Introduction

Matrixology (Linear Algebra)—Lecture 1/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License

Lecture 1/25: Introduction

Exciting Admin Importance

Usages Key problems Three ways of looking...

Colbert on Equations

References

少 Q (№ 1 of 39

Lecture 1/25:

Introduction

Importance

Key problems

Colbert on Equations

References

Usages

Our Textbook of Excellence:

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages Key problems

Three ways of looking... Colbert on

References

Unhelpful 4th Edition 🗹

- "Introduction to Linear Algebra" by Gil Strang (⊞);
- ► Textbook website: http://math.mit.edu/linearalgebra/ (⊞)
- MIT Open Courseware site for 18.06 (=Linear Algebra):

http://ocw.mit.edu/...linear-algebra-spring-2010/ (⊞)

•2 Q Q 4 of 39

Lecture 1/25:

Introduction

Exciting Admin

Importance

Key problems

Three ways of looking...

Colbert on Equations

References

Usages

Outline

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Yesness:

Money quote from George Cobb's review of Strang's book:

Do you want a book written by a mathematician with a lifetime experience using linear algebra to understand important, authentic, applied problems, a former president of the Society for Industrial and Applied Mathematics,

or do you want a book shaped mainly by the [a]esthetics of pure mathematicians with only a weak, theoretical connection to how linear algebra is used in the natural and social sciences?

- George Cobb: Robert L. Rooke Professor of Mathematics and Statistics, Mount Holyoke College
- ► Full review here (⊞) [amazon]

Lecture 1/25:

Exciting Admin

Importance

Key problems

Three ways of looking...

Colbert on Equations

References

Usages

Introduction

Basics:

- ▶ Instructor: Prof. Peter Dodds
- ► Lecture room and meeting times: 254 Votey Hall, Tuesday and Thursday, 2:30 pm to 3:45 pm
- ▶ Office: Farrell Hall, second floor, Trinity Campus
- ► E-mail: peter.dodds@uvm.edu
- ► Course website: http://www.uvm.edu/~pdodds/ teaching/courses/2011-08UVM-124 (H)
- Textbook: "Introduction to Linear Algebra" (3rd of 4th editions) by Gilbert Strang (published by Wellesley-Cambridge Press).

Lecture 1/25:

Introduction

Exciting Admin

Importance Usages

Key problems Three ways of looking...

Colbert on Equations

少 Q (~ 3 of 39

Gil Strang, Exalted Friend of the Matrix:

Professor of Mathematics at MIT since 1962.

- Many awards including MAA Haimo Award (⊞) for Distinguished College or University Teaching of Mathematics
- Rhodes Scholar.
- Legend.

▶ (Strang's Wikipedia page is here (⊞).

ჟq (~ 6 of 39

Admin:

Potential paper products:

1. Outline

Papers to read:

- 1. "The Fundamental Theorem of Linear Algebra" [2]
- 2. "Too Much Calculus" [3]

Office hours:

▶ 12:50 pm to 3:50 pm, Wednesday, Farrell Hall, second floor, Trinity Campus

Key problems Three ways of looking... Colbert on Equations

Lecture 1/25:

Introduction

References

ჟი ~ 7 of 39

Lecture 1/25: Introduction

Exciting Admin

Usages Key problems

Three ways of looking...

References

2. Midterm exams (35%)

▶ Three 75 minutes tests distributed throughout the course, all of equal weighting.

Each assignment will have a random bonus point

question which has nothing to do with linear algebra.

Lowest assignment score will be dropped.

The last assignment cannot be dropped!

3. Final exam (24%)

Grading breakdown:

1. Assignments (40%)

< Three hours of joyful celebration.</p>

Ten one-week assignments.

Monday, December 12, 1:30 pm to 4:15 pm, 254 Votev

Lecture 1/25:

Exciting Admin

Importance

Key problems

Three ways of looking...

Colbert on Equations

Usages

Introduction

Grading breakdown:

- 4. Homework (0%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
- 5. General attendance (1%)—it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

Questions are worth 3 points according to the following scale:

- ▶ 3 = correct or very nearly so.
- ▶ 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- \triangleright 0 = way off.

