Chapter 3/4: Lecture 15

Matrixology (Linear Algebra)—Lecture 14/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Review for Exam 2

Words

Pictures

Outline

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

Review for Exam 2

Words

Pictures

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- ► As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- ► As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$
 - Projections and the normal equation
- ► As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- ► As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$ Must be able to draw the big picture!
 - 2. Projections and the normal equation
- ► As always, want 'doing' and 'understanding' abilities.

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- ▶ Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- ▶ Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis
- ▶ Basis = minimal spanning set.
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- ► Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- ▶ Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- ► Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Review for Exam 2

Words

Pictures

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Fundamental Theorem of Linear Algebra:

Words

▶ Applies to any $m \times n$ matrix \mathbb{A} .

Pictures

- ▶ Symmetry of \mathbb{A} and \mathbb{A}^{T} .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \bigotimes N(\mathbb{A}^{\mathsf{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset \mathbb{R}^n$.
- Index of model density is defined as follows: Index of the proof of
- ▶ Orthogonality: $C(\mathbb{A}^T) \otimes N(\mathbb{A}) = R^n$

Lecture 14/25: Ch. 3/4: Lec. 15

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathrm{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- $Index | dim | C(\mathbb{A}^T) + dim | N(\mathbb{A}) = r + (n-r) = n$
- ▶ Orthogonality: $C(\mathbb{A}^{\mathsf{T}}) \otimes N(\mathbb{A}) = R^n$

Review for Exam 2

Words

Pictures

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathsf{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset \mathbb{R}^n$.
- $Index | dim | C(\mathbb{A}^T) + dim | N(\mathbb{A}) = r + (n-r) = n$
- ▶ Orthogonality: $C(\mathbb{A}^{\mathrm{T}}) \otimes N(\mathbb{A}) = R^n$

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathsf{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- $Index | dim | C(\mathbb{A}^T) + dim | N(\mathbb{A}) = r + (n-r) = n$
- ▶ Orthogonality: $C(\mathbb{A}^{\mathrm{T}}) \otimes N(\mathbb{A}) = R^n$

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- $Index | dim | C(\mathbb{A}^T) + dim | N(\mathbb{A}) = r + (n-r) = n$
- ▶ Orthogonality: $C(\mathbb{A}^T) \bigotimes N(\mathbb{A}) = R^n$

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^m$.
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- ▶ Orthogonality: $C(\mathbb{A}^T) \bigotimes N(\mathbb{A}) = R^n$

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^T) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathrm{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- ▶ Orthogonality: $C(\mathbb{A}^T) \bigotimes N(\mathbb{A}) = R^n$

- ▶ Applies to any $m \times n$ matrix \mathbb{A} .
- ▶ Symmetry of \mathbb{A} and \mathbb{A}^T .
- ▶ Column space $C(\mathbb{A}) \subset R^m$.
- ▶ Left Nullspace $N(\mathbb{A}^T) \subset R^m$.
- ▶ Orthogonality: $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathrm{T}}) = R^m$
- ▶ Row space $C(\mathbb{A}^T) \subset R^n$.
- ▶ (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- ▶ Orthogonality: $C(\mathbb{A}^T) \otimes N(\mathbb{A}) = R^n$

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathrm{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- ▶ Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- ► Know that relationship between R_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathsf{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- ▶ Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- ► Know that relationship between R_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathsf{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- Identify pivot columns and free columns.
- ▶ Rank r of $\mathbb{A} = \#$ pivot columns.
- ► Know that relationship between R_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathsf{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- Identify pivot columns and free columns.
- ▶ Rank r of A = # pivot columns.
- ► Know that relationship between R_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathrm{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- Identify pivot columns and free columns.
- ▶ Rank r of $\mathbb{A} = \#$ pivot columns.
- ► Know that relationship between R_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

- Enough to find bases for subspaces.
- ▶ Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{\mathrm{T}}}$.
- ▶ Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- Identify pivot columns and free columns.
- ▶ Rank r of $\mathbb{A} = \#$ pivot columns.
- ▶ Know that relationship between $\mathbb{R}_{\mathbb{A}}$'s columns hold for \mathbb{A} 's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on *b*'s elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- 2. Use $\mathbb{R}_{\mathbb{A}}$
 - Find pivot columns in R_A—same columns in A form a basis for C(A).
 - ightharpoonup Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- ► Take non-zero rows in R_A (easy!).
- ▶ Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in R_A—same columns in A form a basis for C(A).
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- ▶ Matches way 3 for column space.

Review for Exam 2

Words

Pictures

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$
 - Find pivot columns in R_A—same columns in A form a basis for C(A).
 - ightharpoonup Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^{\mathrm{T}}}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in R_{AT}, the reduced form of A^T.

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- ▶ Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$

Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.

ightharpoonup warning: $\mathbb{R}_{\mathbb{A}}$ s columns do not give a basis for $\mathcal{C}(\mathbb{A})$

3. Use $\mathbb{R}_{\mathbb{A}^T}$

Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- ► Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

Review for Exam 2

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

Words

▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.

