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Simple example problem 1 of 2:

What does this function look like?:

f (x1, x2) = 2x2
1 − 2x1x2 + 2x2

2 .

I Three main categories:

I Standard approach for determining type of extremum
involves calculus, derivatives, horrible things...

I Obviously, we should be using linear algebra...
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Simple example problem 1 of 2:

Linear Algebra-ization...
I We can rewrite

f (x1, x2) = 2x2
1 − 2x1x2 + 2x2

2 .

as

f (x1, x2) =
[
x1 x2

] [
2 −1
−1 2

] [
x1
x2

]
= ~xTA~x

I Note: A is symmetric as A = AT (delicious).
I Interesting and sneaky...

http://www.uvm.edu
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Simple example problem 2 of 2:

What about this curve?:

2x2
1 + 2x1x2 + 2x2

2 = 1.

Linear Algebra-ization...
Again, we’ll see we can rewrite as

1 =
[
x1 x2

] [
2 1
1 2

] [
x1
x2

]
= ~xTA~x

Goal:
I Understand how A governs the form ~xTA~x .

I Somehow, this understanding will involve almost
everything we’ve learnt so far: row reduction, pivots,
eigenthings, symmetry, ...

http://www.uvm.edu
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General 2× 2 example:

I

Write A = AT =

[
a b
b c

]
.

I

~xTA~x =
[
x1 x2

] [
a b
b c

] [
x1
x2

]
=

[
x1 x2

] [
ax1 + bx2
bx1 + cx2

]

= x1(ax1+bx2)+x2(bx1+cx2) = ax2
1 +bx1x2+bx1x2+cx2

2

= ax2
1 + 2bx1x2 + cx2

2 .

I See how a, b, and c end up in the quadratic form.

http://www.uvm.edu
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General 2× 2 example—creating A:

We have: ~xTA~x = ax2
1 + 2bx1x2 + cx2

2 = f (x1, x2)

I Back to our first example:
f (x1, x2) = 2x2

1 − 2x1x2 + 2x2
2 .

I Identify a = 2, b = −1, and c = 2.
I

:f (x1, x2) =
[
x1 x2

] [
2 −1
−1 2

] [
x1
x2

]
I Second example: 2x2

1 + 2x1x2 + 2x2
2 = 1.

I Identify a = 2, b = 1, and c = 2.
I

:
[
x1 x2

] [
2 1
1 2

] [
x1
x2

]
= 1

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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General 3× 3 example:

I

Write A = AT =

a b c
b d e
c e f

 .

I

~xTA~x =
[
x1 x2 x3

] a b c
b d e
c e f

x1
x2
x3


= ax2

1 + dx2
2 + fx2

3 + 2bx1x2 + 2cx1x3 + 2ex2x3.

I Again: see how the terms in A distribute into the
quadratic form.
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General story:

I Using the definition of matrix multiplication,

~xTA~x =
n∑

i=1

[~xT]i [A~x ]i =
n∑

i=1

xi

n∑
j=1

aijxj =
n∑

i=1

n∑
j=1

aijxixj

I We see the xixj term is attached to aij .
I On-diagonal terms look like this: a77x2

7 and a33x2
3 .

I Off-diagonal terms combine, e.g., (a13 + a31)x1x3.
I Given some f with a term 23x1x3, we could divide the

23 between a13 and a31 however we like.
I e.g., a13 = 36 and a31 = −13 would work.
I But we choose to make A symmetric because

symmetry is great.
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A little abstraction:

A few observations:
1. The construction ~xTA~x appears naturally.
2. Dimensions of ~xT, A, and ~x :

1 by n, n by n, and n by 1.
3. ~xTA~x is a 1 by 1.
4. If A~v = λ~v then

~vTA~v = ~vT(A~v) = ~vT(λ~v) = λ~vT~v = λ||~v ||2.

5. If λ > 0, then ~vTA~v > 0 always (given ~v 6= ~0).
6. Suggests we can build up to saying something about

~xTA~x starting from eigenvalues...

http://www.uvm.edu
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Definitions:

Positive Definite Matrices (PDMs):
I Real, symmetric matrices with positive eigenvalues.
I Math version:

A = AT,

aij ∈ R ∀ i , j = 1, 2, · · ·n,

and λi > 0, ∀ i = 1, 2, · · ·n.

Semi-Positive Definite Matrices (SPDMs):
I Same as for PDMs but now eigenvalues may now be

0:
λi ≥ 0, ∀ i = 1, 2, · · · , n.

