Biological Contagion

Principles of Complex Systems CSYS/MATH 300, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics | Center for Complex Systems | Vermont Advanced Computing Center | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Biological Contagion

Introductio

Simple disease spreading models

Background

Prediction

Tov metapopulation models

Model output

D II II

catastrophe

Outline

Introduction

Simple disease spreading models

Background

Prediction

More models

Toy metapopulation models

Model output

Conclusions

Predicting social catastrophe

References

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction

Toy metapopulation models

Model output

Conclusions

Predicting soci

Contagion

A confusion of contagions:

- Was Harry Potter some kind of virus?
- What about the Da Vinci Code?
- Did Sudoku spread like a disease?
- Language?
- ▶ Religion?
- ► Democracy...?

Biological Contagion

Introduction

Simple disease spreading models

Background

Managed

Toy metapopulation models

Model output

D II II

catastrophe

Contagion

Naturomorphisms

- "The feeling was contagious."
- "The news spread like wildfire."
- "Freedom is the most contagious virus known to man."
 - -Hubert H. Humphrey, Johnson's vice president
- "Nothing is so contagious as enthusiasm."
 - —Samuel Taylor Coleridge

Biological Contagion

Introduction

Simple disease spreading models

Background

Frediction

Toy metanonulation models

Model output

Conclusions

catastrophe

Social contagion

Contagion

Biological

Simple disease spreading models

Background

More models

Toy metapopulation models

Conclusions

Poforonoos

Optimism according to Ambrose Bierce: (H)

The doctrine that everything is beautiful, including what is ugly, everything good, especially the bad, and everything right that is wrong. ... It is hereditary, but fortunately not contagious.

Eric Hoffer, 1902–1983

There is a grandeur in the uniformity of the mass. When a fashion, a dance, a song, a slogan or a joke sweeps like wildfire from one end of the continent to the other, and a hundred million people roar with laughter, sway their bodies in unison, hum one song or break forth in anger and denunciation, there is the overpowering feeling that in this country we have come nearer the brotherhood of man than ever before.

► Hoffer (⊞) was an interesting fellow...

Introduction

Simple disease spreading models

Prediction Prediction

More models

Model output

Predicting so

Thoughts On The Nature Of Mass Movements" (1951) [3]

Quotes-aplenty:

- "We can be absolutely certain only about things we do not understand."
- "Mass movements can rise and spread without belief in a God, but never without belief in a devil."
- "Where freedom is real, equality is the passion of the masses. Where equality is real, freedom is the passion of a small minority."

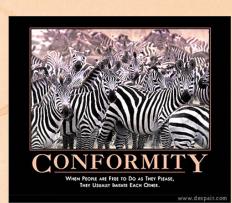
Introduction

Simple disease spreading models

Background

Prediction

Tou motopopulation model


Model output

Predicting socia

Imitation

"When people are free to do as they please, they usually imitate each other."

—Eric Hoffer
"The Passionate State
of Mind" [4]

Biological Contagion

Introduction

Simple disease spreading models

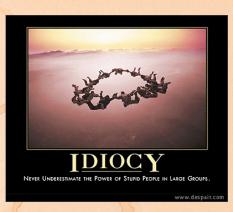
Background Prediction

More models

Toy metapopulation models

Conclusions

Predicting soci catastrophe


References

despair.com

The collective...

"Never Underestimate the Power of Stupid People in Large Groups."

Biological Contagion

Introduction

Simple disease spreading models

Background Prediction

Toy metapopulation models

despair.com

Definitions

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...
- from Latin: con = 'together with' + tangere 'to touch.'
- Contagion has unpleasant overtones...
- Just Spreading might be a more neutral word
- But contagion is kind of exciting...

Introduction

Simple disease spreading models

Background

More mode

Toy metapopulation model

Model output

Predicting so

Examples of non-disease spreading:

Interesting infections:

▶ Spreading of buildings in the US... (⊞)

➤ Viral get-out-the-vote video. (⊞)

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation models Model output

Conclusions

Predicting social

Contagions

Introduction

Biological

Contagion

Simple disease spreading models

Background

Prediction

Toy metapopulation models

Model output

Predicting so

References

Two main classes of contagion

- 1. Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, ...
- 2. Social contagion: fashion, word usage, rumors, riots, religion, ...

