

- Knowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want 'understanding' and 'doing' abilities.

Doc 3018

- Understand how L is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$.
- ► Understand how *L* is made up of the *l_{ij}* multipliers.
- Understand how inverses of elimination matrices are simply related to elimination matrices.

Stuff to know:

Lecture 7/25: Review

Matrix algebra

Review for Exam 1

- Understand basic matrix algebraUnderstand matrix multiplication
- Understand multiplication order matters
- Understand AB = BA is rarely true

Inverses

- Understand identity matrix I
- Understand $AA^{-1} = A^{-1}A = I$
- ► Find A⁻¹ with Gauss-Jordan elimination
- Perform row reduction on augmented matrix [A | I].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- ► $(AB)^{-1} = B^{-1}A^{-1}$

Stuff to know:

Lecture 7/25: Review Review for Exam 1

Transposes

- > Definition: flip entries across main diagonal
- $A = A^{\mathrm{T}}$: A is symmetric
- Important property: $(AB)^{T} = B^{T}A^{T}$

Extra pieces:

- If $A\vec{x} = \vec{0}$ has a non-zero solution, *A* has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- ► $(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$

