Positive Definite Matrices Matrixology (Linear Algebra)—Lecture 22/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

200 1 of 46

Outline

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

2 0f 46

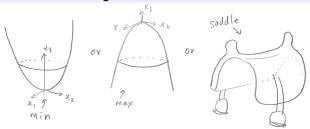
NIVERSITY 6

Simple example problem 1 of 2:

What does this function look like?:

$$f(x_1, x_2) = 2x_1^2 - 2x_1x_2 + 2x_2^2.$$

Three main categories:



- Standard approach for determining type of extremum involves calculus, derivatives, horrible things...
- Obviously, we should be using linear algebra...

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Notivation... What a PDM is... Identifying PDMs Completing the square ⇐ Gaussian elimination Principle Axis Theorem Nutshell Optional material

Simple example problem 1 of 2:

Linear Algebra-ization...

We can rewrite

$$f(x_1, x_2) = 2x_1^2 - 2x_1x_2 + 2x_2^2.$$

as

$$f(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \boxed{\vec{x}^T \mathbb{A} \vec{x}}$$

- Note: *A* is symmetric as $A = A^{T}$ (delicious).
- Interesting and sneaky...

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

20 0 5 of 46

NIVERSITY 6

Simple example problem 2 of 2:

What about this curve?:

$$2x_1^2 + 2x_1x_2 + 2x_2^2 = 1.$$

Linear Algebra-ization...

Again, we'll see we can rewrite as

$$1 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \boxed{\vec{x}^T \mathbb{A} \vec{x}}$$

Goal:

- Understand how \mathbb{A} governs the form $\vec{x}^{T} \mathbb{A} \vec{x}$.
- Somehow, this understanding will involve almost everything we've learnt so far: row reduction, pivots, eigenthings, symmetry, ...

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

20 0 6 of 46

General 2×2 example:

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

$$\vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} ax_1 + bx_2 \\ bx_1 + cx_2 \end{bmatrix}$$

Write $\mathbb{A} = \mathbb{A}^{\mathrm{T}} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

 $= x_1(ax_1+bx_2)+x_2(bx_1+cx_2) = ax_1^2+bx_1x_2+bx_1x_2+cx_2^2$

$$= ax_1^2 + 2bx_1x_2 + cx_2^2.$$

See how *a*, *b*, and *c* end up in the quadratic form.

NIVERSITY

General 2×2 example—creating A:

We have:
$$\vec{x}^{T} \mathbb{A} \ \vec{x} = ax_{1}^{2} + 2bx_{1}x_{2} + cx_{2}^{2} = f(x_{1}, x_{2})$$

Back to our first example:
 $f(x_{1}, x_{2}) = 2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2}$.
Identify $a = 2, b = -1$, and $c = 2$.

$$:f(x_1,x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Second example: 2x₁² + 2x₁x₂ + 2x₂² = 1.
 Identify a = 2, b = 1, and c = 2.

$$: \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

200 8 of 46

General 3×3 example:

Write
$$\mathbb{A} = \mathbb{A}^{\mathrm{T}} = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$
.
 $\vec{x}^{\mathrm{T}}\mathbb{A} \vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

 $= ax_1^2 + dx_2^2 + fx_3^2 + 2bx_1x_2 + 2cx_1x_3 + 2ex_2x_3.$

Again: see how the terms in A distribute into the quadratic form.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

VERMONT

General story:

Using the definition of matrix multiplication,

$$\vec{x}^{\mathrm{T}} \mathbb{A} \ \vec{x} = \sum_{i=1}^{n} [\vec{x}^{\mathrm{T}}]_{i} [\mathbb{A} \ \vec{x}]_{i} = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} a_{ij} x_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j}$$

- We see the x_ix_i term is attached to a_{ii}.
- On-diagonal terms look like this: $a_{77}x_7^2$ and $a_{33}x_3^2$.
- Off-diagonal terms combine, e.g., $(a_{13} + a_{31})x_1x_3$.
- Given some f with a term $23x_1x_3$, we could divide the 23 between a_{13} and a_{31} however we like.
- e.g., $a_{13} = 36$ and $a_{31} = -13$ would work.
- But we choose to make A symmetric because symmetry is great.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

A little abstraction:

A few observations:

