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Fundamental Theorem of Linear Algebra

I Applies to any m × n matrix A.
I Symmetry of A and AT.

Where ~x lives:
I Row space C(AT) ⊂ Rn.
I (Right) Nullspace N(A) ⊂ Rn.
I dim C(AT) + dim N(A) = r + (n − r) = n
I Orthogonality: C(AT)

⊗
N(A) = Rn

Where ~b lives:
I Column space C(A) ⊂ Rm.
I Left Nullspace N(AT) ⊂ Rm.
I dim C(A) + dim N(AT) = r + (m − r) = m
I Orthogonality: C(A)

⊗
N(AT) = Rm
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Best solution ~x∗ when ~b = ~p + ~e:
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Fundamental Theorem of Linear Algebra

Now we see:
I Each of the four fundamental subspaces has a ‘best’

orthonormal basis
I The v̂i span Rn

I We find the v̂i as eigenvectors of ATA.
I The ûi span Rm

I We find the ûi as eigenvectors of AAT.

Happy bases
I {v̂1, . . . , v̂r} span Row space
I {v̂r+1, . . . , v̂n} span Null space
I {û1, . . . , ûr} span Column space
I {ûr+1, . . . , ûm} span Left Null space

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Lecture 25/25:

Singular Value
Decomposition

The Fundamental
Theorem of Linear
Algebra

Approximating
matrices with SVD

6 of 8

Fundamental Theorem of Linear Algebra

How A~x works:
I

Av̂i = σi ûi for i = 1, . . . , r .

and
Av̂i = 0̂ for i = r + 1, . . . , n.

I Matrix version:
A = UΣV T

I A sends each v̂i ∈ C(AT) to its partner ûi ∈ C(A) with
a positive stretch/shrink factor σi > 0.

I A is diagonal with respect to these bases.
I When viewed in the right way, every A is a diagonal

matrix Σ.
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The complete big picture:
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Image approximation (80x60)

Idea: use SVD to approximate images
I Interpret elements of matrix A as color values of an

image.
I Truncate series SVD representation of A:

A = UΣV T =
r∑

i=1

σi ûi v̂T
i

I Use fact that σ1 ≥ σ2 ≥ . . . ≥ σr > 0.

I Rank r = min(m, n).
I Rank r = # of pixels on shortest side (usually).
I For color: approximate 3 matrices (RGB).
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