any interpretation of the visual structure of the map in Fig. 5

will be governed by the following considerations:

Convergence. The FR algorithm can converge on different
visualizations of the same network data. We do not claim Fig. 5 is
the only or best possible visualization. It was selected because it
represents a particularly clear and uncluttered visualization of the
connections between journals in M ’, and most importantly, its
main structural features were stable across many different
iterations of the FR algorithm.

Connections. The journal connections shown in the map are
given by M ’, not the FR algorithm. They are thus not artifacts of
the visualization.

Clustering. The FR algorithm will pull together small-scale
clusters of journals that are strongly connected in M ’. The
appearance of small-scale journal clusters is thus directly related to

Figure 5. Map of science derived from clickstream data. Circles represent individual journals. The lines that connect journals are the edges of
the clickstream model in M ’. Colors correspond to the AAT classification of the journal. Labels have been assigned to local clusters of journals that
correspond to particular scientific disciplines.
doi:10.1371/journal.pone.0004803.g005

Maps of Science

PLoS ONE | www.plosone.org 5 March 2009 | Volume 4 | Issue 3 | e4803

Bollen et al. [7]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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A notable feature of large-scale networks:
I Graphical renderings are often just a big mess.

⇐ Typical hairball

I number of nodes N = 500

I number of edges m = 1000

I average degree 〈k〉 = 4

I And even when renderings somehow look good:
“That is a very graphic analogy which aids
understanding wonderfully while being, strictly
speaking, wrong in every possible way”
said Ponder [Stibbons] —Making Money, T. Pratchett.

I We need to extract digestible, meaningful aspects.

http://www.uvm.edu
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Properties

Some key features of real complex networks:

I Degree
distribution

I Assortativity
I Homophily
I Clustering
I Motifs
I Modularity

I Concurrency
I Hierarchical

scaling
I Network distances
I Centrality
I Efficiency
I Robustness

I Coevolution of network structure
and processes on networks.

http://www.uvm.edu
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Properties

1. Degree distribution Pk

I Pk is the probability that a randomly selected node
has degree k

I Big deal: Form of Pk key to network’s behavior
I ex 1: Erdős-Rényi random networks have a Poisson

distribution:
Pk = e−〈k〉〈k〉k/k !

I ex 2: “Scale-free” networks: Pk ∝ k−γ ⇒ ‘hubs’
I We’ll come back to this business soon...
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Properties

2. Assortativity/3. Homophily:
I Social networks: Homophily (�) = birds of a feather
I e.g., degree is standard property for sorting:

measure degree-degree correlations.
I Assortative network: [20] similar degree nodes

connecting to each other.
I Often social: company directors, coauthors, actors.

I Disassortative network: high degree nodes
connecting to low degree nodes.

I Often technological or biological: Internet, protein
interactions, neural networks, food webs.
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Properties

4. Clustering:
I Your friends tend to know each other.
I Two measures:

C1 =

〈∑
j1j2∈Ni

aj1j2

ki(ki − 1)/2

〉
i

due to Watts & Strogatz [31]

C2 =
3×#triangles

#triples
due to Newman [21]

I C1 is the average fraction of pairs of neighbors who
are connected.

I Interpret C2 as probability two of a node’s friends
know each other.
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Properties

5. Motifs:
I Small, recurring functional subnetworks
I e.g., Feed Forward Loop:

letter

64 nature genetics • volume 31 • may 2002

Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr1, Ron Milo2, Shmoolik Mangan1 & Uri Alon1,2

1Department of Molecular Cell Biology, 2Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel. Correspondence
should be addressed to U.A. (e-mail: urialon@wisemail.weizmann.ac.il).