Pictures

Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.

2. Use $\mathbb{R}_{\mathbb{A}}$:

- Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
- ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$

3. Use $\mathbb{R}_{\mathbb{A}^T}$:

Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

ightharpoonup Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).

WINIVERSITY VERMONT

Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Bases for column space—three ways:

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.

Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.

2. Use $\mathbb{R}_{\mathbb{A}}$:

Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.

▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$

3. Use $\mathbb{R}_{\mathbb{A}^T}$:

Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).

▶ Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

Review for Exam 2

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

Words

▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.

Pictures

- Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:

Best and easiest way: basis for column space = non-zero rows in \mathbb{R}_{++} the reduced form of \mathbb{A}^{T}

Basis for row space:

▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).

UNIVERSITY VERMONT

▶ Matches way 3 for column space

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

Review for Exam 2

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

Words

▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.

Pictures

- Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - Best and easiest way: basis for column space = non-zero rows in RAT. the reduced form of AT.

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!)
- Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.

Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.

2. Use $\mathbb{R}_{\mathbb{A}}$:

Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.

▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$

3. Use $\mathbb{R}_{\mathbb{A}^T}$:

▶ Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!)

Matches way 3 for column space.

Review for Exam 2

Words

Lecture 14/25: Ch. 3/4: Lec. 15

Bases for column space—three ways:

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- Matches way 3 for column space.

Review for Exam 2

Words

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Bases for column space—three ways:

Words

1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in $\mathbb{R}_{\mathbb{A}^T}$, the reduced form of \mathbb{A}^T .

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- Matches way 3 for column space.

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - Find pivot columns in $\mathbb{R}_{\mathbb{A}}$ —same columns in \mathbb{A} form a basis for $C(\mathbb{A})$.
 - ▶ Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - ▶ Best and easiest way: basis for column space = non-zero rows in R_A^T, the reduced form of A^T.

Basis for row space:

- ▶ Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- Matches way 3 for column space.

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = 0$
- Always express pivot variables in terms of free
- ► Free variables are unconstrained (can be any real
- \blacktriangleright # free variables = n # pivot variables = n r = dim
- ▶ Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from R_A

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim $N(\mathbb{A})$.
- ► Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- \blacktriangleright # free variables = n # pivot variables = n r = dim
- ▶ Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from R_A

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim $N(\mathbb{A})$.
- ► Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim $N(\mathbb{A})$.
- ▶ Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{v} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from R_A

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim $N(\mathbb{A})$.
- ▶ Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{v} = \vec{0}$.
- ightharpoonup dim $N(\mathbb{A}^{\mathrm{T}})=m-r$.
- \triangleright Key: Find bases for both nullspaces directly from $\mathbb{R}_{\mathbb{A}}$

- ▶ Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- ► Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim $N(\mathbb{A})$.
- ▶ Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ▶ Key: Find bases for both nullspaces directly from $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $b \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ► Number of solutions now depends entirely on *N*(A)
 - many solutions.
 - ▶ If dim $N(\mathbb{A}) = n r = 0$, then there is one solution

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $b \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on *N*(A)
 - If dim N(A) = n − r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $\vec{b} \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on N(A).
 - If dim $N(\mathbb{A}) = n r > 0$, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $\vec{b} \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on N(A).
 - If dim $N(\mathbb{A}) = n r > 0$, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $\vec{b} \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on N(A).
 - If dim $N(\mathbb{A}) = n r > 0$, then there are infinitely many solutions.
 - If dim $N(\mathbb{A}) = n r = 0$, then there is one solution

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $\vec{b} \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - ▶ Number of solutions now depends entirely on N(A).
 - If dim $N(\mathbb{A}) = n r > 0$, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

- ▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{b} = ec{p} + ec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}} \vec{b}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{a} \left(= \frac{\vec{a} \vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{b} \right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- ▶ Understand construction and use of subspace projection operator \mathbb{P} :

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T},$$

where A's columns form a subspace basis.

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}} \vec{b}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{a} \left(= \frac{\vec{a} \vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{b} \right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto
- Understand construction and use of subspace

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{\mathrm{T}}\mathbb{A})^{-1}\mathbb{A}^{\mathrm{T}},$$

Lecture 14/25: Ch 3/4 Lec 15

Review for Exam 2

- ▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto
- Understand construction and use of subspace

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{\mathrm{T}}\mathbb{A})^{-1}\mathbb{A}^{\mathrm{T}},$$

Lecture 14/25: Ch 3/4 Lec 15

Review for Exam 2

- ▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto
- Understand construction and use of subspace

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T},$$

Lecture 14/25: Ch 3/4 Lec 15

Review for Exam 2

- ▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto
- Understand construction and use of subspace

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T},$$

Lecture 14/25: Ch 3/4 Lec 15

Review for Exam 2

▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .

$$\vec{b} = \vec{p} + \vec{e}$$

 \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{\mathrm{T}}\mathbb{A})^{-1}\mathbb{A}^{\mathrm{T}},$$

Lecture 14/25: Ch 3/4 Lec 15

Review for Exam 2

- ▶ Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $\vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- ▶ Understand construction and use of subspace projection operator \mathbb{P} :

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T},$$

where A's columns form a subspace basis.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Lecture 14/25: Ch. 3/4: Lec. 15

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- ► Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p} = \mathbb{A}^{\mathrm{T}}\vec{b}$$

.

Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}\vec{\mathbf{x}}_{*}=\mathbb{A}^{\mathrm{T}}\vec{\mathbf{b}}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Review for Exam 2

Words

Lecture 14/25 Ch 3/4 Lec 15

Review for Exam 2

Words

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \not\in C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- Write projection of b as \vec{p} .
- ► Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so
- ▶ Rearrange:

$$\mathbb{A}^{\mathsf{T}}\vec{p} = \mathbb{A}^{\mathsf{T}}\vec{b}$$

Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}ec{x}_{st}=\mathbb{A}^{\mathrm{T}}ec{b}.$$

► This is linear algebra's normal equation;

Lecture 14/25 Ch 3/4 Lec 15

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so
- ▶ Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p} = \mathbb{A}^{\mathrm{T}}\vec{b}$$

Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}ec{x}_{*}=\mathbb{A}^{\mathrm{T}}ec{b}.$$

► This is linear algebra's normal equation;

Review for Exam 2

Lecture 14/25: Ch. 3/4: Lec. 15

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- ▶ Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Figure 1. Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p}=\mathbb{A}^{\mathrm{T}}\vec{b}$$

▶ Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}ec{x}_{*}=\mathbb{A}^{\mathrm{T}}ec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Words

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- ▶ Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Figure 1. Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p}=\mathbb{A}^{\mathrm{T}}\vec{b}$$

▶ Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}ec{x}_{*}=\mathbb{A}^{\mathrm{T}}ec{b}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \not\in C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p}=\mathbb{A}^{\mathrm{T}}\vec{b}$$

.

▶ Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}ec{\mathcal{X}}_{*}=\mathbb{A}^{\mathrm{T}}ec{\mathcal{b}}.$$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Lecture 14/25: Ch 3/4: Lec 15

Review for Exam 2

Words

Pictures

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- ▶ Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Figure 1. Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathsf{T}} \vec{p} = \mathbb{A}^{\mathsf{T}} \vec{b}$$

.

▶ Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

$$\mathbb{A}^{\mathsf{T}}\mathbb{A}\vec{\mathbf{x}}_{*}=\mathbb{A}^{\mathsf{T}}\vec{\mathbf{b}}.$$

This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Lecture 14/25: Ch. 3/4: Lec. 15

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

▶ If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.

- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- ► Error vector must be orthogonal to column space so $\mathbb{A}^T \vec{e} = \mathbb{A}^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p} = \mathbb{A}^{\mathrm{T}}\vec{b}$$

.

▶ Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

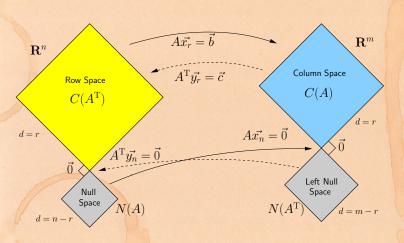
$$\mathbb{A}^{\mathsf{T}}\mathbb{A}\vec{\mathbf{x}}_{*}=\mathbb{A}^{\mathsf{T}}\vec{\mathbf{b}}.$$

This is linear algebra's normal equation; \vec{x}_* is our best solution to $\mathbb{A}\vec{x} = \vec{b}$.

Review for Exam 2

Words

The symmetry of $\mathbb{A}\vec{x} = \vec{b}$ and $\mathbb{A}^{\mathrm{T}}\vec{y} = \vec{c}$:

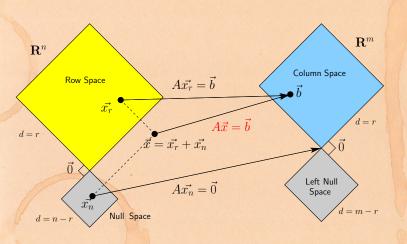


Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

How $\mathbb{A}\vec{x} = \vec{b}$ works:

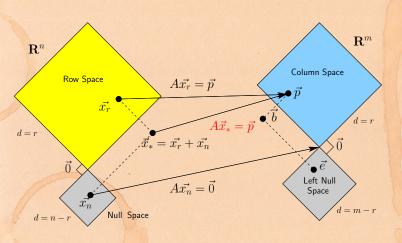


Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

The fourfold ways of $\mathbb{A}\vec{x} = \vec{b}$:

Lecture 14/25: Ch. 3/4: Lec. 15

case	example R	big picture	# solutions
m = r n = r	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$		1 always
m = r, $n > r$	\[\begin{pmatrix} 1 & 0 & \box\delta_1 \\ 0 & 1 & \box\delta_2 \end{pmatrix} \]		∞ always
m > r, $n = r$	1 0 0 1 0 0	→	0 or 1
m > r, n > r	1 0 %1 0 1 %2 0 0 0 0 0 0		0 or ∞

Review for Exam 2

Words **Pictures**