- 1. The construction $\vec{x}^{T} \mathbb{A} \vec{x}$ appears naturally.
- 2. Dimensions of \vec{x}^{T} , \mathbb{A} , and \vec{x} : 1 by *n*, *n* by *n*, and *n* by 1.
- 3. $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ is a 1 by 1.
- 4. If $\mathbb{A}\vec{v} = \lambda\vec{v}$ then

$$\vec{\boldsymbol{v}}^{\mathrm{T}} \mathbb{A} \vec{\boldsymbol{v}} = \vec{\boldsymbol{v}}^{\mathrm{T}} (\mathbb{A} \vec{\boldsymbol{v}}) = \vec{\boldsymbol{v}}^{\mathrm{T}} (\lambda \vec{\boldsymbol{v}}) = \lambda \vec{\boldsymbol{v}}^{\mathrm{T}} \vec{\boldsymbol{v}} = \lambda ||\vec{\boldsymbol{v}}||^{2}.$$

- 5. If $\lambda > 0$, then $\vec{v}^{T} \mathbb{A} \vec{v} > 0$ always (given $\vec{v} \neq \vec{0}$).
- 6. Suggests we can build up to saying something about $\vec{x}^{T} \mathbb{A} \vec{x}$ starting from eigenvalues...

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

na (~ 11 of 46

Definitions:

Positive Definite Matrices (PDMs):

- Real, symmetric matrices with positive eigenvalues.
- Math version:

$$\mathbb{A} = \mathbb{A}^{\mathrm{T}},$$
$$a_{ij} \in \mathbf{R} \ \forall \ i, j = 1, 2, \cdots n,$$
and $\lambda_i > 0, \ \forall \ i = 1, 2, \cdots n.$

Semi-Positive Definite Matrices (SPDMs):

Same as for PDMs but now eigenvalues may now be 0:

$$\lambda_i \geq 0, \ \forall \ i = 1, 2, \cdots, n.$$

Note: If some eigenvalues are < 0 we have a sneaky matrix. Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation...

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

DQ @ 13 of 46

Equivalent Definitions:

Positive Definite Matrices:

• $\mathbb{A} = \mathbb{A}^{\mathrm{T}}$ is a PDM if

$$\vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} > \mathbf{0} \ \forall \, \vec{x} \neq \vec{\mathbf{0}}$$

Semi-Positive Definite Matrices:

• $\mathbb{A} = \mathbb{A}^{\mathrm{T}}$ is a SPDM if

 $\vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} \geq \mathbf{0}$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

na @ 14 of 46

Connecting these definitions:

Spectral Theorem for Symmetric Matrices:

$$\mathbb{A}=\mathbb{Q}\,\Lambda\,\mathbb{Q}^T$$

where $\mathbb{Q}^{-1} = \mathbb{Q}^T$,

$$\mathbb{Q} = \begin{bmatrix} | & | & \cdots & | \\ \hat{v}_1 & \hat{v}_2 & \cdots & \hat{v}_n \\ | & | & \cdots & | \end{bmatrix}, \text{ and } \Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Special form of $\mathbb{A} = \mathbb{S}\Lambda\mathbb{S}^{-1}$ that arises when $\mathbb{A} = \mathbb{A}^{T}$.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation...

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

Vermont 8

Understanding $\vec{x}^{T} \mathbb{A} \vec{x}$:

Substitute $\mathbb{A} = \mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}}$ into $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$:

 $= \vec{x}^{\mathrm{T}} \left(\mathbb{Q} \wedge \mathbb{Q}^{\mathrm{T}} \right) \vec{x} = \left(\vec{x}^{\mathrm{T}} \mathbb{Q} \right) \wedge \left(\mathbb{Q}^{\mathrm{T}} \vec{x} \right) = \left(\mathbb{Q}^{\mathrm{T}} \vec{x} \right)^{\mathrm{T}} \wedge \left(\mathbb{Q}^{\mathrm{T}} \vec{x} \right).$

We now see \vec{x} transforming from the natural basis to A's eigenvector basis: $\vec{y} = \mathbb{Q}^T \vec{x}$.

$$: \vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = \vec{y}^{\mathrm{T}} \wedge \vec{y}$$

$$= \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$= \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2.$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation...