Little is known about the design principles1–10 of transcrip-
tional regulation networks that control gene expression in
cells. Recent advances in data collection and analysis2,11,12,
however, are generating unprecedented amounts of informa-
tion about gene regulation networks. To understand these
complex wiring diagrams1–10,13, we sought to break down such
networks into basic building blocks2. We generalize the notion
of motifs, widely used for sequence analysis, to the level of
networks. We define ‘network motifs’ as patterns of intercon-
nections that recur in many different parts of a network at fre-
quencies much higher than those found in randomized
networks. We applied new algorithms for systematically
detecting network motifs to one of the best-characterized reg-
ulation networks, that of direct transcriptional interactions in
Escherichia coli3,6. We find that much of the network is com-
posed of repeated appearances of three highly significant
motifs. Each network motif has a specific function in determin-
ing gene expression, such as generating temporal expression
programs and governing the responses to fluctuating external
signals. The motif structure also allows an easily interpretable
view of the entire known transcriptional network of the organ-
ism. This approach may help define the basic computational
elements of other biological networks.
We compiled a data set of direct transcriptional interactions
between transcription factors and the operons they regulate (an
operon is a group of contiguous genes that are transcribed into a
single mRNA molecule). This database contains 577 interac-
tions and 424 operons (involving 116 transcription factors); it
was formed on the basis of on an existing database (Regu-
lonDB)3,14. We enhanced RegulonDB by an extensive literature
search, adding 35 new transcription factors, including alterna-
tive σ-factors (subunits of RNA polymerase that confer recogni-
tion of specific promoter sequences). The data set consists of
established interactions in which a transcription factor directly
binds a regulatory site.

The transcriptional network can be represented as a directed
graph, in which each node represents an operon and edges repre-
sent direct transcriptional interactions. Each edge is directed

Published online: 22 April 2002, DOI: 10.1038/ng881
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Fig. 1 Network motifs found in the E. coli transcriptional regulation network.
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scription factor X regulates a second transcription factor Y, and both jointly
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binose utilization). c, SIM motif: a single transcription factor, X, regulates a set
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6. modularity:

Clauset et al., 2006 [10]: NCAA football
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7. Concurrency:
I Transmission of a contagious element only occurs

during contact [18]

I Rather obvious but easily missed in a simple model
I Dynamic property—static networks are not enough
I Knowledge of previous contacts crucial
I Beware cumulated network data!
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8. Horton-Strahler stream ordering:
I Metrics for branching networks:

I Method for ordering streams hierarchically
I Reveals fractal nature of natural branching networks
I Hierarchy is not pure but mixed (Tokunaga). [26, 12]

I Major examples: rivers and blood networks.

(a) (b) (c)
I Beautifully described but poorly explained.
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http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

36 of 127

Properties

9. Network distances:

(a) shortest path length dij :
I Fewest number of steps between nodes i and j .
I (Also called the chemical distance between i and j .)

(b) average path length 〈dij〉:
I Average shortest path length in whole network.
I Good algorithms exist for calculation.
I Weighted links can be accommodated.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

37 of 127

Properties

9. Network distances:

(c) Network diameter dmax:
I Maximum shortest path length in network.

(d) Closeness dcl = [
∑

ij d −1
ij /

(n
2

)
]−1:

I Average ‘distance’ between any two nodes.
I Closeness handles disconnected networks (dij =∞)
I dcl =∞ only when all nodes are isolated.
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10. Centrality:
I Many such measures of a node’s ‘importance.’
I ex 1: Degree centrality: ki .
I ex 2: Node i ’s betweenness

= fraction of shortest paths that pass through i .
I ex 3: Edge `’s betweenness

= fraction of shortest paths that travel along `.
I ex 4: Recursive centrality: Hubs and Authorities (Jon

Kleinberg [17])
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Nutshell:

Overview Key Points:
I The field of complex networks came into existence in

the late 1990s.
I Explosion of papers and interest since 1998/99.
I Hardened up much thinking about complex systems.
I Specific focus on networks that are large-scale,

sparse, natural or man-made, evolving and dynamic,
and (crucially) measurable.

I Three main (blurred) categories:
1. Physical (e.g., river networks),
2. Interactional (e.g., social networks),
3. Abstract (e.g., thesauri).

http://www.uvm.edu
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Nutshell:

Overview Key Points (cont.):
I Obvious connections with the vast extant field of

graph theory.
I But focus on dynamics is more of a

physics/stat-mech/comp-sci flavor.
I Two main areas of focus:

1. Description: Characterizing very large networks
2. Explanation: Micro story ⇒ Macro features

I Some essential structural aspects are understood:
degree distribution, clustering, assortativity, group
structure, overall structure,...

