Optimal Supply Networks

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

Cartograms

A reasonable derivation Global redistribution

etworks Public versus Private

......

Outline

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks River networks

Distributed Sources

Facility location
Size-density law
Cartograms
A reasonable derivation
Global redistribution networks
Public versus Private

References

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distribute

Facility location Size-density law

Size-density law

Cartograms
A reasonable derivation

alobal redistribution etworks

JUIC VEISUS FIIVAI

Supply Networks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Facility location Size-density law A reasonable derivation

Global redistribution networks

Public versus Private

Optimal supply networks

What's the best way to distribute stuff?

- Stuff = medical services, energy people;
- ➤ Some fundamental network problems
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - 3. Redistribute stuff between nodes that are both sources and sinks
- Supply and Collection are equivalent problems

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location
Size-density law
Cartograms
A reasonable derivation

networks
Public versus Private

- Stuff = medical services, energy, people,
 - Some fundamental network or
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - Redistribute stuff between nodes that are both sources and sinks

Supply and Collection are aguivalent problems

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Size-density law
Cartograms
A reasonable derivation

Global redistribution networks

ublic versus Friva

- Stuff = medical services, energy, people,
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sink
 - 3. Redistribute stuff between nodes that are both

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location
Size-density law
Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

- Stuff = medical services, energy, people,
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources
 - 3 Redistribute stuff between nodes that are both

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location
Size-density law

A reasonable derivation Global redistribution networks

ublic versus Privat

- Stuff = medical services, energy, people,
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

ublic versus Private

- Stuff = medical services, energy, people,
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - Redistribute stuff between nodes that are both sources and sinks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation

lworks

Optimal supply networks

What's the best way to distribute stuff?

- Stuff = medical services, energy, people,
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - Redistribute stuff between nodes that are both sources and sinks
- Supply and Collection are equivalent problems

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation

etworks

Supply Networks

Introduction

Optimal branching Murray's law Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Basic Q for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where

 I_i = current on link jand

 $Z_i = \text{link } j$'s impedance?

Basic Q for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where

 l_j = current on link j and

 $Z_i = \text{link } j$'s impedance?

Example: $\gamma = 2$ for electrical networks.

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

iviuitay illeets Tokullage

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

(a) $\gamma > 1$: Braided (bulk) flow

(b) γ < 1: Local minimum: Branching flow

(c) γ < 1: Global minimum: Branching flow

From Bohn and Magnasco [3] See also Banavar et al. [1]

Supply Networks

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source
Geometric argument
Blood networks

Distributed Sources

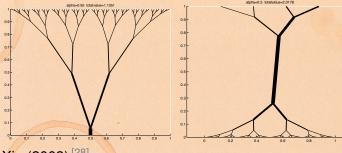
Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Priva

Optimal paths related to transport (Monge) problems:



Xia (2003) [28]

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

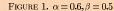
Single Source

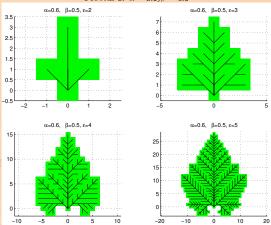
Geometric argument

Size-density law

A reasonable derivation

Public versus Private





Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source Geometric argument Blood networks

Distributed Sources

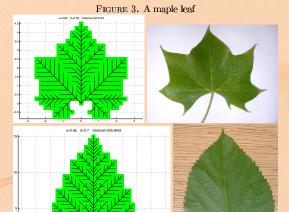
Facility location
Size-density law
Cartograms
A reasonable derivation
Global redistribution

networks Public versus Private

Poforonoos

References

Xia (2007) [27]



Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source
Geometric argument

River networks

Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

An immensely controversial issue...

The form of river networks and blood networks: optimal or not? [26, 2, 5, 4]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location Size-density law

Size-density law

Cartograms
A reasonable derivation

lobal redistribution etworks

Public versus Private

An immensely controversial issue...

The form of river networks and blood networks: optimal or not? [26, 2, 5, 4]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
 - Real networks differ in details of scaling but reasonably agree in scaling relations.

Introduction

Optimal branching

Murray meets Tokunaga

ingle Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Size-density law

Cartograms
A reasonable derivation

lobal redistribution

ublic versus Priva

An immensely controversial issue...

The form of river networks and blood networks: optimal or not? [26, 2, 5, 4]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Distributed Sources

Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution letworks

ublic versus Priva

River network models

Optimality:

- Optimal channel networks [16]
- ► Thermodynamic analogy [17]

Randomness:

- Scheidegger's directed random networks
- Undirected random networks

Supply Networks

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Size-density law
Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Optimality:

- Optimal channel networks [16]
- ► Thermodynamic analogy [17]

versus...

Randomness:

- Scheidegger's directed random networks
- Undirected random networks

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Outline

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Public versus Private

References

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Privat

Cardiovascular networks:

Murray's law (1926) connects branch radii at forks: [14, 13, 15, 10, 22]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch and r_1 and r_2 are radii of sub-branches.

 See D'Arcy Thompson's "On Growth and Form" for background inspiration [21, 22].

Poiseuille flow (\boxplus)

[15, 11, 12]

▶ Use hydrautic equivalent of Ohm's law:

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument

River networks

Sources Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private

Cardiovascular networks:

Murray's law (1926) connects branch radii at forks: [14, 13, 15, 10, 22]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch and r_1 and r_2 are radii of sub-branches.

- See D'Arcy Thompson's "On Growth and Form" for background inspiration [21, 22].
- Calculation assumes Poiseuille flow (⊞).