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

NIVERSITY S

na (~ 16 of 46

Understanding $\vec{x}^{T} \mathbb{A} \vec{x}$:

So now we have ...

$$\vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

- Can see whether or not x^T A x > 0 depends on the λ_i since each y_i² > 0.
- So a PDM must have each $\lambda_i > 0$.
- And a SPDM must have $\lambda_i \geq 0$.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

990 17 of 46

More understanding of $\vec{x}^{T} \mathbb{A} \vec{x}$:

Substitute $\mathbb{A} = \mathbb{L} \mathbb{D} \mathbb{L}^{T}$ into $\vec{x}^{T} \mathbb{A} \vec{x}$:

 $= \vec{x}^{\mathrm{T}} \left(\mathbb{L} \mathbb{D} \mathbb{L}^{\mathrm{T}} \right) \vec{x} = \left(\vec{x}^{\mathrm{T}} \mathbb{L} \right) \mathbb{D} \left(\mathbb{L}^{\mathrm{T}} \vec{x} \right) = \left(\mathbb{L}^{\mathrm{T}} \vec{x} \right)^{\mathrm{T}} \mathbb{D} \left(\mathbb{L}^{\mathrm{T}} \vec{x} \right).$

Change from eigenvalue story: \vec{x} is transformed into $\vec{z} = \mathbb{L}^T \vec{x}$ but this is not a change of basis.

$$: \vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = \vec{z}^{\mathrm{T}} \mathbb{D} \, \vec{z}$$

$$= \begin{bmatrix} z_1 & z_2 & \cdots & z_n \end{bmatrix} \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$
$$= d_1 z_1^2 + d_2 z_2^2 + \cdots + d_n z_n^2.$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation...

What a PDM is... Identifying PDMs Completing the square Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

20 18 of 46

More understanding of $\vec{x}^{T} \mathbb{A} \vec{x}$:

So now we have ...

$$\vec{x}^{\mathrm{T}}\mathbb{A}\,\vec{x}=d_1z_1^2+d_2z_2^2+\cdots+d_nz_n^2$$

- Can see whether or not x^TA x > 0 depends on the d_i since each z_i² > 0.
- So a PDM must have each $d_i > 0$.
- And a SPDM must have $d_i \ge 0$.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

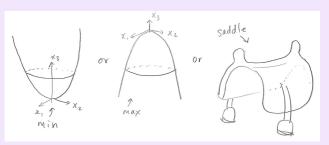
What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

200 19 of 46

Back to general 2×2 example:

$$f(x, y) = \vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = a x_1^2 + 2b x_1 x_2 + c x_2^2$$



Focus on eigenvalues—We can now see:

- f(x, y) has a minimum at x = y = 0 iff A is a PDM, i.e., if λ₁ > 0 and λ₂ > 0.
- Maximum: if $\lambda_1 < 0$ and $\lambda_2 < 0$.
- Saddle: if $\lambda_1 > 0$ and $\lambda_2 < 0$.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation...

What a PDM is... Identifying PDMs Completing the square Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

20 of 46

Back to simple example problem 1 of 2:

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26

What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

 $f(x_1, x_2) = 2x_1^2 - 2x_1x_2 + 2x_2^2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Compute eigenvalues...

Find $\lambda_1 = +3$ and $\lambda_2 = +1$: *f* is a minimum.

General problem:

How do we easily find the signs of \u03b1s...?

Excitement about symmetric matrices:

- We recall with alacrity the totally amazing fact that real symmetric matrices always have (1) real eigenvalues, and (2) orthogonal eigenvectors forming a basis for Rⁿ.
- We now see that knowing the signs of the λs is also important...

Test cases:

$$\blacktriangleright \ \mathbb{A}_1 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \ \mathbb{A}_2 = \begin{bmatrix} 2 & -1 \\ -1 & -2 \end{bmatrix}, \ \mathbb{A}_3 = \begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix}$$

Some minor struggling leads to:

- $A_1 : \lambda_1 = +3, \lambda_2 = +1$, (PDM, happy),
- $\mathbb{A}_2: \lambda_1 = +\sqrt{5}, \lambda_2 = -\sqrt{5}, \text{ (sad)},$
- $A_3: \lambda_1 = -1, \lambda_2 = -3$, (sad)

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇐ Gaussian elimination Principle Axis Theorem Nutshell Optional material

Pure madness:

Extremely Sneaky Result #632:

- If $\mathbb{A}=\mathbb{A}^T$ and \mathbb{A} is real, then
 - # +ve eigenvalues = # +ve pivots
 - # -ve eigenvalues = # -ve pivots
 - # 0 eigenvalues = # 0 pivots

Notes:

- Previously, we had for general \mathbb{A} that
 - $|\mathbb{A}| = \prod \lambda_i = \pm \prod d_i.$
- ► The bonus here is for real symmetric A.
- Eigenvalues are pivots come from very different parts of linear algebra.
- Crazy connection between eigenvalues and pivots!

