Introduction

Matrixology (Linear Algebra)—Lecture 1/25 MATH 124, Fall, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Exciting Admin

nportance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Outline

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Exciting Admin

mportance

Usages

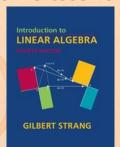
Key problems

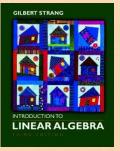
Three ways of looking...

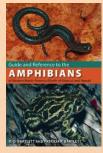
Solbert on Equations

References

► Instructor: Prof. Peter Dodds


Lecture room and meeting times:
 254 Votey Hall,
 Tuesday and Thursday, 2:30 pm to 3:45 pm


- Office: Farrell Hall, second floor, Trinity Campus
- ► E-mail: peter.dodds@uvm.edu
- ► Course website: http://www.uvm.edu/~pdodds/teaching/courses/2011-08UVM-124 (⊞)
- ► Textbook: "Introduction to Linear Algebra" (3rd of 4th editions) by Gilbert Strang (published by Wellesley-Cambridge Press).



Our Textbook of Excellence:

4th Edition

3rd Edition

Unhelpful

- "Introduction to Linear Algebra" by Gil Strang (⊞);
- ► Textbook website: http://math.mit.edu/linearalgebra/ (⊞)
- ► MIT Open Courseware site for 18.06 (=Linear Algebra): http://ocw.mit.edu/...linear-algebra-spring-2010/ (⊞)

Lecture 1/25: Introduction

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

Colbert on

References

29 4 of 39

Money quote from George Cobb's review of Strang's book:

Do you want a book written by a mathematician with a lifetime experience using linear algebra to understand important, authentic, applied problems, a former president of the Society for Industrial and Applied Mathematics,

or do you want a book shaped mainly by the [a]esthetics of pure mathematicians with only a weak, theoretical connection to how linear algebra is used in the natural and social sciences?

- George Cobb: Robert L. Rooke Professor of Mathematics and Statistics, Mount Holyoke College
- ► Full review here (⊞) [amazon]

Exciting Admin

Importance

Usages

Kev problems

Three ways of looking...

Colbert on Equations

Gil Strang, Exalted Friend of the Matrix:

Professor of Mathematics at MIT since 1962.

These are 121 cupcakes with my favorite -1, 2, -1 matrix. It was the day before Thanksgiving and two days before my birthday. A happy surprise.

 Many awards including MAA Haimo Award (⊞) for Distinguished College or University Teaching of Mathematics

- Rhodes Scholar.
- Legend.

Lecture 1/25: Introduction

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Reference

More on Laplacian matrices, graphs, and other madnesses here (⊞).

► (Strang's Wikipedia page is here (⊞).

Admin:

Lecture 1/25: Introduction

Potential paper products:

1. Outline

Papers to read:

- 1. "The Fundamental Theorem of Linear Algebra" [2]
- 2. "Too Much Calculus" [3]

Office hours:

▶ 12:50 pm to 3:50 pm, Wednesday, Farrell Hall, second floor, Trinity Campus

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

colbert on aquations

Key problems

Three ways of

lookina...

1. Assignments (40%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

2. Midterm exams (35%)

- Three 75 minutes tests distributed throughout the course, all of equal weighting.
- 3. Final exam (24%)
 - Street
 Str
 - Monday, December 12, 1:30 pm to 4:15 pm, 254 Votey

- 4. Homework (0%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
- 5. General attendance (1%)—it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

Questions are worth 3 points according to the following scale:

- ▶ 3 = correct or very nearly so.
- ▶ 2 = acceptable but needs some revisions.
- ▶ 1 = needs major revisions.
- ▶ 0 = way off.

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week # (dates)	Tuesday	Thursday
1 (8/30, 9/1)	Lecture	Lecture + A1
2 (9/6, 9/8)	Lecture	Lecture + A2
3 (9/13, 9/15)	Lecture	Lecture + A3
4 (9/20, 9/22)	Lecture	Test 1
5 (9/27, 9/29)	Lecture	Lecture + A4
6 (10/4, 10/6)	Lecture	Lecture + A5
7 (10/11, 10/13)	Lecture	Lecture + A6
8 (10/18, 10/20)	Lecture	Test 2
9 (10/25, 10/27)	Lecture	Lecture + A7
10 (11/1, 11/3)	Lecture	Lecture + A8
11 (11/8, 11/10)	Lecture	Lecture + A9
12 (11/15, 11/17)	Lecture	Test 3
13 (11/22, 11/24)	Thanksgiving	Thanksgiving
14 (11/29, 12/1)	Lecture + A10	Lecture
15 (12/6)	Lecture	/

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Important dates:

- Classes run from Monday, August 29 to Wednesday, December 7.
- Add/Drop, Audit, Pass/No Pass deadline—Monday, September 12.
- 3. Last day to withdraw—Monday, October 31 (Boo).
- 4. Reading and Exam period—Thursday, December 8 to Friday, December 16.