Mathematical Epidemiology

The standard SIR model [8]

- = basic model of disease contagion
- ► Three states:
 - 1. S = Susceptible
 - 2. L = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action principle)
- Interactions are independent (no memory)
- Discrete and continuous time versions

Biological Contagion

Introduction

Simple disease spreading models

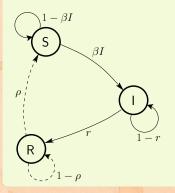
Background

Prediction

More model

And all and and

Conclusions


catastrophe

Mathematical Epidemiology

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

Biological Contagion

Introduction

Simple disease spreading models

Toy metapopulation models

Background

Prediction

More models

Madal autaut

Conclusions

Deferences

Mathematical Epidemiology

Original models attributed to

- ▶ 1920's: Reed and Frost
- ▶ 1920's/1930's: Kermack and McKendrick [5, 7, 6]
- Coupled differential equations with a mass-action principle

Biological Contagion

Introduction

Simple disease spreading models

Background

More mode

More models

Model output

Conclusions

Predicting social

Differential equations for continuous model

$$\frac{d}{dt}S = -\beta IS + \rho R$$

$$\frac{d}{dt}I = \beta IS - rI$$

$$\frac{d}{dt}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective
- ▶ Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Biological Contagion

Introduction

Simple disease spreading models

Background

Managed

More models

Model output

Conclusions

Poforonoos

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective random bumps into a Susceptible
- ▶ Probability of transmission = β
- At time t = 1, single Infective remains infected with probability 1 r
- At time t = k, single Infective remains infected with probability $(1 r)^k$

Introduction

Simple disease spreading models

Background

More med

More models

Model output

Desdistances

D-6----

► Expected number infected by original Infective:

$$R_0 = \beta + (1 - r)\beta + (1 - r)^2\beta + (1 - r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$

$$= \beta \frac{1}{1 - (1 - r)} = \frac{\beta}{r}$$

For S_0 initial infectives $(1 - S_0 = R_0 \text{ immune})$:

$$R_0 = S_0 \beta / r$$

Introductio

Simple disease spreading models

Background

More model

Toy metapopulation models

Conclusions

For the continuous version

Second equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta SI - rI$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I = (\beta S - r)I$$

Number of infectives grows initially if

$$\beta S(0) - r > 0 \Rightarrow \beta S(0) > r \Rightarrow \frac{\beta S(0)}{r} > 1$$

Same story as for discrete model.

Biological Contagion

Introduction

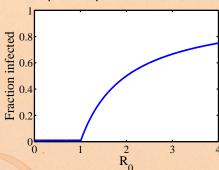
Simple disease spreading models

Background

Prediction

More model

Toy metapopulation models


Conclusions

Predicting social

Example of epidemic threshold:

- Continuous phase transition.
- Fine idea from a simple model.

Biological Contagion

Simple disease spreading models

Background

Many variants of the SIR model:

- SIS: susceptible-infective-susceptible
- SIRS: susceptible-infective-recovered-susceptible
- compartment models (age or gender partitions)
- more categories such as 'exposed' (SEIRS)
- recruitment (migration, birth)

Biological Contagion

Introduction

Simple disease spreading models

Background

More mod

Toy metapopulation mode

Model output

Predicting soc

Disease spreading models

For novel diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important is the reproduction number R_0 ?

R_0 approximately same for all of the following:

- ▶ 1918-19 "Spanish Flu" \sim 500,000 deaths in US
- ▶ 1957-58 "Asian Flu" \sim 70,000 deaths in US
- ightharpoonup 1968-69 "Hong Kong Flu" \sim 34,000 deaths in US
- ▶ 2003 "SARS Epidemic" ~ 800 deaths world-wide

Biological Contagion

Introduction

Simple disease spreading models Background

Prediction

Toy metapopulation models

Model outpu

Predicting soci

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- ► Epidemics?

Power laws distributions are common but not obligatory...

Really, what about epidemics?

- Simply hasn't attracted much attention.
- Data not as clean as for other phenomena.

Simple disease

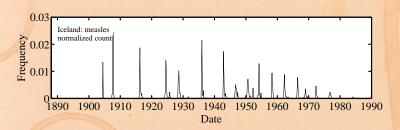
spreading models

Background

Prediction

More models

Model output


Predicting soc

Feeling III in Iceland

Caseload recorded monthly for range of diseases in Iceland, 1888-1990

Treat outbreaks separated in time as 'novel' diseases.

Biological Contagion

Introduction

Simple disease spreading models

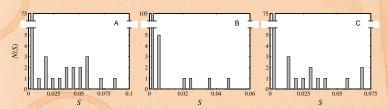
Background

Prediction

Tov metapopulation models

Model output

Conclusions


redicting socia

Really not so good at all in Iceland

Epidemic size distributions N(S) for Measles, Rubella, and Whooping Cough.