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is

Identifying PDMs Completing the square Gaussian elimination Principle Axis Theorem Nutshell Optional material

Pivots and Eigenvalues:

More notes:

- All very exciting: Pivots are much, much easier to compute.
- (cue balloons, streamers)

Check for our three examples:

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is

Identifying PDMs Completing the square Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

DQ @ 25 of 46

Beautiful reason:

 Let's show how the signs of eigenvalues match signs of pivots for

$$\mathbb{A}_2 = \begin{bmatrix} 2 & -1 \\ -1 & -2 \end{bmatrix}, \ \lambda_{1,2} = \pm \sqrt{5}$$

Compute LU decomposition:

$$\mathbb{A}_2 = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 0 & -\frac{5}{2} \end{bmatrix} = \mathbb{LU}$$

 \blacktriangleright \mathbb{A}_2 is symmetric, so we can go further:

$$\mathbb{A}_2 = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} = \mathbb{LDL}^{\mathbb{T}}$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the squa

Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

99 C 26 of 46

Beautiful reason:

We're here:

$$\mathbb{A}_{2} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} = \mathbb{LDL}^{\mathbb{T}}$$

Now think about this matrix:

$$\mathbb{B}(\ell_{21}) = \begin{bmatrix} 1 & 0 \\ \ell_{21} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 & \ell_{21} \\ 0 & 1 \end{bmatrix}$$

• When $\ell_{21} = -\frac{1}{2}$, we have $B(-\frac{1}{2}) = \mathbb{A}_2$.

Think about what happens as ℓ_{21} changes smoothly from $-\frac{1}{2}$ to 0.

$$\mathbb{B}(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbb{IDI} = \begin{bmatrix} 2 & 0 \\ 0 & -\frac{5}{2} \end{bmatrix}$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... <u>dentifying PDMs</u> Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

- 1. $\mathbb{B}(0) = \mathbb{D}$'s eigenvalues and pivots are both 2, $-\frac{5}{2}$.
- 2. Stronger: As we alter $\mathbb{B}(\ell_{21})$, the pivots do not change!
- 3. But eigenvalues do change from $+\sqrt{5}$ and $-\sqrt{5}$ to 2, $-\frac{5}{2}$.
- 4. Big deal: because the pivots don't change, the determinant of $\mathbb{B}(\ell_{21})$ never changes:

$$\det \mathbb{B}(\ell_{21}) = d_1 \cdot d_2 = 2 \cdot \left(-\frac{5}{2}\right) = -5 \neq 0$$

- 5. But we also know det $\mathbb{B}(\ell_{21}) = \lambda_1 \cdot \lambda_2$.
- 6. \therefore as ℓ_{21} changes, eigenvalues cannot pass through 0 as determinant would be 0, not -5.

7. : eigenvalues cannot change sign as ℓ_{21} changes...

- Signs of eigenvalues of A₂ = B(-¹/₂) must match signs of eigenvalues of B(0) which match signs of pivots of B(0).
- n.b.: Above assumes pivots \neq 0; proof is tweakable.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ← Gaussian elimination Principle Axis Theorem Nutshell Optional material

General argument:

- Can see argument extends to n by n's.
- Take $\mathbb{A} = \mathbb{A}^{T} = \mathbb{LDL}^{\mathbb{T}}$ and smoothly change \mathbb{L} to \mathbb{I} .
- Write $\hat{\mathbb{L}}(t) = \mathbb{I} + t(\mathbb{L} \mathbb{I})$ and

 $\mathbb{B}(t) = \hat{\mathbb{L}}(t) \mathbb{D} \, \hat{\mathbb{L}}(t)^{\mathrm{T}}$

- When t = 1, we have $\hat{\mathbb{L}}(1) = \mathbb{L}$ and $\mathbb{B}(1) = \mathbb{A}$.
- When t = 0, $\hat{\mathbb{L}}(0) = \mathbb{I}$, and $\mathbb{B}(0) = \mathbb{D}$.
- Again, pivots don't change as we move t from 1 to 0, and determinant must stay the same.
- Same story: eigenvalues cannot cross zero and must have the same signs for all t, including t = 0 when eigenvalues and pivots are equal A = D.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square Gaussian elimination

Principle Axis Theorem Nutshell Optional material

Further down the rabbit hole:

'Complete the square' for our first example:

$$f(x_1, x_2) = 2x_1^2 - 2x_1x_2 + 2x_2^2$$

$$= 2(x_1^2 - x_1x_2) + 2x_2^2 = 2(x_1^2 - x_1x_2 + \frac{1}{4}x_2^2 - \frac{1}{4}x_2^2) + 2x_2^2$$

$$=2(x_1^2-x_1x_2+\frac{1}{4}x_2^2)-\frac{1}{2}x_2^2+2x_2^2=2(x_1-\frac{1}{2}x_2)^2+\frac{3}{2}x_2^2$$

We see the pivots d₁ = 2 and d₂ = ³/₂ and the multiplier ℓ₂₁ = -¹/₂ appear:

$$f(x_1, x_2) = d_1(x_1 + \ell_{21}x_2)^2 + d_2x_2^2.$$

- Super cool—this is exactly $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x} = (\mathbb{L}^{\mathrm{T}} \vec{x}) \mathbb{D} (\mathbb{L}^{\mathrm{T}} \vec{x})^{\mathrm{T}} = d_1 z_1^2 + d_2 z_2^2.$
- The minimum is now obvious (sum of squares).

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square \Leftrightarrow Gaussian elimination Principle Axis Theorem Nutshell Optional material

Another example:

► Take the matrix A₂:

$$f(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Complete the square:

$$f(x_1, x_2) = 2x_1^2 - 2x_1x_2 - 2x_2^2 = 2(x_1 - \frac{1}{2}x_2)^2 - \frac{5}{2}x_2^2$$

- Matches: Pivots $d_1 = 2$, $d_2 = -\frac{5}{2}$, so $x_1 = x_2 = 0$ is a saddle.
- Completing the square matches up with elimination...

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Molivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

References

NIVERSITY 9

Back to our second simple problem:

- Graph $2x_1^2 + 2x_1x_2 + 2x_2^2 = 1$.
- We'll simplify with linear algebra to find an equation of an ellipse...
- From before, our equation can be rewritten as

$$\vec{x}^{\mathrm{T}} \mathbb{A} \, \vec{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1$$

► Again use spectral decomposition, A = Q ∧ Q^T, to diagonalize giving (Q^T x)^T ∧ (Q^T x) = 1 where

$$\mathbb{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{\mathbb{Q}} \underbrace{\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}}_{\Lambda} \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbb{Q}^{\mathrm{T}}}$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination

Principle Axis Theorem Nutshell Optional material

References

2 C 34 of 46

So
$$2x_1^2 + 2x_1x_2 + 2x_2^2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1$$

crazily becomes

$$\begin{pmatrix} 1 \\ \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix})^{\mathrm{T}} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ \sqrt{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix})^{\mathrm{T}} = 1$$

$$\begin{bmatrix} \frac{x_1+x_2}{\sqrt{2}} & \frac{x_1-x_2}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{x_1+x_2}{\sqrt{2}} \\ \frac{x_1-x_2}{\sqrt{2}} \end{bmatrix} = 1$$
$$: 3\left(\frac{x_1+x_2}{\sqrt{2}}\right)^2 + \left(\frac{x_1-x_2}{\sqrt{2}}\right)^2 = 1$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination

Principle Axis Theorem Nutshell Optional material

References

99 CP 35 of 46

If we change to eigenvector coordinate system,

$$\begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \mathbb{Q}^{\mathrm{T}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{x_1 + x_2}{\sqrt{2}} \\ \frac{x_1 - x_2}{\sqrt{2}} \end{bmatrix}$$

then our equation simplifies greatly:

$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 1,$$

which is just

$$3 \cdot u_1^2 + 1 \cdot u_2^2 = 1.$$

Very nice! PDM : ellipse.

Lecture 22/25: Positive Definite Matrices (PDMs)

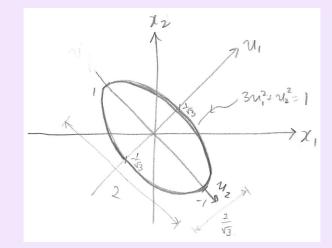
Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination

Principle Axis Theorem Nutshell Optional material

References

NIVERSITY 6

Finally, we can draw a picture of $2x_1^2 + 2x_1x_2 + 2x_2^2$:



$$3 \cdot u_1^2 + 1 \cdot u_2^2 = 1$$
 where $u_1 = \frac{x_1 + x_2}{\sqrt{2}}$ and $u_2 = \frac{x_1 - x_2}{\sqrt{2}}$.