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

Lecture 1/25: Introduction

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

Colbert on Equations

1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab or similar).

- 2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
- 3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/for guidelines.

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0%.

Computing: Students are encouraged to use Matlab or something similar to check their work.

Note: for assignment problems, written details of calculations will be required.

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Equations

Why are we doing this?

Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- ► Information (0's & 1's, letters, words)
- ► People (sociology)
- ▶ Networks (the Web, people again, food webs, ...)
- ► Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it (0's and 1's) Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

olbert on quations

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science
- Physics

- Economics
- Biology
- Ecology ...

Lecture 1/25 Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of lookina...

Big example:

Google's Pagerank (⊞)

Some truth:

- Linear Algebra is as important as Calculus...
- Calculus ≡ the blue pill...

You are now choosing the red pill:

Lecture 1/25: Introduction

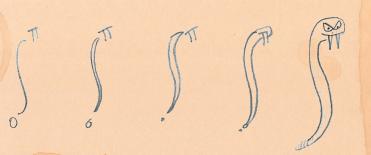
Exciting Admin

Importance

Usages

Key problems

Three ways of looking...


Colbert on Equations

The Truth:

Calculus is the Serpent's Mathematics.

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

References

2 9 € 17 of 39

The Platypus of Truth:

Platypuses are masters of Linear Algebra.

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

The Truth:

Linear Algebra:

- Ghandi
- Buffy Summers
- Maple trees
- Chipmunks
- Elephants
- Yoda
- Hermione
- Frodo
- Indiana Jones
- Apple

Calculus:

- Poisonous spiders and other nasty bitey things
- Voldemort
- Big Bads
- Golem
- George Lucas
- Snakes
- Microsoft

Lecture 1/25 Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Equations

Matrices as gadgets:

A matrix \vec{A} transforms a vector \vec{x} into a new vector \vec{x}' through matrix multiplication (whatever that is):

$$\vec{x}' = A\vec{x}$$

We can use matrices to:

- Grow vectors
 - Shrink vectors
 - Rotate vectors
 - Flip vectors
 - ▶ Do all these things in different directions
 - ► Reveal the true ur-dystopian reality.

Lecture 1/25: Introduction

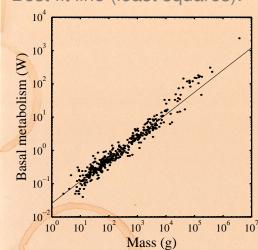
Exciting Admin

Importance

Usages

Key problems

Three ways of looking...


Colbert on Equations

Best fit line (least squares):

Linear algebra does this beautifully;

Calculus version is clunky. And evil.

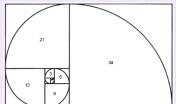
Lecture 1/25 Introduction

Exciting Admin

Usages

Three ways of looking...

From "Re-examination of the '3/4' law of metabolism" [1] Dodds, Rothman, and Weitz, Journal of Theoretical Biology, 209, 9-27, 2001


22 of 39

The many delights of Eigenthings:

Using Linear Algebra we'll somehow connect:

- Fibonacci Numbers.
- Golden Ratio,
- Spirals,
- Sunflowers. pine cones,

Harvard Square.

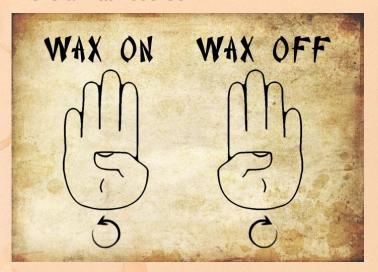
Lecture 1/25: Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...


Equations

This is a math course:

http://www.pimpartworks.com/artwork/randomsteveo/Wax-On-Wax-Off

It's all connected. "More later."

Lecture 1/25 Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Equations

References

24 of 39

Lecture 1/25: Introduction

1. Given a matrix A and a vector \vec{b} , find \vec{x} such that

$$A\vec{x} = \vec{b}$$
.

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$\mathbf{A}\vec{\mathbf{v}} = \lambda \vec{\mathbf{v}}.$$

3. Coupled linear differential equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = \mathbf{A}y(t)$$

Our focus will be largely on #1, partly on #2.

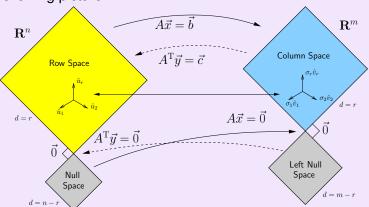
Exciting Admin

Importance

Usages

Key problems

Three ways of looking...


Colbert on Equations

Major course objective:

To deeply understand the equation $A\vec{x} = \vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

What is going on here? We have 25 24 lectures to find out...