Spike near S = 0, relatively flat otherwise.

Biological Contagion

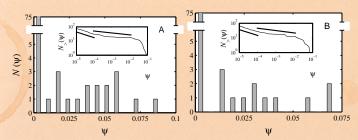
Introduction

Simple disease spreading models

Background

Prediction

Tov metapopulation models


Model output

Description and

Measles & Pertussis

Insert plots:

Complementary cumulative frequency distributions:

$$N(\Psi'>\Psi)\propto \Psi^{-\gamma+1}$$

Limited scaling with a possible break.

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction

Tov metapopulation models

Model output

Dradiating of

catastrophe

Power law distributions

Measured values of γ :

- measles: 1.40 (low Ψ) and 1.13 (high Ψ)
- pertussis: 1.39 (low Ψ) and 1.16 (high Ψ)
- Expect $2 \le \gamma < 3$ (finite mean, infinite variance)
- ▶ When γ < 1, can't normalize
- Distribution is quite flat.

Biological Contagion

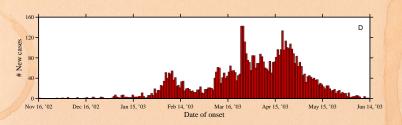
Introduction

Simple disease spreading models

Background Prediction

Prediction

Toy metapopulation models


Model output

Conclusions

Resurgence—example of SARS

- Epidemic slows... then an infective moves to a new context.
- Epidemic discovers new 'pools' of susceptibles: Resurgence.
- Importance of rare, stochastic events.

Biological Contagion

Simple disease spreading models Background

Prediction

Toy metapopulation models

The challenge

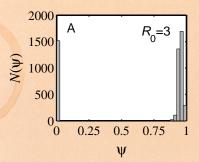
So... can a simple model produce

- 1. broad epidemic distributions and
- 2. resurgence?

Biological Contagion

Simple disease spreading models

Background


More models Toy metapopulation models

Size distributions

Simple models typically produce bimodal or unimodal size distributions.

- This includes network models: random, small-world, scale-free, ...
- Exceptions:
 - 1. Forest fire models
 - 2. Sophisticated metapopulation models

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation models

Conclusion

Predicting so

Burning through the population

Forest fire models: [9]

- ► Rhodes & Anderson, 1996
- The physicist's approach: "if it works for magnets, it'll work for people..."

A bit of a stretch:

- Epidemics ≡ forest fires spreading on 3-d and 5-d lattices.
- Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks.
- 3. Original forest fire model not completely understood.

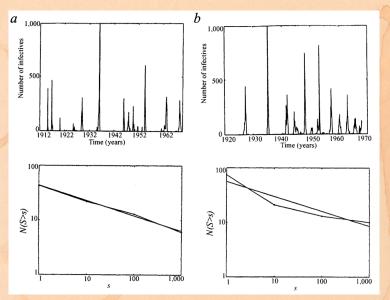
Biological Contagion

Introduction

Simple disease spreading models Background

Prediction

More models Toy metapopulation models


Model output

Predicting soc

Size distributions

From Rhodes and Anderson, 1996.

Biological Contagion

Introduct

Simple disease spreading models

Background

More models

Toy metapopulation models

Conclusions

Prediction

More models Toy metapopulation models

Conclusions

Predicting sor

- Community based mixing: Longini (two scales).
- Eubank et al.'s EpiSims/TRANSIMS—city simulations.
- Spreading through countries—Airlines: Germann et al., Corlizza et al.
- Vital work but perhaps hard to generalize from...
- ➤ ⇒ Create a simple model involving multiscale travel
- Multiscale models suggested by others but not formalized (Bailey, Cliff and Haggett, Ferguson et al.)

Size distributions

Biological Contagion

Introduction

Simple disease spreading models

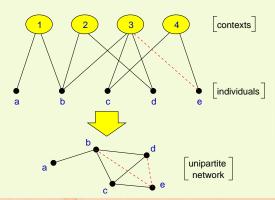
Background

More models

Toy metapopulation models

Model output

catastrophe


- Very big question: What is N?
- Should we model SARS in Hong Kong as spreading in a neighborhood, in Hong Kong, Asia, or the world?
- ► For simple models, we need to know the final size beforehand...

Improving simple models

Contexts and Identities—Bipartite networks

- boards of directors
- movies
- transportation modes (subway)

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction

Toy metapopulation models

Model output

Conclusions

catastrophe

Identity is formed from attributes such as:

- Geographic location
- ▶ Type of employment
- Age
- Recreational activities

Groups are crucial...