I Note: If some eigenvalues are < 0 we have a sneaky
matrix.

http://www.uvm.edu
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Equivalent Definitions:

Positive Definite Matrices:
I A = AT is a PDM if

~xTA~x > 0 ∀ ~x 6= ~0

Semi-Positive Definite Matrices:
I A = AT is a SPDM if

~xTA~x ≥ 0

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connecting these definitions:

Spectral Theorem for Symmetric Matrices:

A = Q Λ QT

where Q−1 = QT,

Q =

 | | · · · |
v̂1 v̂2 · · · v̂n
| | · · · |

 , and Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


I Special form of A = SΛS−1 that arises when A = AT.

http://www.uvm.edu
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Understanding ~xTA~x :

I Substitute A = Q Λ QT into ~xTA~x :

= ~xT (
Q Λ QT)

~x =
(
~xTQ

)
Λ

(
QT~x

)
= (QT~x)T Λ (QT~x).

I We now see ~x transforming from the natural basis to
A’s eigenvector basis: ~y = QT~x .

:~xTA~x = ~yTΛ~y

=
[
y1 y2 · · · yn

]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




y1
y2
...

yn


= λ1y2

1 + λ2y2
2 + · · ·+ λny2

n .

http://www.uvm.edu
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Understanding ~xTA~x :

So now we have...

~xTA~x = λ1y2
1 + λ2y2

2 + · · ·+ λny2
n

I Can see whether or not ~xTA~x > 0 depends on the λi
since each y2

i > 0.
I So a PDM must have each λi > 0.
I And a SPDM must have λi ≥ 0.

http://www.uvm.edu
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More understanding of ~xTA~x :

I Substitute A = L D LT into ~xTA~x :

= ~xT (
L D LT)

~x =
(
~xTL

)
D

(
LT~x

)
= (LT~x)T D (LT~x).

I Change from eigenvalue story: ~x is transformed into
~z = LT~x but this is not a change of basis.

:~xTA~x = ~zTD~z

=
[
z1 z2 · · · zn

]


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn




z1
z2
...

zn


= d1z2

1 + d2z2
2 + · · ·+ dnz2

n .

http://www.uvm.edu
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More understanding of ~xTA~x :

So now we have...

~xTA~x = d1z2
1 + d2z2

2 + · · ·+ dnz2
n

I Can see whether or not ~xTA~x > 0 depends on the di
since each z2

i > 0.
I So a PDM must have each di > 0.
I And a SPDM must have di ≥ 0.
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Back to general 2× 2 example:

f (x , y) = ~xTA~x = ax2
1 + 2bx1x2 + cx2

2

Focus on eigenvalues—We can now see:
I f (x , y) has a minimum at x = y = 0 iff A is a PDM,

i.e., if λ1 > 0 and λ2 > 0.
I Maximum: if λ1 < 0 and λ2 < 0.
I Saddle: if λ1 > 0 and λ2 < 0.

http://www.uvm.edu
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Back to simple example problem 1 of 2:

f (x1, x2) = 2x2
1 − 2x1x2 + 2x2

2 =
[
x1 x2

] [
2 −1
−1 2

] [
x1
x2

]

Compute eigenvalues...
I Find λ1 = +3 and λ2 = +1 : f is a minimum.

General problem:
I How do we easily find the signs of λs...?

http://www.uvm.edu
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Excitement about symmetric matrices:

I We recall with alacrity the totally amazing fact that
real symmetric matrices always have (1) real
eigenvalues, and (2) orthogonal eigenvectors
forming a basis for Rn.

I We now see that knowing the signs of the λs is also
important...

Test cases:

I A1 =

[
2 −1
−1 2

]
, A2 =

[
2 −1
−1 −2

]
, A3 =

[
−2 −1
−1 −2

]

Some minor struggling leads to:
I A1 : λ1 = +3, λ2 = +1, (PDM, happy),
I A2 : λ1 = +

√
5, λ2 = −

√
5, (sad),

I A3 : λ1 = −1, λ2 = −3, (sad)

http://www.uvm.edu
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Pure madness:

Extremely Sneaky Result #632:
If A = AT and A is real, then

I # +ve eigenvalues = # +ve pivots
I # -ve eigenvalues = # -ve pivots
I # 0 eigenvalues = # 0 pivots

Notes:
I Previously, we had for general A that
|A| =

∏
λi = ±

∏
di .

I The bonus here is for real symmetric A.
I Eigenvalues are pivots come from very different

parts of linear algebra.
I Crazy connection between eigenvalues and pivots!

http://www.uvm.edu
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Pivots and Eigenvalues:

More notes:
I All very exciting: Pivots are much, much easier to

compute.
I (cue balloons, streamers)

Check for our three examples:
I A1 : d1 = +2, d2 = +3

2
X signs match with λ1 = +3, λ2 = +1.

I A2 : d1 = +2, d2 = −5
2

X signs match with λ1 = +
√

5, λ2 = −
√

5.