I Still much work to be done, especially with respect to
dynamics...
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http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

41 of 127

Models

Some important models:
1. generalized random networks
2. scale-free networks
3. small-world networks
4. statistical generative models (p∗)
5. generalized affiliation networks
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Models

Generalized random networks:
I Arbitrary degree distribution Pk .
I Create (unconnected) nodes with degrees sampled

from Pk .
I Wire nodes together randomly.
I Create ensemble to test deviations from

randomness.
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Building random networks: Stubs

Phase 1:
I Idea: start with a soup of unconnected nodes with

stubs (half-edges):

I Randomly select stubs
(not nodes!) and
connect them.

I Must have an even
number of stubs.

I Initially allow self- and
repeat connections.
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Building random networks: First rewiring

Phase 2:
I Now find any (A) self-loops and (B) repeat edges and

randomly rewire them.

(A) (B)
I Being careful: we can’t change the degree of any

node, so we can’t simply move links around.
I Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm

1
1

i3
i4

i2

e2

ei
I Randomly choose two edges.

(Or choose problem edge and
a random edge)

I Check to make sure edges
are disjoint.

i3
i4

i2

1
e’2

i

e’

1 I Rewire one end of each edge.
I Node degrees do not change.
I Works if e1 is a self-loop or

repeated edge.
I Same as finding on/off/on/off

4-cycles. and rotating them.
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Sampling random networks

Phase 2:
I Use rewiring algorithm to remove all self and repeat

loops.

Phase 3:
I Randomize network wiring by applying rewiring

algorithm liberally.
I Rule of thumb: # Rewirings ' 10 × # edges [19].
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Scale-free networks

I Networks with power-law degree distributions have
become known as scale-free networks.

I Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Pk ∼ k−γ for ‘large’ k

I One of the seminal works in complex networks:
Laszlo Barabási and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [4]

I Somewhat misleading nomenclature...
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Scale-free networks

I Scale-free networks are not fractal in any sense.
I Usually talking about networks whose links are

abstract, relational, informational, . . . (non-physical)
I Primary example: hyperlink network of the Web
I Much arguing about whether or networks are

‘scale-free’ or not. . .
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Random networks: largest components

γ = 2.5
〈k〉 = 1.8

γ = 2.5
〈k〉 = 1.6

γ = 2.5
〈k〉 = 2.05333

γ = 2.5
〈k〉 = 1.50667

γ = 2.5
〈k〉 = 1.66667

γ = 2.5
〈k〉 = 1.62667

γ = 2.5
〈k〉 = 1.92

γ = 2.5
〈k〉 = 1.8

http://www.uvm.edu
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Scale-free networks

The big deal:
I We move beyond describing networks to finding

mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:
I How does the exponent γ depend on the

mechanism?
I Do the mechanism details matter?
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BA model

I Barabási-Albert model = BA model.
I Key ingredients:

Growth and Preferential Attachment (PA).
I Step 1: start with m0 disconnected nodes.
I Step 2:

1. Growth—a new node appears at each time step
t = 0, 1, 2, . . ..

2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of connecting to
i th node is ∝ ki .

I In essence, we have a rich-gets-richer scheme.

http://www.uvm.edu
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BA model

I Definition: Ak is the attachment kernel for a node
with degree k .

I For the original model:

Ak = k

I Definition: Pattach(k , t) is the attachment probability.
I For the original model:

Pattach(node i , t) =
ki(t)∑N(t)

j=1 kj(t)
=

ki(t)∑kmax(t)
k=0 kNk (t)

where N(t) = m0 + t is # nodes at time t
and Nk (t) is # degree k nodes at time t .

http://www.uvm.edu
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Approximate analysis

I When (N + 1)th node is added, the expected
increase in the degree of node i is

E(ki,N+1 − ki,N) ' m
ki,N∑N(t)

j=1 kj(t)
.

I Assumes probability of being connected to is small.
I Dispense with Expectation by assuming (hoping) that

over longer time frames, degree growth will be
smooth and stable.