Lecture 22/25:

Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination

Principle Axis Theorem Nutshell Optional material

Nutshell:

- $\vec{x}^{\mathrm{T}} \mathbb{A} \vec{x}$ is a commonly occurring construction.
- Big deals: Positive Definiteness and Semi-Positive Definiteness of A.
- Positive eigenvalues : PDM.
- Non-negative eigenvalues : SPDM.
- Signs of pivots (easy test) match signs of eigenvalues.
- Gaussian elimination \equiv completing the square.
- Standard questions: determine if a matrix is a PDM, convert a quadratic function into matrix $\vec{x}^{T} \mathbb{A} \vec{x}$, sketch a quadratic curve (e.g., an ellipse).

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem

Nutshell Optional material

Another connection:

ST #731:

For a real symmetric \mathbb{A} , if all upper left determinants of \mathbb{A} are +ve, so are \mathbb{A} 's eigenvalues, and vice versa.

Check:

$$\mathbb{A}_{1} : |2| > 0, \quad \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} = 3 > 0 : \text{ yes.}$$

$$\mathbb{A}_{2} : |2| > 0, \quad \begin{vmatrix} 2 & -1 \\ -1 & -2 \end{vmatrix} = -5 < 0 : \text{ no.}$$

$$\mathbb{A}_{3} : |-2| < 0, \quad \begin{vmatrix} -2 & -1 \\ -1 & -2 \end{vmatrix} = 3 > 0 : \text{ no.}$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square 44 Gaussian elimination Principle Axis Theorem Nutshell Optional material

990 41 of 46

NIVERSITY 9

Reasoning for 2×2 case:

Take general symmetric matrix 2×2 : $\mathbb{A} = \begin{vmatrix} a & b \\ b & c \end{vmatrix}$

Upper left determinants: a and ac - b².
 Eigenvalues (from Assignment 9):

$$\lambda_1 = \frac{(a+c) + \sqrt{(a-c)^2 + 4b^2}}{2}$$

$$N_2 = \frac{(a+c) - \sqrt{(a-c)^2 + 4b^2}}{2}$$

• Objective: show a > 0 and $ac - b^2 > 0 \Leftrightarrow \lambda_1, \lambda_2 > 0$. Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square \Leftrightarrow Gaussian elimination Principle Axis Theorem Nutshell Optional material

2 C 42 of 46

Reasoning for 2×2 case:

Reuse previous sneakiness:

$$\begin{split} |\mathbb{A} - \lambda \mathbb{I}| &= \begin{vmatrix} \mathbf{a} - \lambda & \mathbf{b} \\ \mathbf{b} & \mathbf{c} - \lambda \end{vmatrix} = (\mathbf{a} - \lambda)(\mathbf{c} - \lambda) - \mathbf{b}^2 \\ &= \lambda^2 - (\mathbf{a} + \mathbf{c})\lambda + \mathbf{a}\mathbf{c} - \mathbf{b}^2 \\ &= \lambda^2 - \mathrm{Tr}(\mathbb{A}) + \mathrm{det}(\mathbb{A}) \\ &= \lambda^2 - (\lambda_1 + \lambda_2) + (\lambda_1 \cdot \lambda_2) \\ &: \lambda_1 + \lambda_2 = \mathbf{a} + \mathbf{c}, \quad \lambda_1 \cdot \lambda_2 = \mathbf{a}\mathbf{c} - \mathbf{b}^2 \end{split}$$

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

✓ VERMONT
 ✓ VERMONT
 ✓ 43 of 46

Show a > 0, $ac - b^2 > 0 \Leftrightarrow \lambda_1, \lambda_2 > 0$:

Show ":":

- ► Given ac b² > 0 then λ₁ · λ₂ > 0, so both eigenvalues are positive or both are negative.
- Given a > 0 then c > 0 b/c otherwise $ac b^2 < 0$.
- This means a + c = λ₁ + λ₂ > 0 → both eigenvalues are positive.

Show "⇐":

- Given λ_1 , $\lambda_2 > 0$, then $ac b^2 = \lambda_1 \cdot \lambda_2 > 0$
- Know a + c = λ₁ + λ₂ > 0, so either a, c > 0, or one is negative.
- But again, ac − b² > 0 implies a, c must have same sign, → a > 0.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ⇔ Gaussian elimination Principle Axis Theorem Nutshell Optional material

Da a 44 of 46

Finding PDMs...

- Upshot: We can compute determinants instead of eigenvalues to find signs.
- But: Computing determinants still isn't a picnic either...
- A much better way is to use the connection between pivots and eigenvalues.
- Another weird connection.

Lecture 22/25: Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square \Leftrightarrow Gaussian elimination Principle Axis Theorem Nutshell Optional material