Schedule:

The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week # (dates)	Tuesday	Thursday
1 (8/30, 9/1)	Lecture	Lecture + A1
2 (9/6, 9/8)	Lecture	Lecture + A2
3 (9/13, 9/15)	Lecture	Lecture + A3
4 (9/20, 9/22)	Lecture	Test 1
5 (9/27, 9/29)	Lecture	Lecture + A4
6 (10/4, 10/6)	Lecture	Lecture + A5
7 (10/11, 10/13)	Lecture	Lecture + A6
8 (10/18, 10/20)	Lecture	Test 2
9 (10/25, 10/27)	Lecture	Lecture + A7
10 (11/1, 11/3)	Lecture	Lecture + A8
11 (11/8, 11/10)	Lecture	Lecture + A9
12 (11/15, 11/17)	Lecture	Test 3
13 (11/22, 11/24)	Thanksgiving	Thanksgiving
14 (11/29, 12/1)	Lecture + A10	Lecture
15 (12/6)	Lecture	_

Lecture 1/25: Introduction

Exciting Admin Importance

Usages Key problems

> Three ways of looking... Colbert on Equations

References

•9 α (~ 10 of 39

Lecture 1/25:

Exciting Admin

Key problems

Three ways of looking...

Colbert on Equations

References

Importance

Usages

Introduction

Important dates:

- 1. Classes run from Monday, August 29 to Wednesday, December 7.
- 2. Add/Drop, Audit, Pass/No Pass deadline—Monday, September 12.
- 3. Last day to withdraw—Monday, October 31 (Boo).
- 4. Reading and Exam period—Thursday, December 8 to Friday, December 16.

More stuff:

Do check your zoo account for updates regarding the

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

ഹ രം 11 of 39

More stuff:

Being good people:

- 1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab or similar).
- 2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
- 3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/

Exciting Admin

Lecture 1/25:

Introduction

Importance

Usages

Key problems

Three ways of looking... Colbert on Equations

References

少 Q (~ 9 of 39

for guidelines.

Even more stuff:

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0%.

Computing: Students are encouraged to use Matlab or something similar to check their work.

Note: for assignment problems, written details of calculations will be required.

Why are we doing this?

Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- ▶ Information (0's & 1's, letters, words)
- ► People (sociology)
- ▶ Networks (the Web, people again, food webs, ...)
- ► Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it (0's and 1's)

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science
- Physics
- Economics
- Biology
- Ecology ...

Big example:

Google's Pagerank (⊞)

Some truth:

- ▶ Linear Algebra is as important as Calculus...
- ► Calculus ≡ the blue pill...

Lecture 1/25: Introduction

Exciting Admin

Importance Usages

Key problems Three ways of looking...

Colbert on Equations

References

UNIVERSITY VERMONT 夕 Q № 13 of 39

Lecture 1/25:

Introduction

Importance

Key problems

Three ways of looking...

References

You are now choosing the red pill:

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages Key problems

Three ways of looking...

Colbert on Equations

References

少 Q (~ 16 of 39

The Truth:

Lecture 1/25: Introduction

Importance

Usages

Key problems

Three ways of looking...

References

► Calculus is the Serpent's Mathematics.

The Platypus of Truth:

少 Q (~ 14 of 39

Lecture 1/25: Introduction

Exciting Admin Importance

Key problems Three ways of looking...

Colbert on Equations

Platypuses are masters of Linear Algebra.

Lecture 1/25: Introduction

Exciting Admin

Importance Usages

Key problems

Three ways of looking... Colbert on Equations

夕 Q № 18 of 39

The Truth:

Linear Algebra:

- ▶ Ghandi
- Buffy Summers
- Maple trees
- ► Chipmunks
- Elephants
- Yoda
- ▶ Hermione
- ► Frodo
- ▶ Indiana Jones
- Apple

Calculus:

- Poisonous spiders and other nasty bitey things
- ▶ Voldemort
- ▶ Big Bads
- ▶ Golem
- ▶ George Lucas
- Snakes
- Microsoft

Lecture 1/25: Introduction

Exciting Admin

Usages Key problems Three ways of looking...

Colbert on Equations

References

夕∢ № 19 of 39

The many delights of Eigenthings:

Using Linear Algebra we'll somehow connect:

- Fibonacci Numbers,
- Golden Ratio,
- Spirals,
- Sunflowers, pine cones,

.

Harvard Square.

Lecture 1/25:

Introduction

Exciting Admin

Importance

Key problems

Three ways of looking...