I Approximate ki,N+1 − ki,N with d
dt ki,t :

d
dt

ki,t = m
ki(t)∑N(t)

j=1 kj(t)

where t = N(t)−m0.

http://www.uvm.edu
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Approximate analysis
I Deal with denominator: each added node brings m

new edges.

∴
N(t)∑
j=1

kj(t) = 2tm

I The node degree equation now simplifies:

d
dt

ki,t = m
ki(t)∑N(t)

j=1 kj(t)
= m

ki(t)
2mt

=
1
2t

ki(t)

I Rearrange and solve:

dki(t)
ki(t)

=
dt
2t
⇒ ki(t) = ci t1/2.

I Next find ci . . .
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Approximate analysis

I Know i th node appears at time

ti,start =

{
i −m0 for i > m0
0 for i ≤ m0

I So for i > m0 (exclude initial nodes), we must have

ki(t) = m
(

t
ti,start

)1/2

for t ≥ ti,start.

I All node degrees grow as t1/2 but later nodes have
larger ti,start which flattens out growth curve.

I Early nodes do best (First-mover advantage).

http://www.uvm.edu
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Approximate analysis

0 10 20 30 40 50
0
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t

k
i
(t)

I m = 3
I ti,start =

1, 2, 5, and 10.
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Degree distribution

I So what’s the degree distribution at time t?
I Use fact that birth time for added nodes is distributed

uniformly:

Pr(ti,start)dti,start '
dti,start

t
I Also use

ki(t) = m
(

t
ti,start

)1/2

⇒ ti,start =
m2t

ki(t)2 .

Transform variables—Jacobian:

dti,start

dki
= −2

m2t
ki(t)3 .
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Degree distribution

I

Pr(ki)dki = Pr(ti,start)dti,start

I

= Pr(ti,start)dki

∣∣∣∣dti,start

dki

∣∣∣∣
I

=
1
t

dki 2
m2t

ki(t)3

I

= 2
m2

ki(t)3 dki

I

∝ k−3
i dki .
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Degree distribution

I We thus have a very specific prediction of
Pr(k) ∼ k−γ with γ = 3.

I Typical for real networks: 2 < γ < 3.
I Range true more generally for events with size

distributions that have power-law tails.
I 2 < γ < 3: finite mean and ‘infinite’ variance (wild)
I In practice, γ < 3 means variance is governed by

upper cutoff.
I γ > 3: finite mean and variance (mild)
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Examples

WWW γ ' 2.1 for in-degree
WWW γ ' 2.45 for out-degree

Movie actors γ ' 2.3
Words (synonyms) γ ' 2.8

The Internets is a different business...
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Real data

From Barabási and Albert’s original paper [4]:

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4 ), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6 ). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7 ),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6 ), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7 ) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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Things to do and questions

I Vary attachment kernel.
I Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

I Deal with directed versus undirected networks.
I Important Q.: Are there distinct universality classes

for these networks?
I Q.: How does changing the model affect γ?
I Q.: Do we need preferential attachment and growth?
I Q.: Do model details matter?
I The answer is (surprisingly) yes. See Simon’s model

of Zipf.
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Preferential attachment

I Let’s look at preferential attachment (PA) a little more
closely.

I PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

I For example: If Pattach(k) ∝ k , we need to determine
the constant of proportionality.

I We need to know what everyone’s degree is...
I PA is ∴ an outrageous assumption of node capability.
I But a very simple mechanism saves the day. . .
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Preferential attachment through randomness

I Instead of attaching preferentially, allow new nodes
to attach randomly.

I Now add an extra step: new nodes then connect to
some of their friends’ friends.

I Can also do this at random.
I Assuming the existing network is random, we know

probability of a random friend having degree k is

Qk ∝ kPk

I So rich-gets-richer scheme can now be seen to work
in a natural way.
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Robustness
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [3]

I Standard random networks (Erdős-Rényi)
versus Scale-free networks:

letters to nature
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

from Albert et al., 2000

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

68 of 127

Robustness
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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I Plots of network
diameter as a function
of fraction of nodes
removed

I Erdős-Rényi versus
scale-free networks

I blue symbols =
random removal

I red symbols =
targeted removal
(most connected first)

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

69 of 127

Robustness

I Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

I All very reasonable: Hubs are a big deal.
I But: next issue is whether hubs are vulnerable or not.
I Representing all webpages as the same size node is

obviously a stretch (e.g., google vs. a random
person’s webpage)

I Most connected nodes are either:
1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

I Need to explore cost of various targeting schemes.
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People thinking about people:

How are social networks structured?
I How do we define and measure connections?