I A3 : d1 = −2, d2 = −3
2

X signs match with λ1 = −1, λ2 = −3.

http://www.uvm.edu
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Beautiful reason:

I Let’s show how the signs of eigenvalues match signs
of pivots for

A2 =

[
2 −1
−1 −2

]
, λ1,2 = ±

√
5

I Compute LU decomposition:

A2 =

[
1 0
−1

2 1

] [
2 −1
0 −5

2

]
= LU

I A2 is symmetric, so we can go further:

A2 =

[
1 0
−1

2 1

] [
2 0
0 −5

2

] [
1 −1

2
0 1

]
= LDLT

http://www.uvm.edu
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Beautiful reason:
I We’re here:

A2 =

[
1 0
−1

2 1

] [
2 0
0 −5

2

] [
1 −1

2
0 1

]
= LDLT

I Now think about this matrix:

B(`21) =

[
1 0

`21 1

] [
2 0
0 −5

2

] [
1 `21
0 1

]
I When `21 = −1

2 , we have B(−1
2) = A2.

I Think about what happens as `21 changes smoothly
from −1

2 to 0.
I

B(0) =

[
1 0
0 1

] [
2 0
0 −5

2

] [
1 0
0 1

]
= IDI =

[
2 0
0 −5

2

]

http://www.uvm.edu
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1. B(0) = D’s eigenvalues and pivots are both 2, −5
2 .

2. Stronger: As we alter B(`21), the pivots do not
change!

3. But eigenvalues do change from +
√

5 and −
√

5 to
2, −5

2 .
4. Big deal: because the pivots don’t change, the

determinant of B(`21) never changes:

det B(`21) = d1 · d2 = 2 ·
(
−5

2

)
= −5 6= 0

5. But we also know det B(`21) = λ1 · λ2.
6. ∴ as `21 changes, eigenvalues cannot pass through

0 as determinant would be 0, not -5.
7. ∴ eigenvalues cannot change sign as `21 changes...
8. Signs of eigenvalues of A2 = B(−1

2) must match
signs of eigenvalues of B(0) which match signs of
pivots of B(0).

I n.b.: Above assumes pivots 6= 0; proof is tweakable.

http://www.uvm.edu
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General argument:

I Can see argument extends to n by n’s.
I Take A = AT = LDLT and smoothly change L to I.
I Write L̂(t) = I + t(L− I) and

B(t) = L̂(t) D L̂(t)T

I When t = 1, we have L̂(1) = L and B(1) = A.
I When t = 0, L̂(0) = I, and B(0) = D.
I Again, pivots don’t change as we move t from 1 to 0,

and determinant must stay the same.
I Same story: eigenvalues cannot cross zero and must

have the same signs for all t , including t = 0 when
eigenvalues and pivots are equal A = D.

http://www.uvm.edu
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Further down the rabbit hole:
‘Complete the square’ for our first example:

f (x1, x2) = 2x2
1 − 2x1x2 + 2x2

2

= 2(x2
1 − x1x2) + 2x2

2 = 2(x2
1 − x1x2 +

1
4

x2
2 −

1
4

x2
2 ) + 2x2

2

= 2(x2
1 − x1x2 +

1
4

x2
2 )− 1

2
x2

2 + 2x2
2 = 2(x1 −

1
2

x2)
2 +

3
2

x2
2

I We see the pivots d1 = 2 and d2 = 3
2 and the

multiplier `21 = −1
2 appear:

f (x1, x2) = d1(x1 + `21x2)
2 + d2x2

2 .

I Super cool—this is exactly
~xTA~x = (LT~x) D (LT~x)T = d1z2

1 + d2z2
2 .

I The minimum is now obvious (sum of squares).
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Another example:

I Take the matrix A2:

f (x1, x2) =
[
x1 x2

] [
2 −1
−1 −2

] [
x1
x2

]
I Complete the square:

f (x1, x2) = 2x2
1 − 2x1x2 − 2x2

2 = 2(x1 −
1
2

x2)
2 − 5

2
x2

2 .

I Matches: Pivots d1 = 2, d2 = −5
2 , so x1 = x2 = 0 is a

saddle.
I Completing the square matches up with elimination...

http://www.uvm.edu
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Principle Axis Theorem:

Back to our second simple problem:
I Graph 2x2

1 + 2x1x2 + 2x2
2 = 1.

I We’ll simplify with linear algebra to find an equation
of an ellipse...