Colbert on Equations

References

Usages

少 Q (~ 23 of 39

Matrices as gadgets:

A matrix \vec{A} transforms a vector \vec{x} into a new vector \vec{x}' through matrix multiplication (whatever that is):

$$\vec{x}' = A\vec{x}$$

We can use matrices to:

- Grow vectors
- ▶ Shrink vectors
- Rotate vectors
- Flip vectors

10

10

10

 $10^1 \quad 10^2 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6$

Basal metabolism (W)

- ▶ Do all these things in different directions
- ► Reveal the true ur-dystopian reality.

Mass (g)

Dodds, Rothman, and Weitz,

► From "Re-examination of the '3/4' law of metabolism" [1]

Journal of Theoretical Biology, 209, 9-27, 2001

Best fit line (least squares):

Lecture 1/25: Introduction

Exciting Admi

Usages Key problems

Three ways of looking...

Colbert on Equations

References

少∢ (~ 20 of 39

Lecture 1/25: Introduction

Exciting Admin Importance

Usages Key problems

Linear algebra

does this

Calculus

beautifully;

version is clunky.

And evil.

Three ways of looking...
Colbert on Equations

Equations References

୬९୯ 22 of 39

This is a math course:

http://www.pimpartworks.com/artwork/randomsteveo/Wax-On-Wax-Off

▶ It's all connected. "More later."

Three key problems of Linear Algebra

1. Given a matrix A and a vector \vec{b} , find \vec{x} such that

 $A\vec{x} = \vec{b}$.

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

 $\mathbf{A}\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}.$

3. Coupled linear differential equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = \mathbf{A}y(t)$$

▶ Our focus will be largely on #1, partly on #2.

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages Key problems

Three ways of looking...

Equations

References

Lecture 1/25: Introduction

Exciting Admin Importance

Usages Key problems

Three ways of looking...

Colbert on Equations

References

少 q (~ 25 of 39

Major course objective:

To deeply understand the equation $A\vec{x} = \vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

What is going on here? We have 25 24 lectures to find out...

Lecture 1/25: Introduction

Exciting Admin Importance

Usages

Key problems

Colbert on Equations

References

UNIVERSITY OF

少 Q (~ 26 of 39

Lecture 1/25:

Introduction

Importance

Key problems

Three ways of looking...

References

Usages

Linear Algebra compliments/putdowns for Thanksgiving dinner:

Wow, you have such a tiny/huge [delete as

► See also: The Dunning-Kruger effect. (⊞)

applicable] left nullspace!

Exciting Admin Importance

Lecture 1/25:

Introduction

Usages Key problems

Three ways of looking...

Colbert on Equations

References

•29 of 39

Lecture 1/25:

Introduction

Importance

Key problems

Three ways of looking...

References

Usages

Our new BFF: $A\vec{x} = \vec{b}$

Broadly speaking, $A\vec{x} = \vec{b}$ translates as follows:

- $ightharpoonup \vec{b}$ represents reality (e.g., music, structure)
- ▶ A contains building blocks (e.g., notes, shapes)
- make \vec{b} (as best we can).

Our friend $A\vec{x} = \vec{b}$

- $ightharpoonup \vec{x}$ specifies how we combine our building blocks to

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- ▶ Find a system's simplest representation
- Find a system's most important elements
- See how to adjust a system in a principled way

Lecture 1/25:

Introduction

Exciting Admin

Key problems

Three ways of looking...

Colbert on Equations

Usages

How can we disentangle an orchestra's sound?

What about pictures, waves, signals, ...?

Radiolab (⊞)'s amazing piece: A 4-Track Mind (⊞)

Lecture 1/25: Introduction

少 Q (~ 27 of 39

Exciting Admin Importance

Usages

Key problems

Colbert on Equations

Three ways to understand $A\vec{x} = \vec{b}$:

► Way 1: The Row Picture

► Way 2: The Column Picture

► Way 3: The Matrix Picture

Example:

$$-x_1 + x_2 = 1$$

 $2x_1 + x_2 = 2$

- 2 equations with 2 unknowns.

► Call this a 2 by 2 system of equations.

▶ Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other = Row Picture.

少 Q (~ 31 of 39

Is this your left nullspace?:

少 Q (~ 28 of 39

Three ways to understand $A\vec{x} = \vec{b}$:

Row Picture—what we are doing:

- ► (a) Finding intersection of two lines
- \blacktriangleright (b) Finding the values of x_1 and x_2 for which both equations are satisfied (true/happy)
- ► A splendid and deep connection:

Three possible kinds of solution:

- 1. Lines intersect at one point —One, unique solution
- 2. Lines are parallel and disjoint -No solutions
- 3. Lines are the same —Infinitely many solutions

Lecture 1/25

Introduction

Exciting Admin

Importance

Key problems

Three ways of looking...

