

Admin：

Potential paper products：
1．Outline
Papers to read：
1．＂The Fundamental Theorem of Linear Algebra＂［2］
2．＂Too Much Calculus＂${ }^{[3]}$

Office hours：

－12：50 pm to 3：50 pm，Wednesday， Farrell Hall，second floor，Trinity Campus

Grading breakdown：

1．Assignments（40\％）
－Ten one－week assignments．
－Lowest assignment score will be dropped．
－The last assignment cannot be dropped！
－Each assignment will have a random bonus point question which has nothing to do with linear algebra．
2．Midterm exams（ 35% ）
－Three 75 minutes tests distributed throughout the course，all of equal weighting．
3．Final exam（24\％）
－\leq Three hours of joyful celebration．
－Monday，December 12，1：30 pm to 4：15 pm， 254 Votey

Grading breakdown：

4．Homework（ 0% ）—Problems assigned online from the textbook．Doing these exercises will be most beneficial and will increase happiness．
5．General attendance（ 1% ）－it is extremely desirable that students attend class，and class presence will be taken into account if a grade is borderline．

Questions are worth 3 points according to the following scale：
－ 3 ＝correct or very nearly so．
－ 2 ＝acceptable but needs some revisions．
－ 1 ＝needs major revisions．
－ $0=$ way off．

Exciting Admin Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

？
 美
 ๑act 7 of 39

Lecture $1 / 25$ ：
Introduction

ExcitingAdmin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

صのく 8 of 39

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of looking．．．
Colbert on
Equations
References

 صac 9 of 39

Schedule：
The course will mainly cover chapters 2 through 6 of the textbook．（You should know all about Chapter 1．）

Week \＃（dates）	Tuesday	Thursday
$1(8 / 30,9 / 1)$	Lecture	Lecture＋A1
$2(9 / 6,9 / 8)$	Lecture	Lecture＋A2
$3(9 / 13,9 / 15)$	Lecture	Lecture＋A3
$4(9 / 20,9 / 22)$	Lecture	Test 1
$5(9 / 27,9 / 29)$	Lecture	Lecture＋A4
$6(10 / 4,10 / 6)$	Lecture	Lecture＋A5
$7(10 / 11,10 / 13)$	Lecture	Lecture＋A6
$8(10 / 18,10 / 20)$	Lecture	Test 2
$9(10 / 25,10 / 27)$	Lecture	Lecture＋A7
$10(11 / 1,11 / 3)$	Lecture	Lecture＋A8
$11(11 / 8,11 / 10)$	Lecture	Lecture＋A9
$12(11 / 15,11 / 17)$	Lecture	Test 3
$13(11 / 22,11 / 24)$	Thanksgiving	Thanksgiving
$14(11 / 29,12 / 1)$	Lecture＋A10	Lecture
$15(12 / 6)$	Lecture	-

Important dates：
1．Classes run from Monday，August 29 to Wednesday， December 7.
2．Add／Drop，Audit，Pass／No Pass deadline－Monday， September 12.
3．Last day to withdraw－Monday，October 31 （Boo）．
4．Reading and Exam period－Thursday，December 8 to Friday，December 16.

More stuff：

Do check your zoo account for updates regarding the course．

Academic assistance：Anyone who requires assistance in any way（as per the ACCESS program or due to athletic endeavors），please see or contact me as soon as possible．

More stuff：

Being good people：
1．In class there will be no electronic gadgetry，no cell phones，no beeping，no text messaging，etc．You really just need your brain，some paper，and a writing implement here（okay，and Matlab or similar）．
2．Second，I encourage you to email me questions， ideas，comments，etc．，about the class but request that you please do so in a respectful fashion．
3．Finally，as in all UVM classes，Academic honesty will be expected and departures will be dealt with appropriately．See http：／／www．uvm．edu／cses／ for guidelines．

Lecture $1 / 25$ ： Introduction

Exciting Admin

Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

and vintrgity ${ }^{\circ} \mid$
のดc 11 of 39

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of

Even more stuff：
Late policy：Unless in the case of an emergency（a real one）or if an absence has been predeclared and a make－up version sorted out，assignments that are not turned in on time or tests that are not attended will be given 0\％．

Computing：Students are encouraged to use Matlab or something similar to check their work．

