Positive Definite Matrices

Matrixology（Linear Algebra）—Lecture 22／25 MATH 124，Fall， 2011

Prof．Peter Dodds

Department of Mathematics \＆Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Positive Definite Matrices（PDMs）

Lecture 26

Motivation．
What a PDM is．
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination

Principle Axis Theorem
Nutshell
Optional material
References

UNIVERSITY VER MONT

Outline

Lecture 26

Motivation．．．
What a PDM is．．．
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material

References

Motivation．
What a PDM is．
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination

Simple example problem 1 of 2:

What does this function look like?:

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} .
$$

- Three main categories:

- Standard approach for determining type of extremum involves calculus, derivatives, horrible things...
- Obviously, we should be using linear algebra...

Lecture 26

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem Nutshell
Optional material
References

っの® 4 of 46

Simple example problem 1 of 2 :

Linear Algebra-ization...

- We can rewrite

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} .
$$

as

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
x_{1} & \left.x_{2}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
=\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}
\end{array}\right.
\end{gathered}
$$

- Note: A is symmetric as $A=A^{\mathrm{T}}$ (delicious).
- Interesting and sneaky...

Simple example problem 2 of 2 :

What about this curve?:

$$
2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}=1
$$

Linear Algebra-ization...
Again, we'll see we can rewrite as

Lecture 26

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

$$
1=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\vec{x}^{\mathrm{T}} A \vec{x}
$$

Goal:

- Understand how \mathbb{A} governs the form $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$.
- Somehow, this understanding will involve almost everything we've learnt so far: row reduction, pivots, eigenthings, symmetry, ...

General 2×2 example:

$$
\begin{gathered}
\text { Write } \mathbb{A}=\mathbb{A}^{\mathrm{T}}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \\
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
a x_{1}+b x_{2} \\
b x_{1}+c x_{2}
\end{array}\right] \\
=x_{1}\left(a x_{1}+b x_{2}\right)+x_{2}\left(b x_{1}+c x_{2}\right)=a x_{1}^{2}+b x_{1} x_{2}+b x_{1} x_{2}+c x_{2}^{2} \\
=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2} .
\end{gathered}
$$

- See how a, b, and c end up in the quadratic form.

Lecture 26

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

General 2×2 example-creating \mathbb{A} :

We have: $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}=f\left(x_{1}, x_{2}\right)$

- Back to our first example:

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} .
$$

- Identify $a=2, b=-1$, and $c=2$.

$$
: f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Second example: $2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}=1$.
- Identify $a=2, b=1$, and $c=2$.

$$
:\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=1
$$

Lecture 26

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

General 3×3 example:

$$
\begin{gathered}
\text { Write } \mathbb{A}=\mathbb{A}^{\mathrm{T}}=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right] . \\
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
=a x_{1}^{2}+d x_{2}^{2}+f x_{3}^{2}+2 b x_{1} x_{2}+2 c x_{1} x_{3}+2 e x_{2} x_{3} .
\end{gathered}
$$

- Again: see how the terms in \mathbb{A} distribute into the quadratic form.

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

っの^ 9 of 46

General story:

- Using the definition of matrix multiplication,

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\sum_{i=1}^{n}\left[\vec{x}^{\mathrm{T}}\right]_{[}[\mathbb{A} \vec{x}]_{i}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} a_{i j} x_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

- We see the $x_{i} x_{j}$ term is attached to $a_{i j}$.
- On-diagonal terms look like this: $a_{77} x_{7}^{2}$ and $a_{33} x_{3}^{2}$.
- Off-diagonal terms combine, e.g., $\left(a_{13}+a_{31}\right) x_{1} x_{3}$.
- Given some f with a term $23 x_{1} x_{3}$, we could divide the 23 between a_{13} and a_{31} however we like.
- e.g., $a_{13}=36$ and $a_{31}=-13$ would work.
- But we choose to make \mathbb{A} symmetric because symmetry is great.

