Chapter 3/4: Lecture 15 Matrixology (Linear Algebra)—Lecture 14/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

VACC

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2 Words Pictures

200 1 of 16

Outline

Review for Exam 2

Words

Pictures

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2 Words Pictures

DQ @ 2 of 16

Basics:

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $\mathbb{A}\vec{x} = \vec{b}$
 - Must be able to draw the big picture!
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' abilities.

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

Fundamental Theorem of Linear Algebra:

- Applies to any m × n matrix A.
- Symmetry of \mathbb{A} and \mathbb{A}^{T} .
- Column space $C(\mathbb{A}) \subset R^m$.
- Left Nullspace $N(\mathbb{A}^{\mathrm{T}}) \subset R^{m}$.
- dim $C(\mathbb{A})$ + dim $N(\mathbb{A}^{\mathrm{T}}) = r + (m r) = m$
- Orthogonality: $C(\mathbb{A}) \bigotimes N(\mathbb{A}^{\mathrm{T}}) = R^{m}$
- Row space $C(\mathbb{A}^T) \subset R^n$.
- (Right) Nullspace $N(\mathbb{A}) \subset R^n$.
- dim $C(\mathbb{A}^{\mathrm{T}})$ + dim $N(\mathbb{A}) = r + (n r) = n$
- Orthogonality: $C(\mathbb{A}^T) \bigotimes N(\mathbb{A}) = R^n$

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce \mathbb{A} to $\mathbb{R}_{\mathbb{A}}$ and \mathbb{A}^{T} to $\mathbb{R}_{\mathbb{A}^{T}}$.
- Understand crucial nature of $\mathbb{R}_{\mathbb{A}}$ and $\mathbb{R}_{\mathbb{A}^T}$.
- Identify pivot columns and free columns.
- Rank *r* of $\mathbb{A} = \#$ pivot columns.
- ► Know that relationship between ℝ_A's columns hold for A's columns.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

200 6 of 16

Bases for column space—three ways:

- 1. Find when $\mathbb{A}\vec{x} = \vec{b}$ has a solution:
 - Reduce $[\mathbb{A} | \vec{b}]$ where \vec{b} is general.
 - Find conditions on \vec{b} 's elements for a solution to $\mathbb{A}\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for $C(\mathbb{A})$.
- 2. Use $\mathbb{R}_{\mathbb{A}}$:
 - ► Find pivot columns in ℝ_A—same columns in A form a basis for C(A).
 - Warning: $\mathbb{R}_{\mathbb{A}}$'s columns do not give a basis for $C(\mathbb{A})$
- 3. Use $\mathbb{R}_{\mathbb{A}^T}$:
 - Best and easiest way: basis for column space = non-zero rows in ℝ_{A^T}, the reduced form of A^T.

Basis for row space:

- Take non-zero rows in $\mathbb{R}_{\mathbb{A}}$ (easy!).
- Matches way 3 for column space.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $\mathbb{A}\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(\mathbb{A}^T)$ by solving $\mathbb{A}^T \vec{y} = \vec{0}$.
- dim $N(\mathbb{A}^{\mathrm{T}}) = m r$.
- ► Key: Find bases for both nullspaces directly from R_A and R_{A^T}.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

200 8 of 16

Number of solutions to $\mathbb{A}\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(\mathbb{A})$, there are no solutions.
- 2. If $\vec{b} \in C(\mathbb{A})$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on $N(\mathbb{A})$.
 - If dim N(A) = n − r > 0, then there are infinitely many solutions.
 - If dim $N(\mathbb{A}) = n r = 0$, then there is one solution.

Review for Exam 2

Words

Pictures

200 9 of 16

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $\blacktriangleright \vec{b} = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$ec{
ho} = rac{ec{a}^{ ext{T}}ec{b}}{ec{a}^{ ext{T}}ec{a}}ec{a}\left(=rac{ec{a}ec{a}^{ ext{T}}}{ec{a}^{ ext{T}}ec{a}}ec{b}
ight)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- ► Understand construction and use of subspace projection operator P:

$$\mathbb{P} = \mathbb{A}(\mathbb{A}^{\mathrm{T}}\mathbb{A})^{-1}\mathbb{A}^{\mathrm{T}},$$

where $\mathbb{A}\xspace$ solumns form a subspace basis.

Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Normal equation for $\mathbb{A}\vec{x} = \vec{b}$:

- If $\vec{b} \notin C(\mathbb{A})$, project \vec{b} onto $C(\mathbb{A})$.
- Write projection of \vec{b} as \vec{p} .
- Know $\vec{p} \in C(\mathbb{A})$ so $\exists \vec{x}_*$ such that $\mathbb{A}\vec{x}_* = \vec{p}$.
- Firror vector must be orthogonal to column space so $\mathbb{A}^{\mathrm{T}}\vec{e} = \mathbb{A}^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}.$

Rearrange:

$$\mathbb{A}^{\mathrm{T}}\vec{p}=\mathbb{A}^{\mathrm{T}}\vec{b}$$

Since $\mathbb{A}\vec{x}_* = \vec{p}$, we end up with

 $\mathbb{A}^{\mathrm{T}}\mathbb{A}\vec{x}_{*}=\mathbb{A}^{\mathrm{T}}\vec{b}.$

► This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$. Lecture 14/25: Ch. 3/4: Lec. 15

Review for Exam 2

Words

Dac 11 of 16

The symmetry of $\mathbb{A}\vec{x} = \vec{b}$ and $\mathbb{A}^{\mathrm{T}}\vec{y} = \vec{c}$:

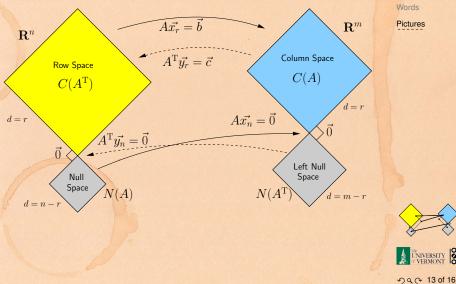
Lecture 14/25: Ch. 3/4: Lec. 15

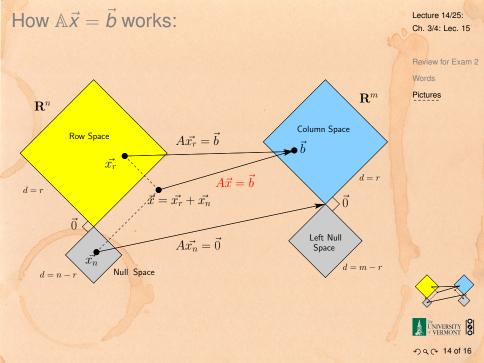
Review for Exam 2

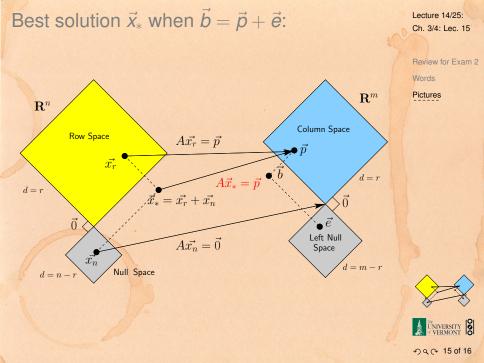
UNIVERSITY

Words

Pictures







The fourfold ways of $\mathbb{A}\vec{x} = \vec{b}$:

Lecture 14/25: Ch. 3/4: Lec. 15

	case	example R	big picture	# solutions	Review for Exam 2 Words
	m = r n = r	$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]$		1 always	Pictures
1	m = r, n > r	$\left[\begin{array}{rrrr}1&0&\textcircled{l}_1\\0&1&\textcircled{l}_2\end{array}\right]$		∞ always	
	m > r, n = r	$ \left[\begin{array}{rrrr} 1 & 0\\ 0 & 1\\ 0 & 0 \end{array}\right] $		0 or 1	
	m > r, n > r	$ \left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0 or ∞	UNIVERSITY 8

DQ @ 16 of 16