Note：for assignment problems，written details of calculations will be required．

Why are we doing this？

Big deal：Linear Algebra is a body of mathematics that deals with discrete problems．

Many things are discrete：
－Information（0＇s \＆1＇s，letters，words）
－People（sociology）
－Networks（the Web，people again，food webs，．．．）
－Sounds（musical notes）

If real data is continuous，we almost always discretize it （0＇s and 1＇s）

Even more：

Lecture 1／25： Introduction

Exciting Admin

 Importance Usages Key problems Three ways of looking．．． Colbert on EquationsReferences

Lecture $1 / 25$ ： Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．
Colbert on
Equations
References

The Platypus of Truth：
－Platypuses are masters of Linear Algebra．

－Calculus is the Serpent＇s Mathematics．
－Economics
－Biology
－Ecology ．．．

Big example：
Google＇s Pagerank（ \boxplus ）

Some truth：

－Linear Algebra is as important as Calculus．．．
－Calculus \equiv the blue pill．．．

The Truth：

Linear Algebra：
－Ghandi
－Buffy Summers
－Maple trees
－Chipmunks
－Elephants
－Yoda
－Hermione
－Frodo
－Indiana Jones
－Apple

Calculus：
－Poisonous spiders and other nasty bitey things
－Voldemort
－Big Bads
－Golem
－George Lucas
－Snakes
－Microsoft

Matrices as gadgets：

A matrix A transforms a vector \vec{x} into a new vector \vec{x}^{\prime} through matrix multiplication（whatever that is）：

$$
\vec{x}^{\prime}=A \vec{x}
$$

We can use matrices to：
－Grow vectors
－Shrink vectors
－Rotate vectors
－Flip vectors
－Do all these things in different directions
－Reveal the true ur－dystopian reality．
Lecture $1 / 25$ ：

Exciting Admin Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

๑ดc 19 of 39

Lecture $1 / 25$ ：
Introduction
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

1
صดल 20 of 39
Best fit line（least squares）：

－Linear algebra does this beautifully；
－Calculus version is clunky． And evil．
－From＂Re－examination of the＇ $3 / 4$＇law of metabolism＂${ }^{[1]}$ Dodds，Rothman，and Weitz， Journal of Theoretical Biology，209，9－27， 2001

The many delights of Eigenthings：

Using Linear Algebra we＇ll somehow connect：

－Fibonacci Numbers，
－Golden Ratio，
－Spirals，
－Sunflowers， pine cones，
－Harvard Square．

This is a math course：

http：／／www．pimpartworks．com／artwork／randomsteveo／Wax－On－Wax－Off
－It＇s all connected．＂More later．＂

Three key problems of Linear Algebra

1．Given a matrix A and a vector \vec{b} ，find \vec{x} such that

$$
A \vec{x}=\vec{b} .
$$

2．Eigenvalue problem：Given A ，find λ and \vec{v} such that

$$
A \vec{v}=\lambda \vec{v} .
$$

3．Coupled linear differential equations：

$$
\frac{\mathrm{d}}{\mathrm{~d} t} y(t)=A y(t)
$$

－Our focus will be largely on \＃1，partly on \＃2．

Lecture $1 / 25$ ： Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．
Colbert on
Equations
References

悬
๑のく 23 of 39

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

صのく 24 of 39

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

What is going on here？We have 2524 lectures to find out．．．

Our new BFF：$A \vec{x}=\vec{b}$
Broadly speaking，$A \vec{x}=\vec{b}$ translates as follows：
－\vec{b} represents reality（e．g．，music，structure）
－A contains building blocks（e．g．，notes，shapes）
－\vec{x} specifies how we combine our building blocks to make \vec{b}（as best we can）．

How can we disentangle an orchestra＇s sound？

－Radiolab（ \boxplus ）＇s amazing piece： A 4－Track Mind（ \boxplus ）

What about pictures，waves，signals，．．．？

Is this your left nullspace？：

Lecture $1 / 25$ ： Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
Three way
looking．．．
Colbert on
Equations References

๑Qく 26 of 39

```
Lecture \(1 / 25\) ：
Introduction
Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References
```

－Wow，you have such a tiny／huge［delete as applicable］left nullspace！
－See also：The Dunning－Kruger effect．（ \boxplus ）