I Methods/issues of self-report and remote sensing.

What about the dynamics of social networks?
I How do social networks/movements begin & evolve?

I How does collective problem solving work?

I How does information move through social networks?

I Which rules give the best ‘game of society?’

Sociotechnical phenomena and algorithms:
I What can people and computers do together? (google)

I Use Play + Crunch to solve problems. Which problems?
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Social Search

A small slice of the pie:
I Q. Can people pass messages between distant

individuals using only their existing social
connections?

I A. Apparently yes...
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Milgram’s social search experiment (1960s)

http://www.stanleymilgram.com

I Target person =
Boston stockbroker.

I 296 senders from Boston and
Omaha.

I 20% of senders reached
target.

I chain length ' 6.5.

Popular terms:
I The Small World

Phenomenon;
I “Six Degrees of Separation.”
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The problem

Lengths of successful chains:
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From Travers and
Milgram (1969) in
Sociometry: [27]

“An Experimental
Study of the Small
World Problem.”
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The problem

Two features characterize a social ‘Small World’:

1. Short paths exist
and

2. People are good at finding them.
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Social Search

Milgram’s small world experiment with email:

“An Experimental study of Search in Global Social Networks”
P. S. Dodds, R. Muhamad, and D. J. Watts,
Science, Vol. 301, pp. 827–829, 2003. [11]
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Social search—the Columbia experiment

I 60,000+ participants in 166 countries
I 18 targets in 13 countries including

I a professor at an Ivy League university,
I an archival inspector in Estonia,
I a technology consultant in India,
I a policeman in Australia,

and
I a veterinarian in the Norwegian army.

I 24,000+ chains
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Social search—the Columbia experiment

I Milgram’s participation rate was roughly 75%
I Email version: Approximately 37% participation rate.
I Probability of a chain of length 10 getting through:

.3710 ' 5× 10−5

I ⇒ 384 completed chains (1.6% of all chains).
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Social search—the Columbia experiment

I Motivation/Incentives/Perception matter.
I If target seems reachable
⇒ participation more likely.

I Small changes in attrition rates
⇒ large changes in completion rates

I e.g., ↘ 15% in attrition rate
⇒↗ 800% in completion rate
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Social search—the Columbia experiment

Successful chains disproportionately used
I weak ties (Granovetter)
I professional ties (34% vs. 13%)
I ties originating at work/college
I target’s work (65% vs. 40%)

. . . and disproportionately avoided
I hubs (8% vs. 1%) (+ no evidence of funnels)
I family/friendship ties (60% vs. 83%)

Geography → Work
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Social search—the Columbia experiment

Senders of successful messages showed
little absolute dependency on

I age, gender
I country of residence
I income
I religion
I relationship to recipient

Range of completion rates for subpopulations:
30% to 40%
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Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

An above average connector:
Norwegian, secular male, aged 30-39, earning over
$100K, with graduate level education working in mass
media or science, who uses relatively weak ties to people
they met in college or at work.

A below average connector:
Italian, Islamic or Christian female earning less than $2K,
with elementary school education and retired, who uses
strong ties to family members.
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Social search—the Columbia experiment

Mildly bad for continuing chain:
choosing recipients because “they have lots of friends” or
because they will “likely continue the chain.”

Why:
I Specificity important
I Successful links used relevant information.

(e.g. connecting to someone who shares same
profession as target.)
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Social search—the Columbia experiment

Basic results:
I 〈L〉 = 4.05 for all completed chains
I L∗ = Estimated ‘true’ median chain length (zero

attrition)
I Intra-country chains: L∗ = 5
I Inter-country chains: L∗ = 7
I All chains: L∗ = 7
I Milgram: L∗ ' 9
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Usefulness:

Harnessing social search:
I Can distributed social search be used for something

big/good?
I What about something evil? (Good idea to check.)
I What about socio-inspired algorithms for information

search? (More later.)
I For real social search, we have an incentives

problem.
I Which kind of influence mechanisms/algorithms

would help propagate search?
I Fun, money, prestige, ... ?
I Must be ‘non-gameable.’
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Red balloons:

A Grand Challenge:
I 1969: The Internet is born (�)

(the ARPANET (�)—four nodes!).
I Originally funded by DARPA who created a grand

Network Challenge (�) for the 40th anniversary.
I Saturday December 5, 2009: DARPA puts 10 red

weather balloons up during the day.
I Each 8 foot diameter balloon is anchored to the

ground somewhere in the United States.
I Challenge: Find the latitude and longitude of each

balloon.
I Prize: $40,000.

∗DARPA = Defense Advanced Research Projects Agency (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/History_of_the_Internet
http://en.wikipedia.org/wiki/ARPANET
http://en.wikipedia.org/wiki/DARPA_Network_Challenge
http://www.darpa.mil/
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Where the balloons were:
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Finding red balloons:

The winning team and strategy:
I MIT’s Media Lab (�) won in less that 9 hours. [22]

I Pickard et al. “Time-Critical Social Mobilization,” [22]

Science Magazine, 2011.
I People were virally recruited online to help out.
I Idea: Want people to both (1) find the balloons and

(2) involve more people.
I Recursive incentive structure with exponentially

decaying payout:
I $2000 for correctly reporting the coordinates of a

balloon.
I $1000 for recruiting a person who finds a balloon.
I $500 for recruiting a person who recruits the balloon

finder.
I etc.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.media.mit.edu/
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Finding balloons:

Clever scheme:
I Max payout = $4000 per balloon.
I Individuals have clear incentives to both

1. involve/source more people (spread), and
2. find balloons (goal action).

I Gameable?
I Limit to how much money a set of bad actors can

extract.

Extra notes:
I MIT’s brand helped greatly.
I MIT group first heard about the competition a few

days before. Ouch.
I A number of other teams did well (�).
I Worthwhile looking at these competing strategies.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
https://networkchallenge.darpa.mil/FinalStandings.pdf
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The social world appears to be small... why?

Theory: how do we understand the small world
property?

I Connected random networks have short average
path lengths:

〈dAB〉 ∼ log(N)

N = population size,
dAB = distance between nodes A and B.

I But: social networks aren’t random...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Simple socialness in a network:

Need “clustering” (your
friends are likely to
know each other):

http://www.uvm.edu
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Non-randomness gives clustering:

A

B

dAB = 10 → too many long paths.
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Randomness + regularity

B

A

Now have dAB = 3 〈d〉 decreases overall

http://www.uvm.edu
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Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) [31]

“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:
I neural network of C. elegans,
I semantic networks of languages,
I actor collaboration graph,
I food webs,
I social networks of comic book characters,...

Very weak requirements:
I local regularity + random short cuts

http://www.uvm.edu
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Toy model:
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

96 of 127

The structural small-world property:

Nature © Macmillan Publishers Ltd 1998

8

letters to nature

NATURE | VOL 393 | 4 JUNE 1998 441

removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/!grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes !90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ! Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv " 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.

I L(p) = average shortest path length as a function of p

I C(p) = average clustring as a function of p

http://www.uvm.edu
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Previous work—finding short paths

But are these short cuts findable?

Nope.

Nodes cannot find each other quickly
with any local search method.

Need a more sophisticated model...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

I What can a local search method reasonably use?
I How to find things without a map?
I Need some measure of distance between friends

and the target.

Some possible knowledge:
I Target’s identity
I Friends’ popularity
I Friends’ identities
I Where message has been

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) [16]

“Navigation in a small world.”

Allowed to vary:
1. local search algorithm

and
2. network structure.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Previous work—finding short paths

Kleinberg’s Network:
1. Start with regular d-dimensional cubic lattice.
2. Add local links so nodes know all nodes within a

distance q.
3. Add m short cuts per node.
4. Connect i to j with probability

pij ∝ xij
−α.