Lecture 1/25: Introduction

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Our new BFF: $A\vec{x} = \vec{b}$

Broadly speaking, $A\vec{x} = \vec{b}$ translates as follows:

- ▶ **b** represents reality (e.g., music, structure)
- ► A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

How can we disentangle an orchestra's sound?

► Radiolab (⊞)'s amazing piece: A 4-Track Mind (⊞) Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Equations

Is this your left nullspace?:

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Linear Algebra compliments/putdowns for Thanksgiving dinner:

- Wow, you have such a tiny/huge [delete as applicable] left nullspace!
- See also: The Dunning-Kruger effect. (⊞)

Lecture 1/25 Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Equations

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation
- Find a system's most important elements
- See how to adjust a system in a principled way

Lecture 1/25: Introduction

► Way 1: The Row Picture

► Way 2: The Column Picture

► Way 3: The Matrix Picture

Example:

$$-x_1 + x_2 = 1$$

 $2x_1 + x_2 = 4$

- ► Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.
- ► Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other = Row Picture.

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

olbert on

Lecture 1/25 Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Equations

Row Picture—what we are doing:

- (a) Finding intersection of two lines
- \triangleright (b) Finding the values of x_1 and x_2 for which both equations are satisfied (true/happy)
- A splendid and deep connection:
 - (a) Geometry \rightleftharpoons (b) Algebra

Three possible kinds of solution:

- 1. Lines intersect at one point —One, unique solution
- Lines are parallel and disjoint —No solutions
- 3. Lines are the same —Infinitely many solutions

Lecture 1/25: Introduction

The column picture:

See

$$-x_1 + x_2 = 1$$

 $2x_1 + x_2 = 4$

as

$$X_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + X_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

General problem

$$x_1\vec{a}_1+x_2\vec{a}_2=\vec{b}$$

- Column vectors are our 'building blocks'
- ► Key idea: try to 'reach' \vec{b} by combining (summing) multiples of column vectors \vec{a}_1 and \vec{a}_2 .

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Introduction

Lecture 1/25

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

- 1. $\vec{a}_1 \not\parallel \vec{a}_2$: 1 solution
- 2. $\vec{a}_1 \parallel \vec{a}_2 \not\parallel \vec{b}$: No solutions
- 3. $\vec{a}_1 \parallel \vec{a}_2 \parallel \vec{b}$: infinitely many solutions

(assuming neither \vec{a}_1 or \vec{a}_1 are $\vec{0}$)

Exciting Admin

mportance

Usages

Key problems

Three ways of looking...

custions

Deferences

Lecture 1/25 Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Difficulties:

- ▶ Do we give up if $A\vec{x} = \vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation—very important!
- We may not have the right building blocks but we can do our best.

Lecture 1/25 Introduction

The Matrix Picture:

Now see

$$X_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + X_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

as

$$A\vec{x} = \vec{b} : \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Exciting Admin

Usages

Key problems

Three ways of looking...

A is now an operator:

- ightharpoonup A transforms \vec{x} into \vec{b} .
- ▶ Roughly speaking, A does two things to \vec{x} :
 - Rotation/Flipping
 - Dilation (stretching/contraction)

The Matrix Picture

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

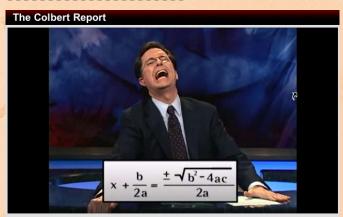
Three ways of looking...

Colbert on Equations

References

Key idea in linear algebra:

- Decomposition or factorization of matrices.
- Matrices can often be written as products or sums of simpler matrices
- ► A = LU, A = QR, $A = U\Sigma V^{T}$, $A = \sum_{i} \lambda_{i} \vec{v} \vec{v}^{T}$, ...



More Truth about Mathematics:

The Colbert Report on Math (⊞) (February 7, 2006)

Tuesday February 7, 2006

Math Is Hard

Stephen lauds America for exploiting the natural resource that are its nerds.

Tags: George W. Bush, Jimmy, Ronald Reagan, I Called It!, science

"Equations are the Devil's sentences."

Lecture 1/25 Introduction

Exciting Admin

Usages

Key problems

Three ways of looking...

Colbert on Equations

2 9 0 38 of 39

References I

[1] P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9–27, 2001. pdf (⊞)

[2] G. Strang.
The fundamental theorem of linear algebra.
The American Mathematical Monthly,
100(9):848–855, 1993. pdf (⊞)

[3] G. Strang.

Too much calculus, 2002.

SIAM Linear Algebra Activity Group Newsletter.

pdf (⊞)

Lecture 1/25: Introduction

Exciting Admin

Importance

Usages

Key problems

Three ways of looking...

Equations