- formed by people with at least one similar attribute
- ► Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks. [11]

Introduction

Simple disease spreading models

Background

Frediction

Toy metapopulation models

Model output

Predicting soci

Infer interactions/network from identities

Distance makes sense in identity/context space.

Biological Contagion

Introduction

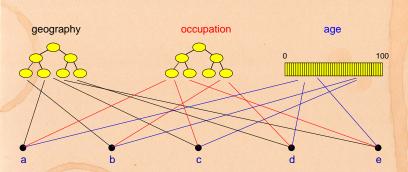
Simple disease spreading models

Background

Mana and all

Toy metapopulation models

del output


Predicting so

Generalized context space

(Blau & Schwartz [1], Simmel [10], Breiger [2])

Biological Contagion

Introduction

Simple disease spreading models

Background

More models

Toy metapopulation models

Conclusion

Predicting soc catastrophe

A toy agent-based model

Geography—allow people to move between contexts:

- Locally: standard SIR model with random mixing
- discrete time simulation
- $\triangleright \beta = infection probability$
- $ightharpoonup \gamma$ = recovery probability
- ► P = probability of travel
- ▶ Movement distance: $Pr(d) \propto exp(-d/\xi)$
- \blacktriangleright ξ = typical travel distance

Biological Contagion

Introduction

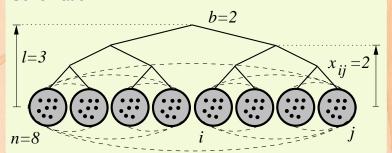
Simple disease spreading models

Background

Prediction

Toy metapopulation models

Model output


Predicting soci

A toy agent-based model

Schematic:

Biological Contagion

Simple disease spreading models

Background

Prediction

More models Toy metapopulation models

Model output

Interdication

Biological

Contagion

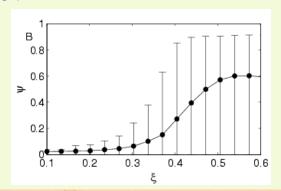
Simple disease spreading models

Background Prediction

Toy metapopulation mode

Model output

Predicting so


- Define P_0 = Expected number of infected individuals leaving initially infected context.
- Need $P_0 > 1$ for disease to spread (independent of R_0).
- ► Limit epidemic size by restricting frequency of travel and/or range

Model output

Varying ξ :

 Transition in expected final size based on typical movement distance (sensible)

Biological Contagion

Introduction

Simple disease spreading models

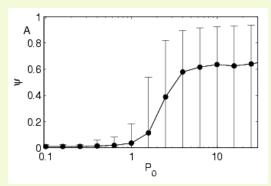
Background

More models

Tov metapopulation models

Model output

Conclusions



Model output

Varying P_0 :

- Transition in expected final size based on typical number of infectives leaving first group (also sensible)
- ▶ Travel advisories: ξ has larger effect than P_0 .

Biological Contagion

Introduction

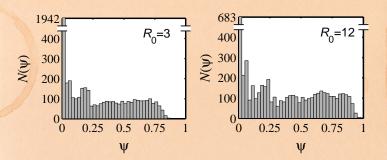
Simple disease spreading models

Background

More models

Tov metapopulation models

Model output


Predicting soc

Example model output: size distributions

- ▶ Flat distributions are possible for certain ξ and P.
- ► Different R₀'s may produce similar distributions
- Same epidemic sizes may arise from different R₀'s

Biological Contagion

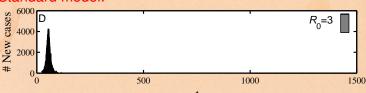
Introduction

Simple disease spreading models

Background Prediction

Toy metapopulation models

Model output Conclusions


Predicting so catastrophe

Model output—resurgence

Standard model:

Biological Contagion

Introduction

Simple disease spreading models

Background

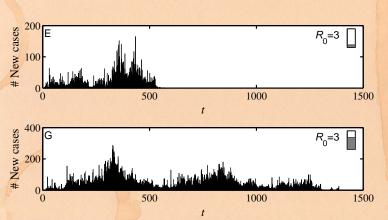
Prediction

Toy metapopulation mode

Model output

Conclusi

Predicting soci catastrophe



Model output—resurgence

Standard model with transport:

Biological Contagion

Simple disease spreading models

Background

Model output

The upshot

Simple multiscale population structure + stochasticity

leads to

resurgence

+

broad epidemic size distributions

Biological Contagion

Introduction

Simple disease spreading models

Background

Toy metapopulation models

Model output

Conclu

Predicting social

Model is more complicated than SIR but still simple

We haven't even included normal social responses such as travel bans and self-quarantine.