Lecture 26
Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Th If VERMONT

A little abstraction:

A few observations:

1. The construction $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ appears naturally.
2. Dimensions of $\vec{x}^{\mathrm{T}}, \mathbb{A}$, and \vec{x} : 1 by n, n by n, and n by 1 .
3. $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ is a 1 by 1 .
4. If $\mathbb{A} \vec{v}=\lambda \vec{v}$ then

$$
\vec{v}^{\mathrm{T}} \mathbb{A} \vec{v}=\vec{v}^{\mathrm{T}}(\mathbb{A} \vec{v})=\vec{v}^{\mathrm{T}}(\lambda \vec{v})=\lambda \vec{v}^{\mathrm{T}} \vec{v}=\lambda\|\vec{v}\|^{2} .
$$

5. If $\lambda>0$, then $\vec{v}^{\mathrm{T}} \mathbb{A} \vec{v}>0$ always (given $\vec{v} \neq \overrightarrow{0}$).
6. Suggests we can build up to saying something about $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ starting from eigenvalues...

Lecture 26

Motivation...
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Definitions：

Positive Definite Matrices（PDMs）：
－Real，symmetric matrices with positive eigenvalues．
－Math version：

$$
\begin{gathered}
\mathbb{A}=\mathbb{A}^{\mathrm{T}}, \\
a_{i j} \in R \forall i, j=1,2, \cdots n, \\
\text { and } \lambda_{i}>0, \forall i=1,2, \cdots n .
\end{gathered}
$$

Lecture 26

Motivation．．
What a PDM is．．．
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material

Semi－Positive Definite Matrices（SPDMs）：
－Same as for PDMs but now eigenvalues may now be 0 ：

$$
\lambda_{i} \geq 0, \forall i=1,2, \cdots, n .
$$

－Note：If some eigenvalues are <0 we have a sneaky matrix．

零 ${ }^{\text {The }}$ UNIVERSITY IV VERMONT

Equivalent Definitions:

Positive Definite Matrices:

- $\mathbb{A}=\mathbb{A}^{\mathrm{T}}$ is a PDM if

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}>0 \quad \forall \vec{x} \neq \overrightarrow{0}
$$

Lecture 26

Motivation...
What a PDM is...
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination

Semi-Positive Definite Matrices:

$-\mathbb{A}=\mathbb{A}^{\mathbf{T}}$ is a SPDM if

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x} \geq 0
$$

๑ด^ 14 of 46

Connecting these definitions:

Spectral Theorem for Symmetric Matrices:

$$
\mathbb{A}=\mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}}
$$

where $\mathbb{Q}^{-1}=\mathbb{Q}^{T}$,

Lecture 26

- Special form of $\mathbb{A}=\mathbb{S} \mathbb{S}^{-1}$ that arises when $\mathbb{A}=\mathbb{A}^{T}$.

๑ด^ 15 of 46

Understanding $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

- Substitute $\mathbb{A}=\mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}}$ into $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

$$
=\vec{x}^{\mathrm{T}}\left(\mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}}\right) \vec{x}=\left(\vec{x}^{\mathrm{T}} \mathbb{Q}\right) \wedge\left(\mathbb{Q}^{\mathrm{T}} \vec{x}\right)=\left(\mathbb{Q}^{\mathrm{T}} \vec{x}\right)^{\mathrm{T}} \wedge\left(\mathbb{Q}^{\mathrm{T}} \vec{x}\right) .
$$

- We now see \vec{x} transforming from the natural basis to A^{\prime} 's eigenvector basis: $\vec{y}=\mathbb{Q}^{\mathrm{T}} \vec{x}$.

Lecture 26

$$
\begin{aligned}
& \quad=\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \\
& =\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2} .
\end{aligned}
$$

Understanding $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

So now we have...

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

- Can see whether or not $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}>0$ depends on the λ_{i} since each $y_{i}^{2}>0$.
- So a PDM must have each $\lambda_{i}>0$.
- And a SPDM must have $\lambda_{i} \geq 0$.

Lecture 26

Motivation...
What a PDM is...
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material

References

More understanding of $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

- Substitute $\mathbb{A}=\mathbb{L} \mathbb{D} \mathbb{L}^{\mathrm{T}}$ into $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

$$
=\vec{x}^{\mathrm{T}}\left(\mathbb{L} \mathbb{D} \mathbb{L}^{\mathrm{T}}\right) \vec{x}=\left(\vec{x}^{\mathrm{T}} \mathbb{L}\right) \mathbb{D}\left(\mathbb{L}^{\mathrm{T}} \vec{x}\right)=\left(\mathbb{L}^{\mathrm{T}} \vec{x}\right)^{\mathrm{T}} \mathbb{D}\left(\mathbb{L}^{\mathrm{T}} \vec{x}\right)
$$

- Change from eigenvalue story: \vec{x} is transformed into $\vec{z}=\mathbb{L}^{\mathrm{T}} \vec{x}$ but this is not a change of basis.

