
Principles of Complex Systems, CSYS/MATH 300

University of Vermont, Fall 2011

Assignment 6

Dispersed: Monday, November 14, 2011.

Due: By start of lecture, 11:30 am, Thursday, December 1, 2011.

Some useful reminders:

Instructor: Peter Dodds

Office: Farrell Hall, second floor, Trinity Campus

E-mail: peter.dodds@uvm.edu

Office hours: 12:50 pm to 3:50 pm, Wednesday

Course website: http://www.uvm.edu/∼pdodds/teaching/courses/2011-08UVM-300

All parts are worth 3 points unless marked otherwise. Please show all your working

clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related TEX variant).

1. Highly Optimized Tolerance:

This question is based on Carlson and Doyle’s 1999 paper “Highly optimized

tolerance: A mechanism for power laws in design systems.”[1] In class, we made

our way through a discrete version of a toy HOT model of forest fires. This paper

revolves around the equivalent continuous model’s derivation.

Our interest is in Table I on p. 1415:

We will assume that the local event size is inversely re-
lated to the local density or cost of the resource, so that
A(x)!R"!(x), where typically ! is positive. This relation-
ship arises naturally in systems with spatial geometry "e.g.,
in the forest fire analogy#, where in d dimensions we can
think of R(x) as being (d"1)-dimensional separating barri-
ers. In that case A(x)$R"d(x). In some systems the rela-
tionship between A(x) and R(x) is difficult to define
uniquely, and in some cases reduces to a value judgement.
Here our spatially motivated assumption that A(x)
!R"!(x) is important for obtaining power law distributions.
If we assume an exponential relationship between the size of
an event and its cost %e.g., A$ln(R)&, we obtain a sharp
cutoff in the distribution of events. In essence, this is because
it becomes extremely inexpensive to restrict large events be-
cause the cost of resources decreases faster than the size of
the event to any power. Alternately, one could define a cost
function for cases in which there is a large social or ethical
premium "e.g., loss of life# associated with large events. This
could lead to a cutoff in the distribution due to a rapid rise in
the total allocation of resources to prevent large events. In
this case, the heavy tails would occur in the cost C and not in
the event size A.
To obtain the HOT state we simply minimize the ex-

pected cost %Eq. "1#& subject to the constraint %Eq. "2#&. Sub-
stituting the relationship A(x)!R"!(x) into Eq. "1#, we ob-
tain

E"A'#!!
X
p"x#R"'!"x#dx. "3#

Combining this with Eq. "2#, we minimize E(A') using the
variational principle by solving

(!
X
%p"x#R"'!"x#")R"x#&dx!0. "4#

Thus the optimal relationship between the local probability
and constrained resource is given by

p"x#R"'!"1"x#!const. "5#

From this we obtain

p"x#$R'!#1"x#$A""'#1/!#"x#$A"*"x#, "6#

where *!'#1/! . This relation should be viewed as the
local rule which sets the best placements of the resource. As
expected, greater resources are devoted to regions of high
probability.
As function of x, Eq. "6# shows that p(x) and A(x) scale

as a power law. However, we want to obtain the distribution
P(A) as a function of the area A rather than the local coor-
dinate x. It is convenient to focus on cumulative distribution,
Pcum(A), which is the sum of P(A) for regions of size
greater than or equal to A. We express the tails of Pcum(A) as

Pcum"A #!!
A"x#$A

p"x#dx!!
p"x#%A"*

p"x#dx, "7#

where the integral is evaluated over the subset of x in which
the local value A(x) is greater than the specified value A.