- ▶ The reproduction number R_0 is not terribly useful.
- ▶ R₀, however measured, is not informative about
 - 1. how likely the observed epidemic size was,
 - 2. and how likely future epidemics will be.
- Problem: R₀ summarises one epidemic after the fact and enfolds movement, the price of bananas, everything.

Introduction

Simple disease spreading models Background

Prediction

More models

Model output

Conclusions
Predicting so

Conclusions

- Disease spread highly sensitive to population structure
- Rare events may matter enormously (e.g., an infected individual taking an international flight)
- More support for controlling population movement (e.g., travel advisories, quarantine)

Biological Contagion

Introduction

Simple disease spreading models

Background

Prediction

ioy metapopula

Conclusions

Predicting socia

Need to separate movement from disease

- R₀ needs a friend or two.
- Need $R_0 > 1$ and $P_0 > 1$ and ξ sufficiently large for disease to have a chance of spreading

More wondering:

- Exactly how important are rare events in disease spreading?
- ► Again, what is N?

Introduction

Simple disease spreading models

Background

More models

Model output

Conclusions

Predicting soci

Deferences

Biological Contagion

Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation mo

Conclusions

oddaoliopho

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)
- Spread of rumors (Daley & Kendall, 1965)
- ▶ Diffusion of innovations (Bass, 1969)
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)
- Spread of Feynmann diagrams (Bettencourt et al., 2006)

"Greenspan Concedes Error on Regulation"

- ... humbled Mr. Greenspan admitted that he had put too much faith in the self-correcting power of free markets ...
- "Those of us who have looked to the self-interest of lending institutions to protect shareholders' equity, myself included, are in a state of shocked disbelief"
- ▶ Rep. Henry A. Waxman: "Do you feel that your ideology pushed you to make decisions that you wish you had not made?"
- Mr. Greenspan conceded: "Yes, I've found a flaw. I don't know how significant or permanent it is. But I've been very distressed by that fact."

Introduction

Simple disease spreading models Background

Prediction

More models

Toy metapopulation mode

Conclusions
Predicting social

Economics, Schmeconomics

Biological Contagion

Alan Greenspan (September 18, 2007):

"I've been dealing with these big mathematical models of forecasting the economy ...

If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,

I don't need any of this other stuff.

I could forecast the economy better than any way I know."

http://wikipedia.org

Introduction

Simple disease spreading models

Background

More models

Model output

Predicting social

Economics, Schmeconomics

Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

Jon Stewart:

"You just bummed the @*!# out of me."

wildbluffmedia.com

- ► From the Daily Show (⊞) (September 18, 2007)
- ► The full inteview is here (⊞).

Biological Contagion

Introduction

Simple disease spreading models

Prediction

Toy metapopulation mode

Model output

Predicting social catastrophe

James K. Galbraith:

NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis?

[JKG] Ten or 12 would be closer than two or three.

NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach. And most of them teach a theoretical framework that has been shown to be fundamentally useless.

From the New York Times, 11/02/2008 (⊞)

Introduction

Simple disease spreading models

Prediction

More models

Model output

Predicting social

References I

- [1] P. M. Blau and J. E. Schwartz. Crosscutting Social Circles. Academic Press, Orlando, FL, 1984.
- R. L. Breiger. [2] The duality of persons and groups. Social Forces, 53(2):181–190, 1974. pdf (⊞)
- [3] E. Hoffer. The True Believer: On The Nature Of Mass Movements. Harper and Row, New York, 1951.
- [4] E. Hoffer. The Passionate State of Mind: And Other Aphorisms. Buccaneer Books, 1954.

Biological Contagion

Simple disease spreading models

Background

References II

[5] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf (⊞)

[6] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf (⊞)

[7] W. O. Kermack and A. G. McKendrick.
Contributions to the mathematical theory of epidemics. II. The problem of endemicity.

Proc. R. Soc. Lond. A, 138(834):55–83, 1927.

pdf (III)

Biological Contagion

Introduction

Simple disease spreading models

Prediction

Managedala

Tov metapopulation models

Model output

Predicting son

References III

- J. D. Murray.
 Mathematical Biology.
 Springer, New York, Third edition, 2002.
- [9] C. J. Rhodes and R. M. Anderson. Power laws governing epidemics in isolated populations. Nature, 381:600–602, 1996. pdf (⊞)
- [10] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902.
- [11] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.

 Science, 296:1302–1305, 2002. pdf (H)

Biological Contagion

Introduction

Simple disease spreading models

Prediction

Prediction

Toy metapopulation models

Conclusions

Predicting social

