

Outline

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

Fundamental Theorem of Linear Algebra

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^{T}.

Where \vec{x} lives:

- Row space $C\left(A^{T}\right) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^{n}$.
- $\operatorname{dim} C\left(A^{\mathrm{T}}\right)+\operatorname{dim} N(A)=r+(n-r)=n$
- Orthogonality: $C\left(A^{\mathrm{T}}\right) \otimes N(A)=R^{n}$

Where \vec{b} lives:

- Column space $C(A) \subset R^{m}$.
- Left Nullspace $N\left(A^{\mathrm{T}}\right) \subset R^{m}$.
- $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
- Orthogonality: $C(A) \otimes N\left(A^{T}\right)=R^{m}$

Lecture $25 / 25$:
Singular Value Decomposition

The Fundamental Theorem of Linear Algebra
Approximating
matrices with SVD

๑Qc 1 of 8

Lecture 25/25:
Singular Value Singular Value
Decomposition

The Fundamental
Theorem of Linear Algebra
Approximating
Approximating
matrices with SVD

The Fundamental
ĀIGebrā
Approximating
Lecture $25 / 25$:
Singular Value
Decomposition
matrices with SVD

Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- The \hat{v}_{i} span R^{n}
- We find the \hat{v}_{i} as eigenvectors of $A^{\mathrm{T}} A$.
- The \hat{u}_{i} span R^{m}
- We find the \hat{u}_{i} as eigenvectors of $A A^{\mathrm{T}}$.

Happy bases

- $\left\{\hat{v}_{1}, \ldots, \hat{v}_{r}\right\}$ span Row space
- $\left\{\hat{v}_{r+1}, \ldots, \hat{v}_{n}\right\}$ span Null space
- $\left\{\hat{u}_{1}, \ldots, \hat{u}_{r}\right\}$ span Column space
- $\left\{\hat{u}_{r+1}, \ldots, \hat{u}_{m}\right\}$ span Left Null space

Fundamental Theorem of Linear Algebra

How $A \vec{x}$ works:
Best solution \vec{x}_{*} when $\vec{b}=\vec{p}+\vec{e}$:

$$
A \hat{v}_{i}=\hat{0} \text { for } i=r+1, \ldots, n .
$$

- Matrix version:

$$
A=U \Sigma V^{\mathrm{T}}
$$

- A sends each $\hat{v}_{i} \in C\left(A^{\mathrm{T}}\right)$ to its partner $\hat{u}_{i} \in C(A)$ with a positive stretch/shrink factor $\sigma_{i}>0$.
- A is diagonal with respect to these bases.
- When viewed in the right way, every A is a diagonal matrix Σ.

 صac 4 of 8

Lecture $25 / 25$:
Singular Value Decomposition

The Fundamental
Theorem of Linear Algebrá
Approximating
matrices with SVD

A
のดく 5 of 8

Lecture $25 / 25$:
Singular Value Decomposition

The Fundamental
Theorem of Lineã
ĀĪgebrā
Approximating
matrices with SVD
matrices with SVD
Lecture 25/25:
Singular Value
Decomposition

The Fundamental Thheorem of Lineear

Approximating
matrices with SVD

The complete big picture：

Image approximation（80x60）

Idea：use SVD to approximate images
－Interpret elements of matrix A as color values of an image．
－Truncate series SVD representation of A ：

$$
A=U \Sigma V^{\mathrm{T}}=\sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}
$$

－Use fact that $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ ．
－Rank $r=\min (m, n)$ ．
－Rank $r=$ \＃of pixels on shortest side（usually）．
－For color：approximate 3 matrices（RGB）．

Lecture 25／25：
Singular Value
Decomposition

The Fundamental
Theorem of Linear
Algebara－
Approximating
matrices with SVD

Amman
つのく 7 of 8

Lecture 25／25：
Singular Value
Decomposition

The Fundamental
Theorem of Linear Algebra

Approximating
matrices $\overline{\text { with }}$ SVD
matricees with SVD

A

