## Chapter 3/4: Lecture 15 Matrixology (Linear Algebra)—Lecture 14/25

MATH 124, Fall, 2011

#### Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont















Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Pictures

Stuff to know/understand

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

## **Vector Spaces:**

- Vector space concept and definition.
- ▶ Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- ► Concept of a basis.
- ▶ Basis = minimal spanning set.
- ► Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.





少 Q (~ 1 of 16

Lecture 14/25: Ch. 3/4: Lec. 15 Stuff to know/understand:

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

Outline

Review for Exam 2

Words

**Pictures** 

Review for Exam 2

Pictures

Fundamental Theorem of Linear Algebra:

▶ Applies to any  $m \times n$  matrix  $\mathbb{A}$ .

▶ Symmetry of  $\mathbb{A}$  and  $\mathbb{A}^{T}$ .

▶ Column space  $C(\mathbb{A}) \subset R^m$ .

▶ Left Nullspace  $N(\mathbb{A}^T) \subset R^m$ .

▶ dim  $C(\mathbb{A})$  + dim  $N(\mathbb{A}^T)$  = r + (m - r) = m

▶ Orthogonality:  $C(\mathbb{A}) \otimes N(\mathbb{A}^{\mathrm{T}}) = R^m$ 

▶ Row space  $C(\mathbb{A}^T) \subset R^n$ .

▶ (Right) Nullspace  $N(\mathbb{A}) \subset \mathbb{R}^n$ .

▶ Orthogonality:  $C(\mathbb{A}^{\mathrm{T}}) \otimes N(\mathbb{A}) = R^n$ 





ഹ ര. നം 5 of 16

Basics:

Lecture 14/25: Ch. 3/4: Lec. 15

少 Q (~ 2 of 16

Review for Exam 2

Words Pictures Stuff to know/understand:

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2 Words Pictures

### Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
  - 1. Big Picture of  $\mathbb{A}\vec{x} = \vec{b}$ 
    - Must be able to draw the big picture!
  - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' abilities.

## Finding four fundamental subspaces:

- ▶ Enough to find bases for subspaces.
- ▶ Be able to reduce  $\mathbb{A}$  to  $\mathbb{R}_{\mathbb{A}}$  and  $\mathbb{A}^{T}$  to  $\mathbb{R}_{\mathbb{A}^{T}}$ .
- ▶ Understand crucial nature of  $\mathbb{R}_{\mathbb{A}}$  and  $\mathbb{R}_{\mathbb{A}^T}$ .
- Identify pivot columns and free columns.
- ▶ Rank r of  $\mathbb{A} = \#$  pivot columns.
- $\blacktriangleright$  Know that relationship between  $\mathbb{R}_{\mathbb{A}}$  's columns hold for A's columns.









୬ ବ.୧∼ 6 of 16

## Stuff to know/understand:

### Bases for column space—three ways:

- 1. Find when  $\mathbb{A}\vec{x} = \vec{b}$  has a solution:
  - ▶ Reduce  $[A \mid \vec{b}]$  where  $\vec{b}$  is general.
  - Find conditions on  $\vec{b}$ 's elements for a solution to  $\mathbb{A}\vec{x} = \vec{b}$  to exist  $\rightarrow$  obtain basis for  $C(\mathbb{A})$ .
- 2. Use  $\mathbb{R}_{\mathbb{A}}$ :
  - Find pivot columns in R<sub>A</sub>—same columns in A form a basis for  $C(\mathbb{A})$ .
  - ▶ Warning:  $\mathbb{R}_{\mathbb{A}}$ 's columns do not give a basis for  $C(\mathbb{A})$
- 3. Use  $\mathbb{R}_{\Delta^T}$ :
  - Best and easiest way: basis for column space = non-zero rows in  $\mathbb{R}_{\mathbb{A}^T}$ , the reduced form of  $\mathbb{A}^T$ .

### Basis for row space:

- ▶ Take non-zero rows in  $\mathbb{R}_{\mathbb{A}}$  (easy!).
- ▶ Matches way 3 for column space.

Lecture 14/25:

Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures



#### ჟვი 7 of 16

### Stuff to know/understand:

## Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving  $\mathbb{A}\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables
- ▶ Free variables are unconstrained (can be any real number)
- # free variables = n # pivot variables = n r = dim
- ▶ Similarly find basis for  $N(\mathbb{A}^T)$  by solving  $\mathbb{A}^T \vec{y} = \vec{0}$ .
- $ightharpoonup \dim N(\mathbb{A}^{\mathrm{T}}) = m r.$
- ightharpoonup Key: Find bases for both nullspaces directly from  $\mathbb{R}_{\mathbb{A}}$ and  $\mathbb{R}_{\mathbb{A}^T}$ .





#### Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures





ഹ ര. ര~ 8 of 16

#### Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2 Words

Pictures

## Number of solutions to $\mathbb{A}\vec{x} = \vec{b}$ :

Stuff to know/understand:

- 1. If  $\vec{b} \notin C(\mathbb{A})$ , there are no solutions.
- 2. If  $\vec{b} \in C(\mathbb{A})$  there is either one unique solution or infinitely many solutions.
  - ▶ Number of solutions now depends entirely on N(A).
  - ▶ If dim  $N(\mathbb{A}) = n r > 0$ , then there are infinitely many solutions.
  - ▶ If dim  $N(\mathbb{A}) = n r = 0$ , then there is one solution.

### Projections:

- ▶ Understand how to project a vector  $\vec{b}$  onto a line in direction of  $\vec{a}$ .
- $\vec{b} = \vec{p} + \vec{e}$
- $\vec{p}$  = that part of  $\vec{b}$  that lies in the line:

$$ec{p} = rac{ec{a}^{ ext{T}} ec{b}}{ec{a}^{ ext{T}} ec{a}} ec{a} \left( = rac{ec{a} ec{a}^{ ext{T}}}{ec{a}^{ ext{T}} ec{a}} ec{b} 
ight)$$

- $\vec{e}$  = that part of  $\vec{b}$  that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator  $\mathbb{P}$ :

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{T}\mathbb{A})^{-1}\mathbb{A}^{T},$$

where A's columns form a subspace basis.

Lecture 14/25:

Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures



୬ର୍ବ 10 of 16

Lecture 14/25:

Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

## Stuff to know/understand

## Normal equation for $\mathbb{A}\vec{x} = \vec{b}$ :

- ▶ If  $\vec{b} \notin C(\mathbb{A})$ , project  $\vec{b}$  onto  $C(\mathbb{A})$ .
- ▶ Write projection of  $\vec{b}$  as  $\vec{p}$ .
- ▶ Know  $\vec{p} \in C(\mathbb{A})$  so  $\exists \vec{x}_*$  such that  $\mathbb{A}\vec{x}_* = \vec{p}$ .
- ▶ Error vector must be orthogonal to column space so  $\mathbb{A}^{\mathrm{T}}\vec{e} = \mathbb{A}^{\mathrm{T}}(\vec{b} - \vec{p}) = \vec{0}.$
- Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p} = \mathbb{A}^{\mathrm{T}}\vec{b}$$

▶ Since  $\mathbb{A}\vec{x}_* = \vec{p}$ , we end up with

$$\mathbb{A}^{\mathrm{T}}\mathbb{A}\vec{\mathbf{x}}_{*}=\mathbb{A}^{\mathrm{T}}\vec{\mathbf{b}}.$$

► This is linear algebra's normal equation;  $\vec{x}_*$  is our best solution to  $\mathbb{A}\vec{x} = \vec{b}$ .



ഹ വ (~ 11 of 16

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2 Words

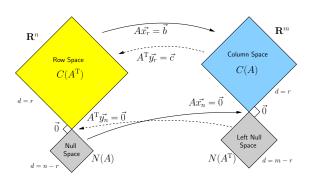
Pictures





ഹ ര ര 9 of 16

# The symmetry of $\mathbb{A}\vec{x} = \vec{b}$ and $\mathbb{A}^{\mathrm{T}}\vec{y} = \vec{c}$ :



Lecture 14/25:

Ch. 3/4: Lec. 15

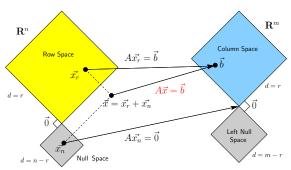
Review for Exam 2

Pictures



少 Q (~ 13 of 16

How  $\mathbb{A}\vec{x} = \vec{b}$  works:



Lecture 14/25: Ch. 3/4: Lec. 15

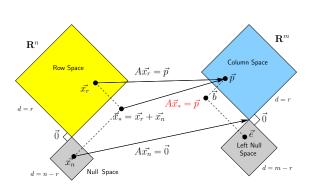
Review for Exam 2

Pictures



少○ 14 of 16

Best solution  $\vec{x}_*$  when  $\vec{b} = \vec{p} + \vec{e}$ :



Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Pictures



ჟqॡ 15 of 16

The fourfold ways of  $\mathbb{A}\vec{x} = \vec{b}$ :

0 0

case example R big picture solutions 1 0 0 1 m = rPictures 1 always n = rm=r $\infty$  always 0 n > rm > r, 0 1 0 or 1 n = r0 0 0 ∂®1 0 m > r, 1 0 or  $\infty$ n > r0

少Q № 16 of 16

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2