15 11 101

Use hydraulic equivalent of Ohm's law:

Introduction

Optimal branching Murray's law

Murray s iaw Murray meets Tokunaga

Single Source

Geometric argument Blood networks

River networks

Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Cardiovascular networks:

Murray's law (1926) connects branch radii at forks: [14, 13, 15, 10, 22]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch and r_1 and r_2 are radii of sub-branches.

- See D'Arcy Thompson's "On Growth and Form" for background inspiration [21, 22].
- Calculation assumes Poiseuille flow (⊞).
- Holds up well for outer branchings of blood networks.

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Course

Geometric argument Blood networks

Distributed

Sources
Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Cardiovascular networks:

Murray's law (1926) connects branch radii at forks: [14, 13, 15, 10, 22]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch and r_1 and r_2 are radii of sub-branches.

- See D'Arcy Thompson's "On Growth and Form" for background inspiration [21, 22].
- Calculation assumes Poiseuille flow (⊞).
- Holds up well for outer branchings of blood networks.
- ► Also found to hold for trees [15, 11, 12].

Introduction

Optimal branching Murray's law

Murray's law Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Blood networks
River networks

Sources -

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

.....

Cardiovascular networks:

Murray's law (1926) connects branch radii at forks: [14, 13, 15, 10, 22]

$$r_0^3 = r_1^3 + r_2^3$$

where r_0 = radius of main branch and r_1 and r_2 are radii of sub-branches.

- ► See D'Arcy Thompson's "On Growth and Form" for background inspiration [21, 22].
- Calculation assumes Poiseuille flow (⊞).
- Holds up well for outer branchings of blood networks.
- ► Also found to hold for trees [15, 11, 12].
- Use hydraulic equivalent of Ohm's law:

$$\Delta p = \Phi Z \Leftrightarrow V = IR$$

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Cardiovascular networks:

Fluid mechanics: Poiseuille impedance (\boxplus) for smooth flow in a tube of radius r and length ℓ :

$$Z = \frac{8\eta\ell}{\pi r^4}$$

where $\eta = \text{dynamic viscosity } (\boxplus) \text{ (units: } ML^{-1}T^{-1}\text{)}.$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Cardiovascular networks:

Fluid mechanics: Poiseuille impedance (\boxplus) for smooth flow in a tube of radius r and length ℓ :

$$Z = \frac{8\eta\ell}{\pi r^4}$$

where $\eta = \text{dynamic viscosity } (\boxplus) \text{ (units: } ML^{-1}T^{-1}\text{)}.$

Power required to overcome impedance:

$$P_{\text{drag}} = \Phi \Delta p = \Phi^2 Z$$
.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Cardiovascular networks:

Fluid mechanics: Poiseuille impedance (\boxplus) for smooth flow in a tube of radius r and length ℓ :

$$Z = \frac{8\eta\ell}{\pi r^4}$$

where $\eta = \text{dynamic viscosity} \ (\boxplus) \ (\text{units: } ML^{-1}T^{-1}).$

▶ Power required to overcome impedance:

$$P_{\rm drag} = \Phi \Delta p = \Phi^2 Z$$
.

Also have rate of energy expenditure in maintaining blood:

$$P_{\rm metabolic} = cr^2 \ell$$

where *c* is a metabolic constant.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

eterences

Aside on P_{drag}

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law A reasonable derivation

Public versus Private

Aside on P_{drag}

Work done = $F \cdot d$ = energy transferred by force F

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Aside on P_{drag}

- Work done = $F \cdot d$ = energy transferred by force F
- Power = P = rate work is done = $F \cdot v$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Aside on P_{drag}

- Work done = $F \cdot d$ = energy transferred by force F
- Power = P = rate work is done = $F \cdot v$
- $\triangleright \Delta p$ = Force per unit area

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Sources

Size-density law

Cartograms
A reasonable derivation

ilobal redistribution etworks

Public versus Private

Aside on P_{drag}

- Work done = $F \cdot d$ = energy transferred by force F
- Power = P = rate work is done = $F \cdot v$
- $\triangleright \Delta p$ = Force per unit area
- Φ = Volume per unit time = cross-sectional area · velocity

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Aside on P_{drag}

- Work done = $F \cdot d$ = energy transferred by force F
- Power = P = rate work is done = $F \cdot v$
- $\triangleright \Delta p$ = Force per unit area
- Φ = Volume per unit time
 = cross-sectional area · velocity
- So $\Phi \Delta p$ = Force · velocity

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

ublic versus Privat

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}}$$

- $\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell$
- Observe power increases linearly with
- But is effect is nonlinear:
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - ► decreasing r decrease metabolic cost but impedance goes up (as r^{-4})

ntroduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

......

Murray's law:

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- Observe power increases linearly with
- But r's effect is nonlinear.
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - decreasing r decrease metabolic cost but impedance goes up (as r^{-4})

ntroduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law Cartograms

> A reasonable derivation Global redistribution networks Public versus Private

dono volodo i iiv

Murray's law:

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- ▶ Observe power increases linearly with ℓ
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - ightharpoonup decreasing r decrease metabolic cost but impedance goes up (as r^{-4})

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location
Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Murray's law:

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- Observe power increases linearly with \(\ell \)
- But r's effect is nonlinear:
 - metabolic cost (as r^2)
 - decreasing / decrease metabolic dost but impedance does up (as / 1)

ntroduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law

A reasonable derivation Global redistribution

ublic versus Private

Murray's law:

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- ▶ Observe power increases linearly with ℓ
- ▶ But r's effect is nonlinear:
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - decreasing r decrease metabolic cost but impedance

goes up (as /

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

A reasonable derivation Global redistribution

iblic versus Private

Murray's law:

► