Lognormals and friends Principles of Complex Systems CSYS/MATH 300. Fall. 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

Outline

Lognormals and friends

Lognormals

Random Multy Growth Model

Lognormals

Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

Outline

Lognormals

Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespa

References

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with

ognormals.

Empirical Confusability
Random Multiplicative

Random Growth wi

References

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞]

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\boxplus$).

Gamma distributions (⊞), and more.

There are other 'heavy-tailed' distributions:

The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

CCDF = stretched exponential (\boxplus) .

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\boxplus$).

3. Gamma distributions (\boxplus) , and more.

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- In x is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
 $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$

All moments of lognormals are finite.

Empirical Confusability Random Multiplicative

Growth Model
Random Growth with
Variable Lifespan

Standard form reveals the mean μ and variance σ^2 of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
 $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$

All moments of lognormals are finite.

Derivation from a normal distribution

Lognormals and friends

Take *Y* as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

▶ Transform according to P(x)dx = P(y)dy

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi\sigma}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals
Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Derivation from a normal distribution

Lognormals and friends

Take *Y* as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Lognormals **Empirical Confusability**

Take *Y* as distributed normally:

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

► Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

▶ Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

Take *Y* as distributed normally:

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

▶ Transform according to P(x)dx = P(y)dy:

•

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Random Growth with Variable Lifespan

•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

▶ Transform according to P(x)dx = P(y)dy:

>

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

Þ

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

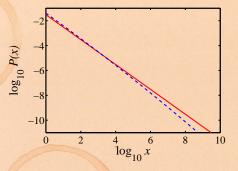
Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude!

- For lognormal (blue), $\mu = 0$ and $\sigma = 10$.
- For power law (red), $\gamma = 1$ and c = 0.03.

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth w

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

$$ightharpoonup$$
 \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Empirical Confusability Growth Model

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2}(\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right)\ln x - \ln\sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

$$ightharpoonup$$
 \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Empirical Confusability Growth Model

What's happening:

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

$$ightharpoonup$$
 \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Empirical Confusability Growth Model

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

ightharpoonup \Rightarrow If $\sigma^2 \gg 1$ and μ ,

 $\ln P(x) \sim -\ln x + \text{const.}$

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

▶ \Rightarrow If $\sigma^2 \gg 1$ and μ ,

 $\ln P(x) \sim -\ln x + \text{const.}$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with Variable Lifespan

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

- ▶ \Rightarrow If $\sigma^2 \gg 1$ and μ ,

 $\ln P(x) \sim -\ln x + \text{const.}$

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth wi Variable Lifespan

Confusion

Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.

This happens when (roughly)

 $(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x$

 $\log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e^{-\mu}$

 $0.05(\sigma^2 - \mu)$

ou find a -1 exponent,

you may have a lognormal distribution...

Lognormals and friends

Lognormals

Empirical Confusability

Growth Model
Random Growth with
Variable Lifespan

Confusion

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

 $\frac{1}{2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{2} - 1\right) \ln x$

 $*\log_{10}x\lesssim0.05 imes2(\sigma^2-\mu)\log_{10}e$

 $0.05(\sigma^2 - \mu)$

t-t exponent,

The UNIVERSITY

Lognormals and

Empirical Confusability

Growth Model

friends

2 9 € 10 of 23

Confusion

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

 $\log_{10} x \leq 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative

Random Growth with Variable Lifespan

► This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

Lognormals

Empirical Confusability

Random Multiplicative

Random Growth with Variable Lifespan

Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.

► This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05(\sigma^2 - \mu)$$

- Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05(\sigma^2 - \mu)$$

→ If you find a -1 exponent, you may have a lognormal distribution...

Outline

Lognormals

/Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

References

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

Generating lognormals:

Random multiplicative growth:

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- ► (Shrinkage is allowed)
- ▶ In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

Lognormals and friends

Lognormals
Empirical Confusability

Random Multiplicative Growth Model

Variable Lifespan

Generating lognormals:

Lognormals and friends

Random multiplicative growth:

•

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- ▶ In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $\rightarrow x_n$ is lognormally distributed

Lognormals Empirical Confusability

Empirical Confusability
Random Multiplicative

Growth Model
Random Growth with

Generating lognormals:

Lognormals and friends

Random multiplicative growth:

•

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow In x_n is normally distributed
- $\rightarrow x_n$ is lognormally distributed

Lognormals

Empirical Confusability

Random Multiplicative Growth Model

Variable Lifespan

Random multiplicative growth:

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow ln x_n is normally distributed
- $\rightarrow x_n$ is lognormally distributed

Random multiplicative growth:

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

- ightharpoonup \Rightarrow ln x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

Lognormals Empirical Confusability

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with

Lognormals or power laws?

▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq$ 1).

Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

- Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)

Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Random Growth wii Variable Lifespan

- Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).

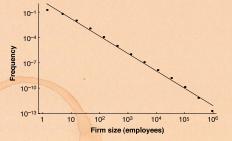
Lognormals and friends

Lognormals

Random Multiplicative Growth Model

Variable Lifespar

- ▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).



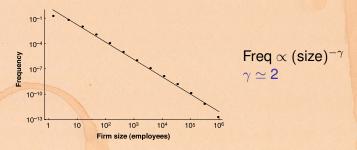
Freq \propto (size) $^{-\gamma}$ $\gamma \simeq$ 2

Lognormals and friends

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model

Random Growth w Variable Lifespan

- ▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma =$ 2, not $\gamma =$ 1 (!)
- Problem of data censusing (missing small firms).