I α = 0: random connections.
I α large: reinforce local connections.
I α = d : connections grow logarithmically in space.

http://www.uvm.edu
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Previous work—finding short paths

Theoretical optimal search:
I “Greedy” algorithm.
I Number of connections grow logarithmically (slowly)

in space: α = d .
I Social golf.

Search time grows slowly with system size (like log2 N).

But: social networks aren’t lattices plus links.

http://www.uvm.edu
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Previous work—finding short paths

I If networks have hubs can also search well: Adamic
et al. (2001) [1]

P(ki) ∝ k−γ
i

where k = degree of node i (number of friends).
I Basic idea: get to hubs first

(airline networks).
I But: hubs in social networks are limited.

http://www.uvm.edu
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The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

b

a

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

What is ‘social distance’?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Models

One approach: incorporate identity.

Identity is formed from attributes such as:
I Geographic location
I Type of employment
I Religious beliefs
I Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.

http://www.uvm.edu
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Social distance—Bipartite affiliation networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance—Context distance

eca

high school
teacher

occupation

health careeducation

nurse doctorteacher
kindergarten

db

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

108 of 127

Models

Distance between two individuals xij is the height of
lowest common ancestor.

b=2

g=6

i j

l=4

kv

xij = 3, xik = 1, xiv = 4.
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Models

I Individuals are more likely to know each other the
closer they are within a hierarchy.

I Construct z connections for each node using

pij = c exp{−αxij}.

I α = 0: random connections.
I α large: local connections.
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Models

Generalized affiliation networks

100

eca b d

geography occupation age

0

I Blau & Schwartz [5], Simmel [25], Breiger [9], Watts et
al. [30]
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The model

h=2

i j

h=3

i, j

i

h=1

j

~vi = [1 1 1]T , ~vj = [8 4 1]T Social distance:

x1
ij = 4, x2

ij = 3, x3
ij = 1. yij = min

h
xh

ij .
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The model

Triangle inequality doesn’t hold:

k

h=2

i, ji j,k

h=1

yik = 4 > yij + yjk = 1 + 1 = 2.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

113 of 127

The model

I Individuals know the identity vectors of
1. themselves,
2. their friends,

and
3. the target.

I Individuals can estimate the social distance between
their friends and the target.

I Use a greedy algorithm + allow searches to fail
randomly.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Overview of
Complex Networks

Basic definitions

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

Basic models of
complex networks
Generalized random
networks

Scale-free networks

Small-world networks

Generalized affiliation
networks

References

114 of 127

The model-results—searchable networks

α = 0 versus α = 2 for N ' 105:

1 3 5 7 9 11 13 15
−2.5

−2

−1.5

−1

−0.5

H

lo
g 10

q
q ≥ r
q < r
r = 0.05

q = probability an arbitrary message chain reaches a
target.

I A few dimensions help.
I Searchability decreases as population increases.
I Precise form of hierarchy largely doesn’t matter.
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The model-results

Milgram’s Nebraska-Boston data:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

L

n(
L

)

Model parameters:
I N = 108,
I z = 300, g = 100,
I b = 10,
I α = 1, H = 2;

I 〈Lmodel〉 ' 6.7
I Ldata ' 6.5
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Social search—Data

Adamic and Adar (2003)
I For HP Labs, found probability of connection as

function of organization distance well fit by
exponential distribution.

I Probability of connection as function of real distance
∝ 1/r .
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Social Search—Real world uses

I Tags create identities for objects
I Website tagging: http://www.del.icio.us
I (e.g., Wikipedia)
I Photo tagging: http://www.flickr.com
I Dynamic creation of metadata plus links between

information objects.
I Folksonomy: collaborative creation of metadata
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Social Search—Real world uses

Recommender systems:
I Amazon uses people’s actions to build effective

connections between books.
I Conflict between ‘expert judgments’ and

tagging of the hoi polloi.
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Nutshell for Small-World Networks:
I Bare networks are typically unsearchable.
I Paths are findable if nodes understand how network

is formed.
I Importance of identity (interaction contexts).
I Improved social network models.
I Construction of peer-to-peer networks.
I Construction of searchable information databases.
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