

୬.୧୦.3 of 9

northont

Defn:

The entries along *U*'s main diagonal are the pivots of *A*. (The pivots are hidden—elimination finds them.)

Lecture 2/25: Solving Linear Equations

Solving $A \vec{x} = \vec{b}$

Defn:

A matrix with only zeros below the main diagonal is called upper triangular. A matrix with only zeros above the main diagonal is called lower triangular. We travel from A to U and the latter is always upper triangular.

Defn:

Singular means a system has no unique solution.

- It may have no solutions or infinitely many solutions.
- Singular = archaic way of saying 'messed up.'

Truth:

If at least one pivot is zero, the matrix will be singular. (but the reverse is not necessarily true).

Gaussian elimination:

Lecture 2/25: Solving Linear Equations

Solving $A \vec{x} = \vec{b}$

The one true method:

- We simplify A using elimination in the same way every time.
- Eliminate entries one column at a time, moving left to right, and down each column.

Х	+	Х	+	Х	+	Х	=	Х
1↓	+	Х	+	Χ	+	Χ	=	Х
2↓	+	4 ↓	+	Χ	+	Χ	=	Х
3 🗡	+	$5 \rightarrow$	+	6	+	Χ	=	Х

Gaussian elimination:

Lecture 2/25: Solving Linear Equations

Solving $A \vec{x} = \vec{b}$

- To eliminate entry in row i of jth column, subtract a multiple l_{ij} of the jth row from i.
- ► For example:

$2x_1$	+	3 <i>x</i> 2	+	$-2x_{3}$	+	<i>x</i> ₄	=	1
<i>x</i> ₁	_	7 <i>x</i> ₂	+	3 <i>x</i> ₃	+	<i>x</i> ₄	=	1
$-x_{1}$	_	3 <i>x</i> 2	_	<i>x</i> 3	+	5 <i>x</i> 4	=	-2
2 <i>x</i> ₁	+	<i>x</i> ₂	_	$2x_3$	+	2 <i>x</i> ₄	=	0

 $\ell_{21}=1/2,\,\ell_{31}=-1/2,\,\ell_{41}=?.$

- ► Note: we cannot find ℓ₃₂ etc., until we are finished with row 1. Pivots are hidden!
- ► Note: the denominator of each ℓ_{ij} multiplier is the pivot in the *j*th column.