Lecture 26

Motivation..
What a PDM is...
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

$$
\begin{aligned}
& \quad=\left[\begin{array}{llll}
z_{1} & z_{2} & \cdots & z_{n}
\end{array}\right]\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{n}
\end{array}\right] \\
& =d_{1} z_{1}^{2}+d_{2} z_{2}^{2}+\cdots+d_{n} z_{n}^{2}
\end{aligned}
$$

$\frac{\text { 素 }}{\text { The }}$ UNIVERSITY of VERMONT

More understanding of $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=d_{1} z_{1}^{2}+d_{2} z_{2}^{2}+\cdots+d_{n} z_{n}^{2}
$$

- Can see whether or not $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}>0$ depends on the d_{i} since each $z_{i}^{2}>0$.
- So a PDM must have each $d_{i}>0$.
- And a SPDM must have $d_{i} \geq 0$.

っの® 19 of 46

Back to general 2×2 example:

$$
f(x, y)=\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
$$

Lecture 26

Motivation...
What a PDM is...
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Focus on eigenvalues-We can now see:

- $f(x, y)$ has a minimum at $x=y=0$ iff \mathbb{A} is a PDM, i.e., if $\lambda_{1}>0$ and $\lambda_{2}>0$.
- Maximum: if $\lambda_{1}<0$ and $\lambda_{2}<0$.
- Saddle: if $\lambda_{1}>0$ and $\lambda_{2}<0$.

Back to simple example problem 1 of 2:

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Lecture 26

Motivation...
What a PDM is...:
Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References
Compute eigenvalues...

- Find $\lambda_{1}=+3$ and $\lambda_{2}=+1$: f is a minimum.

General problem:

- How do we easily find the signs of $\lambda \mathrm{s} . .$. ?

Excitement about symmetric matrices:

- We recall with alacrity the totally amazing fact that real symmetric matrices always have (1) real eigenvalues, and (2) orthogonal eigenvectors forming a basis for R^{n}.
- We now see that knowing the signs of the $\lambda \mathrm{s}$ is also important...

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References
Test cases:

- $\mathbb{A}_{1}=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right], \mathbb{A}_{2}=\left[\begin{array}{cc}2 & -1 \\ -1 & -2\end{array}\right], \mathbb{A}_{3}=\left[\begin{array}{ll}-2 & -1 \\ -1 & -2\end{array}\right]$

Some minor struggling leads to:

- $\mathbb{A}_{1}: \lambda_{1}=+3, \lambda_{2}=+1$, (PDM, happy),
- $\mathbb{A}_{2}: \lambda_{1}=+\sqrt{5}, \lambda_{2}=-\sqrt{5}$, (sad),
- $\mathbb{A}_{3}: \lambda_{1}=-1, \lambda_{2}=-3,(\mathrm{sad})$

Pure madness:

Extremely Sneaky Result \#632:

If $\mathbb{A}=\mathbb{A}^{\mathrm{T}}$ and \mathbb{A} is real, then

- \# +ve eigenvalues = \# +ve pivots
- \# -ve eigenvalues = \# -ve pivots
- \# 0 eigenvalues = \# 0 pivots

Lecture 26
Motivation.
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References
Notes:

- Previously, we had for general \mathbb{A} that

$$
|\mathbb{A}|=\prod \lambda_{i}= \pm \prod d_{i} .
$$

- The bonus here is for real symmetric \mathbb{A}.
- Eigenvalues are pivots come from very different parts of linear algebra.
- Crazy connection between eigenvalues and pivots!

Pivots and Eigenvalues:

More notes:

- All very exciting: Pivots are much, much easier to compute.
- (cue balloons, streamers)

Check for our three examples:

- $\mathbb{A}_{1}: d_{1}=+2, d_{2}=+\frac{3}{2}$
\checkmark signs match with $\lambda_{1}=+3, \lambda_{2}=+1$.
- $\mathbb{A}_{2}: d_{1}=+2, d_{2}=-\frac{5}{2}$
\checkmark signs match with $\lambda_{1}=+\sqrt{5}, \lambda_{2}=-\sqrt{5}$.
- $\mathbb{A}_{3}: d_{1}=-2, d_{2}=-\frac{3}{2}$
\checkmark signs match with $\lambda_{1}=-1, \lambda_{2}=-3$.