Linear Algebra compliments／putdowns for

Thanksgiving dinner：

Lecture $1 / 25$ ： Introduction

Exciting Admin

Importance
Usages
Key problems
Three ways of
Three ways
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．：
Colbert on
Equations
Equations
References

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

－Call this a 2 by 2 system of equations．
－ 2 equations with 2 unknowns．
－Standard method of simultaneous equations：solve above by adding and subtracting multiples of equations to each other＝Row Picture．
－Way 1：The Row Picture
－Way 2：The Column Picture
－Way 3：The Matrix Picture

Example：

A

Three ways to understand $A \vec{x}=\vec{b}$ ：

Row Picture—what we are doing：
－（a）Finding intersection of two lines
－（b）Finding the values of x_{1} and x_{2} for which both equations are satisfied（true／happy）
－A splendid and deep connection：
（a）Geometry $\rightleftharpoons(b)$ Algebra
Three possible kinds of solution：
1．Lines intersect at one point —One，unique solution
2．Lines are parallel and disjoint－No solutions
3．Lines are the same－Infinitely many solutions

Three ways to understand $A \vec{x}=\vec{b}$ ：
The column picture：
See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

General problem

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

－Column vectors are our＇building blocks＇
－Key idea：try to＇reach＇\vec{b} by combining（summing） multiples of column vectors \vec{a}_{1} and \vec{a}_{2} ．

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References
都

つのく 33 of 39

Three ways to understand $A \vec{x}=\vec{b}$ ：

We love the column picture：
－Intuitive．
－Generalizes easily to many dimensions．
Three possible kinds of solution：
1．$\vec{a}_{1} \nmid \vec{a}_{2}: 1$ solution
2．$\vec{a}_{1} \| \vec{a}_{2} \nmid \vec{b}$ ：No solutions
3．$\vec{a}_{1}\left\|\vec{a}_{2}\right\| \vec{b}$ ：infinitely many solutions
（assuming neither \vec{a}_{1} or \vec{a}_{1} are $\overrightarrow{0}$ ）
Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References

Three ways to understand $A \vec{x}=\vec{b}$ ：
Difficulties：
Do we give up if $A \vec{x}=\vec{b}$ has no solution？
No！We can still find the \vec{x} that gets us as close to \vec{b}
as possible．

Exciting Admin
Importance
Usages
Key problems
Three ways of
lō̄̄ing．．．
Colbert on
Equations
References
－Method of approximation－very important！
－We may not have the right building blocks but we can do our best．

Three ways to understand $A \vec{x}=\vec{b}$ ：

The Matrix Picture：
Now see

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

as

$$
A \vec{x}=\vec{b}:\left[\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

A is now an operator：
－A transforms \vec{x} into \vec{b} ．
－Roughly speaking，A does two things to \vec{x} ：
1．Rotation／Flipping
2．Dilation（stretching／contraction）

The Matrix Picture

Lecture $1 / 25$ ：
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking：．
Colbert on
Equations
References

Lecture $1 / 25$
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking．．．
Colbert on
Equations
References
－Decomposition or factorization of matrices．
－Matrices can often be written as products or sums of simpler matrices
－$A=L U, A=Q R, A=U \Sigma V^{\mathrm{T}}, A=\sum_{i} \lambda_{i} \vec{V} \vec{V}^{\mathrm{T}}, \ldots$

More Truth about Mathematics:
The Colbert Report on Math (\boxplus) (February 7, 2006)

Math Is Hard
Stephen lauds America for exploiting the natural resource that are its nerds.
Tags: George W. Buth, Jmmy, Ronnat Reagan, C Cated IIt, sdence
"Equations are the Devil's sentences."

References I

[1] P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9-27, 2001. pdf (\boxplus)
[2] G. Strang.
The fundamental theorem of linear algebra.
The American Mathematical Monthly,
100(9):848-855, 1993. pdf (\boxplus)
[3] G. Strang.
Too much calculus, 2002.
SIAM Linear Algebra Activity Group Newsletter. pdf (\boxplus)

Lecture $1 / 25$: Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking...
Colbert on
Équations
References

Lecture $1 / 25$:
Introduction

Exciting Admin
Importance
Usages
Key problems
Three ways of
looking...
Colbert on
Equations
References