I From before, our equation can be rewritten as

~xTA~x =
[
x1 x2

] [
2 1
1 2

] [
x1
x2

]
= 1

I Again use spectral decomposition, A = Q Λ QT, to
diagonalize giving (QT~x)T Λ (QT~x) = 1 where

A =

[
2 1
1 2

]
=

1√
2

[
1 1
1 −1

]
︸ ︷︷ ︸

Q

[
3 0
0 1

]
︸ ︷︷ ︸

Λ

1√
2

[
1 1
1 1

]
︸ ︷︷ ︸

QT

http://www.uvm.edu
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Principle Axis Theorem:

So 2x2
1 + 2x1x2 + 2x2

2 =
[
x1 x2

] [
2 1
1 2

] [
x1
x2

]
= 1

crazily becomes(
1√
2

[
1 1
1 −1

] [
x1
x2

])T [
3 0
0 1

](
1√
2

[
1 1
1 −1

] [
x1
x2

])T

= 1

:
[

x1+x2√
2

x1−x2√
2

] [
3 0
0 1

][ x1+x2√
2

x1−x2√
2

]
= 1

:3
(

x1 + x2√
2

)2

+

(
x1 − x2√

2

)2

= 1
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Principle Axis Theorem:

If we change to eigenvector coordinate system,[
u1
u2

]
= QT

[
x1
x2

]
=

[ x1+x2√
2

x1−x2√
2

]
,

then our equation simplifies greatly:

[
u1 u2

] [
3 0
0 1

] [
u1
u2

]
= 1,

which is just
3 · u2

1 + 1 · u2
2 = 1.

Very nice! PDM : ellipse.
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Principle Axis Theorem:

Finally, we can draw a picture of 2x2
1 + 2x1x2 + 2x2

2 :

3 · u2
1 + 1 · u2

2 = 1 where u1 = x1+x2√
2

and u2 = x1−x2√
2

.
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Nutshell:

I ~xTA~x is a commonly occurring construction.
I Big deals: Positive Definiteness and Semi-Positive

Definiteness of A.
I Positive eigenvalues : PDM.
I Non-negative eigenvalues : SPDM.
I Signs of pivots (easy test) match signs of

eigenvalues.
I Gaussian elimination ≡ completing the square.
I Standard questions: determine if a matrix is a PDM,

convert a quadratic function into matrix ~xTA~x , sketch
a quadratic curve (e.g., an ellipse).
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Another connection:

ST #731:

For a real symmetric A, if all upper left
determinants of A are +ve, so are A’s
eigenvalues, and vice versa.

Check:

I A1 : |2| > 0,

∣∣∣∣ 2 −1
−1 2

∣∣∣∣ = 3 > 0 : yes.

I A2 : |2| > 0,

∣∣∣∣ 2 −1
−1 −2

∣∣∣∣ = −5 < 0 : no.

I A3 : | − 2| < 0,

∣∣∣∣−2 −1
−1 −2

∣∣∣∣ = 3 > 0 : no.
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Reasoning for 2×2 case:

I Take general symmetric matrix 2× 2: A =

[
a b
b c

]
I Upper left determinants: a and ac − b2.
I Eigenvalues (from Assignment 9):

λ1 =
(a + c) +

√
(a− c)2 + 4b2

2

λ2 =
(a + c)−

√
(a− c)2 + 4b2

2
I Objective:

show a > 0 and ac − b2 > 0 ⇔ λ1, λ2 > 0.
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Reasoning for 2×2 case:

Reuse previous sneakiness:

|A− λI| =
∣∣∣∣a− λ b

b c − λ

∣∣∣∣ = (a− λ)(c − λ)− b2

= λ2 − (a + c)λ + ac − b2

= λ2 − Tr(A) + det(A)

= λ2 − (λ1 + λ2) + (λ1 · λ2)

:λ1 + λ2 = a + c, λ1 · λ2 = ac − b2
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Show a > 0, ac − b2 > 0 ⇔ λ1, λ2 > 0:

Show “:”:
I Given ac − b2 > 0 then λ1 · λ2 > 0, so both

eigenvalues are positive or both are negative.
I Given a > 0 then c > 0 b/c otherwise ac − b2 < 0.
I This means a + c = λ1 + λ2 > 0 → both eigenvalues

are positive.

Show “⇐”:
I Given λ1, λ2 > 0, then ac − b2 = λ1 · λ2 > 0
I Know a + c = λ1 + λ2 > 0, so either a, c > 0, or one

is negative.
I But again, ac − b2 > 0 implies a, c must have same

sign, → a > 0.
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Finding PDMs...

I Upshot: We can compute determinants instead of
eigenvalues to find signs.

I But: Computing determinants still isn’t a picnic
either...

I A much better way is to use the connection between
pivots and eigenvalues.

I Another weird connection.
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