Lecture 26

Motivation.
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Beautiful reason:

- Let's show how the signs of eigenvalues match signs of pivots for

$$
\mathbb{A}_{2}=\left[\begin{array}{cc}
2 & -1 \\
-1 & -2
\end{array}\right], \quad \lambda_{1,2}= \pm \sqrt{5}
$$

- Compute $\mathbb{L} \mathbb{U}$ decomposition:

$$
\mathbb{A}_{2}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{ll}
2 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]=\mathbb{L} \mathbb{U}
$$

- \mathbb{A}_{2} is symmetric, so we can go further:

$$
\mathbb{A}_{2}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right]=\mathbb{L D L}^{\mathbb{T}}
$$

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Beautiful reason:

- We're here:

$$
\mathbb{A}_{2}=\left[\begin{array}{cc}
1 & 0 \\
-\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right]=\mathbb{L} \mathbb{D} \mathbb{L}^{\mathbb{T}}
$$

- Now think about this matrix:

$$
\mathbb{B}\left(\ell_{21}\right)=\left[\begin{array}{cc}
1 & 0 \\
\ell_{21} & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \ell_{21} \\
0 & 1
\end{array}\right]
$$

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow
Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

- When $\ell_{21}=-\frac{1}{2}$, we have $B\left(-\frac{1}{2}\right)=\mathbb{A}_{2}$.
- Think about what happens as ℓ_{21} changes smoothly from $-\frac{1}{2}$ to 0 .

$$
\mathbb{B}(0)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbb{D} \mathbb{D} \mathbb{I}=\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{5}{2}
\end{array}\right]
$$

1. $\mathbb{B}(0)=\mathbb{D}$'s eigenvalues and pivots are both $2,-\frac{5}{2}$.
2. Stronger: As we alter $\mathbb{B}\left(\ell_{21}\right)$, the pivots do not change!
3. But eigenvalues do change from $+\sqrt{5}$ and $-\sqrt{5}$ to $2,-\frac{5}{2}$.
4. Big deal: because the pivots don't change, the determinant of $\mathbb{B}\left(\ell_{21}\right)$ never changes:

$$
\operatorname{det} \mathbb{B}\left(\ell_{21}\right)=d_{1} \cdot d_{2}=2 \cdot\left(-\frac{5}{2}\right)=-5 \neq 0
$$

5. But we also know $\operatorname{det} \mathbb{B}\left(\ell_{21}\right)=\lambda_{1} \cdot \lambda_{2}$.
6. \therefore as ℓ_{21} changes, eigenvalues cannot pass through 0 as determinant would be 0 , not -5 .
7. \therefore eigenvalues cannot change sign as ℓ_{21} changes...
8. Signs of eigenvalues of $\mathbb{A}_{2}=\mathbb{B}\left(-\frac{1}{2}\right)$ must match signs of eigenvalues of $\mathbb{B}(0)$ which match signs of pivots of $\mathbb{B}(0)$.

- n.b.: Above assumes pivots $\neq 0$; proof is tweakable.

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

General argument:

- Can see argument extends to n by n 's.
- Take $\mathbb{A}=\mathbb{A}^{\mathbb{T}}=\mathbb{L} \mathbb{D L}^{\mathbb{T}}$ and smoothly change \mathbb{L} to \mathbb{I}.
- Write $\hat{\mathbb{L}}(t)=\mathbb{I}+t(\mathbb{L}-\mathbb{I})$ and

$$
\mathbb{B}(t)=\hat{\mathbb{L}}(t) \mathbb{D} \hat{\mathbb{L}}(t)^{\mathrm{T}}
$$

Lecture 26
Motivation.
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

- When $t=1$, we have $\hat{\mathbb{L}}(1)=\mathbb{L}$ and $\mathbb{B}(1)=\mathbb{A}$.
- When $t=0, \hat{\mathbb{L}}(0)=\mathbb{I}$, and $\mathbb{B}(0)=\mathbb{D}$.
- Again, pivots don't change as we move t from 1 to 0 , and determinant must stay the same.
- Same story: eigenvalues cannot cross zero and must have the same signs for all t, including $t=0$ when eigenvalues and pivots are equal $\mathbb{A}=\mathbb{D}$.

