Singular Value Decomposition Matrixology (Linear Algebra)—Lecture 25/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

VACC

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

200 1 of 8

Outline

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

990 2 of 8

Fundamental Theorem of Linear Algebra

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.

Where \vec{x} lives:

- Row space $C(A^{\mathrm{T}}) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^n$.
- dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- Orthogonality: $C(A^{\mathrm{T}}) \otimes N(A) = R^{n}$

Where \vec{b} lives:

- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^{T}) \subset R^{m}$.
- dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- Orthogonality: $C(A) \bigotimes N(A^{T}) = R^{m}$

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

200 3 of 8

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

200 4 of 8

UNIVERSITY

Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- The v_i span Rⁿ
- We find the \hat{v}_i as eigenvectors of $A^{\mathrm{T}}A$.
- The \hat{u}_i span R^m
- We find the \hat{u}_i as eigenvectors of AA^{T} .

Happy bases

- $\{\hat{v}_1, \ldots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \ldots, \hat{v}_n\}$ span Null space
- $\{\hat{u}_1, \ldots, \hat{u}_r\}$ span Column space
- $\{\hat{u}_{r+1},\ldots,\hat{u}_m\}$ span Left Null space

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

290 5 of 8

Fundamental Theorem of Linear Algebra

How Ax works:

$$\boxed{\mathbf{A}\hat{\mathbf{v}}_i = \sigma_i \hat{\mathbf{u}}_i} \text{ for } i = 1, \dots, r.$$

and

$$\hat{Av}_i = \hat{0}$$
 for $i = r + 1, \dots, n$.

Matrix version:

$$A = U \Sigma V^{\mathrm{T}}$$

- ► A sends each $\hat{v}_i \in C(A^T)$ to its partner $\hat{u}_i \in C(A)$ with a positive stretch/shrink factor $\sigma_i > 0$.
- A is diagonal with respect to these bases.
- When viewed in the right way, every A is a diagonal matrix Σ.

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

290 0 6 of 8

The complete big picture:

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

UNIVERSITY

DQC 7 of 8

Image approximation (80x60)

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- Truncate series SVD representation of A:

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i}\hat{\boldsymbol{u}}_{i}\hat{\boldsymbol{v}}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- Rank r = # of pixels on shortest side (usually).
- ► For color: approximate 3 matrices (RGB).

Lecture 25/25: Singular Value Decomposition

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

200 8 of 8