Colbert on Equations

References

Usages

少 Q (~ 32 of 39

Lecture 1/25:

Introduction

Importance

Key problems

Three ways of looking...

References

Usages

Three ways to understand $A\vec{x} = \vec{b}$:

Difficulties:

- ▶ Do we give up if $A\vec{x} = \vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation—very important!
- ▶ We may not have the right building blocks but we can do our best.

Lecture 1/25: Introduction

Exciting Admin

Importance Usages

Key problems Three ways of looking...

Colbert on Equations

References

Lecture 1/25:

Introduction

Importance

Key problems Three ways of looking...

Colbert on Equations

References

Usages

Three ways to understand $A\vec{x} = \vec{b}$:

The column picture:

See

$$\begin{array}{rcl} -x_1 & + & x_2 & = & 1 \\ 2x_1 & + & x_2 & = & 4 \end{array}$$

as

$$x_1 \left[\begin{array}{c} -1 \\ 2 \end{array} \right] + x_2 \left[\begin{array}{c} 1 \\ 1 \end{array} \right] = \left[\begin{array}{c} 1 \\ 4 \end{array} \right].$$

General problem

$$x_1\vec{a}_1+x_2\vec{a}_2=\vec{b}$$

- ► Column vectors are our 'building blocks'
- **Key idea:** try to 'reach' \vec{b} by combining (summing) multiples of column vectors \vec{a}_1 and \vec{a}_2 .

Three ways to understand $A\vec{x} = \vec{b}$:

The Matrix Picture:

Now see

$$x_1 \left[\begin{array}{c} -1 \\ 2 \end{array} \right] + x_2 \left[\begin{array}{c} 1 \\ 1 \end{array} \right] = \left[\begin{array}{c} 1 \\ 4 \end{array} \right].$$

as

$$A\vec{x} = \vec{b} : \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

A is now an operator:

- ightharpoonup A transforms \vec{x} into \vec{b} .
- ▶ Roughly speaking, *A* does two things to \vec{x} :
 - 1. Rotation/Flipping
 - 2. Dilation (stretching/contraction)

ഹ വ (~ 36 of 39

Three ways to understand $A\vec{x} = \vec{b}$:

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

- 1. $\vec{a}_1 \parallel \vec{a}_2$: 1 solution
- 2. $\vec{a}_1 \parallel \vec{a}_2 \not\parallel \vec{b}$: No solutions
- 3. $\vec{a}_1 \parallel \vec{a}_2 \parallel \vec{b}$: infinitely many solutions

(assuming neither \vec{a}_1 or \vec{a}_1 are $\vec{0}$)

Lecture 1/25: Introduction

UNIVERSITY OF VERMONT ◆0 9 0 33 of 39

Exciting Admin Importance

Usages Key problems

Three ways of looking...

Colbert on Equations

The Matrix Picture

Key idea in linear algebra:

- Decomposition or factorization of matrices.
- Matrices can often be written as products or sums of simpler matrices
- \blacktriangleright A = LU, A = QR, $A = U\Sigma V^{T}$, $A = \sum_{i} \lambda_{i} \vec{v} \vec{v}^{T}$, ...

Lecture 1/25: Introduction

Exciting Admin

Usages Key problems

Three ways of looking...

Colbert on Equations

∙) q (~ 37 of 39

少 Q (~ 34 of 39

More Truth about Mathematics:

The Colbert Report on Math (⊞) (February 7, 2006)

"Equations are the Devil's sentences."

References I

- [1] P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. <u>Journal of Theoretical Biology</u>, 209:9–27, 2001. pdf (\boxplus)
- [2] G. Strang.

 The fundamental theorem of linear algebra.

 The American Mathematical Monthly,

 100(9):848–855, 1993. pdf (⊞)
- [3] G. Strang.

 Too much calculus, 2002.

 SIAM Linear Algebra Activity Group Newsletter.

 pdf (⊞)

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages Key problems

Three ways of looking...

Colbert on Equations

References

少 Q (~ 38 of 39

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

少 Q (~ 39 of 39