Further down the rabbit hole:

'Complete the square' for our first example:

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\
=2\left(x_{1}^{2}-x_{1} x_{2}\right)+2 x_{2}^{2}=2\left(x_{1}^{2}-x_{1} x_{2}+\frac{1}{4} x_{2}^{2}-\frac{1}{4} x_{2}^{2}\right)+2 x_{2}^{2} \\
=2\left(x_{1}^{2}-x_{1} x_{2}+\frac{1}{4} x_{2}^{2}\right)-\frac{1}{2} x_{2}^{2}+2 x_{2}^{2}=2\left(x_{1}-\frac{1}{2} x_{2}\right)^{2}+\frac{3}{2} x_{2}^{2}
\end{gathered}
$$

Lecture 26

Motivation...
What a PDM is.

Identifying PDMs

- We see the pivots $d_{1}=2$ and $d_{2}=\frac{3}{2}$ and the multiplier $\ell_{21}=-\frac{1}{2}$ appear:

$$
f\left(x_{1}, x_{2}\right)=d_{1}\left(x_{1}+\ell_{21} x_{2}\right)^{2}+d_{2} x_{2}^{2} .
$$

- Super cool-this is exactly $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\left(\mathbb{L}^{\mathrm{T}} \vec{x}\right) \mathbb{D}\left(\mathbb{L}^{\mathrm{T}} \vec{x}\right)^{\mathrm{T}}=d_{1} z_{1}^{2}+d_{2} z_{2}^{2}$.
- The minimum is now obvious (sum of squares).

Another example:

Lecture 26

- Take the matrix \mathbb{A}_{2} :

$$
f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Complete the square:

$$
f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}=2\left(x_{1}-\frac{1}{2} x_{2}\right)^{2}-\frac{5}{2} x_{2}^{2}
$$

- Matches: Pivots $d_{1}=2, d_{2}=-\frac{5}{2}$, so $x_{1}=x_{2}=0$ is a saddle.
- Completing the square matches up with elimination...

のQく 32 of 46

Principle Axis Theorem:

Back to our second simple problem:

- Graph $2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}=1$.
- We'll simplify with linear algebra to find an equation of an ellipse...
- From before, our equation can be rewritten as

$$
\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=1
$$

- Again use spectral decomposition, $\mathbb{A}=\mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}}$, to diagonalize giving $\left(\mathbb{Q}^{\mathrm{T}} \vec{x}\right)^{\mathrm{T}} \wedge\left(\mathbb{Q}^{\mathrm{T}} \vec{x}\right)=1$ where

$$
\mathbb{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]}_{\mathbb{Q}} \underbrace{\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]}_{\wedge} \underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]}_{\mathbb{Q}^{T}}
$$

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem. Nutshell
Optional material
References

Principle Axis Theorem：

Lecture 22／25：
Positive Definite Matrices（PDMs）

Lecture 26

So $2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=1$
crazily becomes

$$
\begin{gathered}
\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)^{\mathrm{T}}=1 \\
:\left[\frac{x_{1}+x_{2}}{\sqrt{2}}\right. \\
\left.\frac{x_{1}-x_{2}}{\sqrt{2}}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{x_{1}+x_{2}}{\sqrt{2}} \\
\frac{x_{1}-x_{2}}{\sqrt{2}}
\end{array}\right]=1 \\
: 3\left(\frac{x_{1}+x_{2}}{\sqrt{2}}\right)^{2}+\left(\frac{x_{1}-x_{2}}{\sqrt{2}}\right)^{2}=1
\end{gathered}
$$

Motivation．
What a PDM is．

Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

っのく 35 of 46

Principle Axis Theorem：

If we change to eigenvector coordinate system，

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\mathbb{Q}^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\frac{x_{1}+x_{2}}{\sqrt{2}} \\
\frac{x_{1}-x_{2}}{\sqrt{2}}
\end{array}\right],
$$

then our equation simplifies greatly：

$$
\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=1
$$

which is just

$$
3 \cdot u_{1}^{2}+1 \cdot u_{2}^{2}=1
$$

Very nice！PDM ：ellipse．

Lecture 26

Motivation．．
What a PDM is．

Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem Nutshell
Optional material
References

Principle Axis Theorem：

Finally，we can draw a picture of $2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$ ：

Lecture 26

Motivation．
What a PDM is．

Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem Nutshell
Optional material
References
$3 \cdot u_{1}^{2}+1 \cdot u_{2}^{2}=1$ where $u_{1}=\frac{x_{1}+x_{2}}{\sqrt{2}}$ and $u_{2}=\frac{x_{1}-x_{2}}{\sqrt{2}}$ ．
っのく 37 of 46

Nutshell:

- $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ is a commonly occurring construction.
- Big deals: Positive Definiteness and Semi-Positive Definiteness of \mathbb{A}.
- Positive eigenvalues : PDM.
- Non-negative eigenvalues : SPDM.
- Signs of pivots (easy test) match signs of eigenvalues.
- Gaussian elimination \equiv completing the square.
- Standard questions: determine if a matrix is a PDM, convert a quadratic function into matrix $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$, sketch a quadratic curve (e.g., an ellipse).