Under what conditions does this relationship lead to
heavy tails? Certainly not all p(x) lead to power laws in
P(A) %equivalently, Pcum(A), which has power law tails if
P(A) has power law tails, with one power higher in the
exponent&. For example, if p(x) is concentrated within a fi-
nite region, then the resource would optimally be concen-
trated within that region, and the distribution P(A) would a
priori have zero weight for events greater than the area as-
sociated with the mass concentration of p(x). Here the most
extreme case is a point mass at a particular location, p(x)
!((x"x*), which could be enclosed by a high density of
the resource, so that all activity is confined to x*. Alter-
nately, if p(x) is spatially uniform, then R(x) and A(x)
would be uniformly distributed, and P(A) would be a point
mass at a fixed area determined by the resource constraint
and the system size.
While counterexamples such as those we have just de-

scribed can be constructed, a broad class of distributions
p(x) leads to heavy tails in P(A). The case for d!1 with
monotonic p(x) and restricting X to x$0 is particularly
simple "and forms the basis for the more general case#. In
this special case, the change of variables from p(x) to P(A)
is straightforward, and we obtain

Pcum"A #!!
p"1"A"*#

+

p"x#dx!pcum„p"1"A"*#… , "8#

where pcum(x) is the tail of the cumulative distribution for
the probability of hits and p"1 is the inverse function of p, so
that p"1(A"*) is the value of x for which p(x)!A"*.
We can use Eq. "8# to directly compute the tail of

Pcum(A) for standard p(x), such as power laws, exponen-
tials, and Gaussians. Table I summarizes the results, where
we look only at tails in the distributions of x and A, and drop
constants. We obtain a power distribution for Pcum(A) in
each case, with a logarithmic correction for the Gaussian.
For higher dimensions, suppose that the tails of p(x) can

be bounded above and below by

pl" "x"#,p"x#,pu" "x"#, "9#

where "x" denotes the magnitude of x. The specific form of
Eq. "9# effectively reduces the change of variables to quasi-
one-dimensional computations. With this assumption, Eq. "7#
can be bounded below by

TABLE I. In the HOT state, power law distributions of the
region sizes Pcum(A) are obtained for a broad class of probability
distributions of the hits p(x), including power law, exponential, and
Gaussian distributions as shown here.

p(x) pcum(x) Pcum(A)

x"(q#1) x"q A"*(1"1/q)

e"x e"x A"*

e"x2 x"1e"x2 A"*% log(A)&"1/2
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and Equation 8 on the same page:

Pcum(A) =

∫ ∞

p−1(A−γ)

p(x)dx = pcum

(
p−1

(
A−γ

))
,

where γ = α + 1/β.

Please note that Pcum(A) for x−(q+1) is not correct. Find the right one!

Here, A(x) is the area connected to the point x (think connected patch of trees

for forest fires). The cost of a ‘failure’ (e.g., lightning) beginning at x scales as
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A(x)α which in turn occurs with probability p(x). The function p−1 is the inverse

function of p.

Resources associated with point x are denoted as R(x) and area is assumed to

scale with resource as A(x) ∼ R−β(x).

Finally, pcum is the complementary cumulative distribution function for p.

As per the table, determine pcum(x) and Pcum(A) for the following (3 pts each):

(a) p(x) ∼ x−(q+1),

(b) p(x) ∼ e−x, and

(c) p(x) ∼ e−x2
.

2. (3 + 3 + 3) More on the power law stuff:

Take x to be the wealth held by an individual in a population of n people, and the

number of individuals with wealth between x and x + dx is approximately N(x)dx.

Given a power-law size frequency distribution N(x) = cx−γ where a� x�∞,

determine the value of γ for which the so-called 80/20 rule holds.

In other words, find γ for which the bottom 4/5 of the population holds 1/5 of

the overall wealth the top 1/5 holds the remaining 4/5.

(a) First determine the total wealth W in the system given
∫∞

a
dxN(x) = n.

(b) Find γ for the 80/20 requirement.

(c) For the γ you find, determine how much wealth 100q percent of the

population possesses as a function of q and plot the result.

3. (3 + 3)

(a) Generalize the preceding question to find γ such that 100q percent of the

population holds 100(1− r) percent of the wealth.

(b) Is every pairing of q and r possible?

4. (Optional)

In lectures on lognormals and other heavy-tailed distributions, we came across a

fun and interesting integral when considering organization size distributions arising

from growth processes with variable lifespans.

Show that

P (x) =

∫ ∞

t=0

ae−at 1

x
√

2πt
exp

(
−(ln x/m)2

2t

)
dt

leads to:

P (x) ∝ x−1e−
√

2λ(ln x/m)2 ,

and therefore two different scaling regimes. Enjoyable suffering may be involved.
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