 One mechanistic piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. Lognormals and

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

An explanation

Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq$ 1

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative

Growth Model

Random Growth with

Variable Lifespan

An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq 1$
- ► The set up: N entities with size $x_i(t)$

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth w Variable Lifespan

An explanation

- Axtel (mis?)cites Malcai et al.'s (1999) argument [5] for why power laws appear with exponent $\gamma \simeq$ 1
- ► The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Variable Lifespan

- ► The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

Same as for lognormal but one extra piece.

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

Variable Lifespa

- The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- Each x_i cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\langle x_i\rangle)$$

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

6 (⊞)

Find
$$P(x) \sim x^{-\gamma}$$

lacktriangle where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-\alpha}$$

▶ Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

6 (⊞)

- Find $P(x) \sim x^{-\gamma}$
- \blacktriangleright where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N =total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1 - c}$$

▶ Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Empirical Confusability
Random Multiplicative
Growth Model

Growth Model
Random Growth with
Variable Lifespan

•

Find
$$P(x) \sim x^{-\gamma}$$

ightharpoonup where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals Empirical Confusa

> Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Find
$$P(x) \sim x^{-\gamma}$$

ightharpoonup where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... c small $\Rightarrow \gamma \simeq 2$

Lognormals

Empirical Confusab

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Find
$$P(x) \sim x^{-\gamma}$$

lacktriangle where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

▶ Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals
Empirical Confusat

Random Multiplicative Growth Model Random Growth with

Variable Lifespan

$$lacktriangle$$
 where γ is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives
$$\gamma \sim 1 + \frac{1}{1-c}$$

• Groovy... $c \text{ small} \Rightarrow \gamma \simeq 2$

Lognormals
Empirical Confusability
Random Multiplicative

Random Growth will Variable Lifespan

Outline

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

References

Lognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Ages of firms/people/... may not be the same

- ► Allow the number of updates for each size *x_i* to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each *x_i* follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

▶ Now averaging different lognormal distributions.

Lognormals and friends

ognormals.

Empirical Confusability
Random Multiplicative
Growth Model

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x₁ follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- ► Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x_i follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

▶ Now averaging different lognormal distributions.

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

- Allow the number of updates for each size x_i to vary
- **Example:** $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x₁ follows a lognormal
- ▶ Sizes are distributed as ^[6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- Example: $P(t)dt = ae^{-at}dt$ where t = age.
- ▶ Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

- Allow the number of updates for each size x_i to vary
- **Example:** $P(t)dt = ae^{-at}dt$ where t = age.
- Back to no bottom limit: each x_i follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

- ▶ Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

► Insert question from assignment 6 (⊞)

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

Averaging lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

- ► Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

Lognormals and friends

ognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

Depends on sign of $\ln x/m$, i.e., whether x/m > /m < 1.

 $P(x) \propto \begin{cases} x^{-1+\sqrt{2x}} & \text{if } x/m < 1 \\ x^{-1-\sqrt{2x}} & \text{if } x/m > 1 \end{cases}$

'Break' in scaling (not uncommon)

 $\mathsf{ole} ext{-}\mathsf{Pareto}$ distribution (\boxplus)

by Montroll and Shlesinger [7, 8]

Later, Hüberman and Adamic [3, 4]. Number of pages

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

▶ Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

'Break' in scaling (not uncommon

► Double Pareto distribution (⊞)

- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Lafer. Huberman and Adamic [3, 4]. Number of pages per website.

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- ▶ 'Break' in scaling (not uncommor
- ► Double Pareto distribution (⊞)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ▶ Later. Hüberman and Adamic ^[3, 4]. Number of pages per website.

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1 \\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ► Double Pareto distribution (⊞
- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ► Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- ▶ Lafer. Huberman and Adamic [3, 4]: Number of pages

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]

▶ Later: Huberman and Adamic [3, 4]: Number of pages

Lognormals and friends

ognormals.

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages per website

Lognormals and friends

_ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes.
 the double Pareto distribution appears
 - Take-home message. Be careful out there:

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- ▶ With no minimum size but a distribution of lifetimes.
 - the double Pareto distribution appears
 - Take-home message. Be careful out there.

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- the double Pareto distribution appears
- Take-home message: Be

Lognormals and

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- Take-home message: Be careful out there.

Lognormals and friends

Lognormals

Random Multiplicative

Random Growth with Variable Lifespan

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- ► Take-home message: Be careful out there...

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

References I

- [1] R. Axtell.

 Zipf distribution of U.S. firm sizes.

 Science, 293(5536):1818–1820, 2001. pdf (⊞)
- [2] R. Gibrat.
 Les inégalités économiques.
 Librairie du Recueil Sirey, Paris, France, 1931.
- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic.
 The nature of markets in the World Wide Web.
 Quarterly Journal of Economic Commerce, 1:5–12, 2000.

Lognormals and friends

ognormals

Empirical Confusabilit Random Multiplicative Growth Model Random Growth with

[5] O. Malcai, O. Biham, and S. Solomon.

Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

Phys. Rev. E, 60(2):1299–1303, 1999. pdf (⊞)

[6] M. Mitzenmacher.

A brief history of generative models for power law and lognormal distributions.

Internet Mathematics, 1:226–251, 2003. pdf (⊞)

[7] E. W. Montroll and M. W. Shlesinger.

On 1/f noise aned other distributions with long tails.

Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf (H)

References III

Lognormals and friends

ognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.

