# Lognormals and friends Principles of Complex Systems CSYS/MATH 300. Fall. 2011

#### Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont















Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

## Lognormals and friends

#### Lognormals

Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with





#### Outline

## Lognormals and friends

Lognormals

#### Random Multy Growth Model

#### Lognormals

Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan





#### There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\boxplus$ ).

3. Gamma distributions  $(\boxplus)$ , and more.



#### The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- In x is distributed according to a normal distribution with mean  $\mu$  and variance  $\sigma$ .
- Appears in economics and biology where growth increments are distributed normally.



Standard form reveals the mean  $\mu$  and variance  $\sigma^2$  of the underlying normal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
  $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$ 

All moments of lognormals are finite.



•

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

#### Set $Y = \ln X$ :

▶ Transform according to P(x)dx = P(y)dy:

•

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

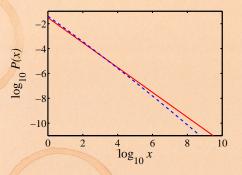
$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

Lognormals

Empirical Confusability

Random Multiplicative

Growth Model


Random Growth with Variable Lifespan







## Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude!

- For lognormal (blue),  $\mu = 0$  and  $\sigma = 10$ .
- For power law (red),  $\gamma = 1$  and c = 0.03.

Lognormals and friends

Lognormais

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with





$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$=-\ln x-\ln\sqrt{2\pi}-\frac{(\ln x-\mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

▶  $\Rightarrow$  If  $\sigma^2 \gg 1$  and  $\mu$ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth wi Variable Lifespan







► This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05\left(\frac{\mu}{\sigma^2} - 1\right)\ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05(\sigma^2 - \mu)$$

→ If you find a -1 exponent, you may have a lognormal distribution...

#### Lognormals

Empirical Confusability

Random Multiplicative

Growth Model

Random Growth with





## Random multiplicative growth:

•

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

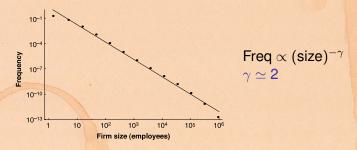
- ightharpoonup  $\Rightarrow$  In  $x_n$  is normally distributed
- $ightharpoonup \Rightarrow x_n$  is lognormally distributed

#### Lognormals Empirical Confusability

Empirical Confusability

Random Multiplicative

Growth Model


Random Growth with





## Lognormals or power laws?

- ▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ( $\gamma \simeq 1$ ).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with  $\gamma =$  2, not  $\gamma =$  1 (!)
- Problem of data censusing (missing small firms).



 One mechanistic piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. Lognormals and

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with





- The set up: N entities with size  $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- Each  $x_i$  cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\langle x_i\rangle)$$

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with





Find 
$$P(x) \sim x^{-\gamma}$$

ightharpoonup where  $\gamma$  is implicitly given by

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[ \frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

N = total number of firms.

Now, if 
$$c/N \ll 1$$
,  $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[ \frac{-1}{-(c/N)} \right]$ 

Which gives 
$$\gamma \sim 1 + \frac{1}{1-c}$$

• Groovy...  $c \text{ small} \Rightarrow \gamma \simeq 2$ 

Lognormals Empirical Confusability Random Multiplicative

Random Growth with Variable Lifespan







## Ages of firms/people/... may not be the same

- Allow the number of updates for each size x<sub>i</sub> to vary
- **Example:**  $P(t)dt = ae^{-at}dt$  where t = age.
- Back to no bottom limit: each x<sub>i</sub> follows a lognormal
- ► Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that  $\sigma \sim t$  and  $\mu = \ln m$ )

Now averaging different lognormal distributions.



## **Averaging lognormals**

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dt$$

- ► Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

## Lognormals and friends

#### Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan





#### The second tweak

## $P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

Depends on sign of  $\ln x/m$ , i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \begin{cases} x^{-1+\sqrt{2\lambda}} & \text{if } x/m < 1\\ x^{-1-\sqrt{2\lambda}} & \text{if } x/m > 1 \end{cases}$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages per website

## Lognormals and friends

\_ognormals

Empirical Confusability Random Multiplicative Growth Model

Random Growth with Variable Lifespan





## Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- ► Take-home message: Be careful out there...

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan





#### References I

- [1] R. Axtell.

  Zipf distribution of U.S. firm sizes.

  Science, 293(5536):1818–1820, 2001. pdf (⊞)
- [2] R. Gibrat.
   Les inégalités économiques.
   Librairie du Recueil Sirey, Paris, France, 1931.
- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic.
  The nature of markets in the World Wide Web.
  Quarterly Journal of Economic Commerce, 1:5–12, 2000.

## Lognormals and friends

ognormals

Empirical Confusabilit Random Multiplicative Growth Model Random Growth with





[5] O. Malcai, O. Biham, and S. Solomon.

Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.

Phys. Rev. E, 60(2):1299–1303, 1999. pdf (⊞)

[6] M. Mitzenmacher.

A brief history of generative models for power law and lognormal distributions.

Internet Mathematics, 1:226–251, 2003. pdf (⊞)

[7] E. W. Montroll and M. W. Shlesinger.

On 1/f noise aned other distributions with long tails.

Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf (H)



#### References III

Lognormals and friends

ognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with

References

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.