Lecture 26

Motivation.
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination

Another connection:

ST \#731:

For a real symmetric \mathbb{A}, if all upper left determinants of \mathbb{A} are +ve , so are \mathbb{A} 's eigenvalues, and vice versa.

Lecture 26

Motivation..
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References
Check:

- $\mathbb{A}_{1}:|2|>0,\left|\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right|=3>0$: yes.
- $\mathbb{A}_{2}:|2|>0,\left|\begin{array}{cc}2 & -1 \\ -1 & -2\end{array}\right|=-5<0:$ no.
$-\mathbb{A}_{3}:|-2|<0,\left|\begin{array}{ll}-2 & -1 \\ -1 & -2\end{array}\right|=3>0$: no.

๑ด® 41 of 46

Reasoning for 2×2 case:

- Take general symmetric matrix $2 \times 2: \mathbb{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
- Upper left determinants: a and $a c-b^{2}$.
- Eigenvalues (from Assignment 9):

$$
\begin{aligned}
& \lambda_{1}=\frac{(a+c)+\sqrt{(a-c)^{2}+4 b^{2}}}{2} \\
& \lambda_{2}=\frac{(a+c)-\sqrt{(a-c)^{2}+4 b^{2}}}{2}
\end{aligned}
$$

- Objective: show $a>0$ and $a c-b^{2}>0 \Leftrightarrow \lambda_{1}, \lambda_{2}>0$.

Lecture 26

Motivation..
What a PDM is.

Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Reasoning for 2×2 case:

Reuse previous sneakiness:

$$
\begin{aligned}
&|\mathbb{A}-\lambda \mathbb{I}|=\left|\begin{array}{cc}
a-\lambda & b \\
b & c-\lambda
\end{array}\right|=(a-\lambda)(c-\lambda)-b^{2} \\
&=\lambda^{2}-(a+c) \lambda+a c-b^{2} \\
&=\lambda^{2}-\operatorname{Tr}(\mathbb{A})+\operatorname{det}(\mathbb{A}) \\
&=\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right)+\left(\lambda_{1} \cdot \lambda_{2}\right) \\
&: \lambda_{1}+\lambda_{2}=a+c, \quad \lambda_{1} \cdot \lambda_{2}=a c-b^{2}
\end{aligned}
$$

Lecture 26

Motivation..
What a PDM is.

Identifying PDMs

Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Show $a>0, a c-b^{2}>0 \Leftrightarrow \lambda_{1}, \lambda_{2}>0$:

Show ":":

- Given $a c-b^{2}>0$ then $\lambda_{1} \cdot \lambda_{2}>0$, so both eigenvalues are positive or both are negative.
- Given $a>0$ then $c>0 \mathrm{~b} / \mathrm{c}$ otherwise $a c-b^{2}<0$.
- This means $a+c=\lambda_{1}+\lambda_{2}>0 \rightarrow$ both eigenvalues are positive.

Show " \Leftarrow ":

- Given $\lambda_{1}, \lambda_{2}>0$, then $a c-b^{2}=\lambda_{1} \cdot \lambda_{2}>0$
- Know $a+c=\lambda_{1}+\lambda_{2}>0$, so either $a, c>0$, or one is negative.
- But again, $a c-b^{2}>0$ implies a, c must have same sign, $\rightarrow a>0$.

Lecture 26

Motivation.
What a PDM is.
Identifying PDMs
Completing the square \Leftrightarrow Gaussian elimination
Principle Axis Theorem
Nutshell
Optional material
References

Finding PDMs...

- Upshot: We can compute determinants instead of eigenvalues to find signs.
- But: Computing determinants still isn't a picnic either...
- A much better way is to use the connection between pivots and eigenvalues.
- Another weird connection.
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

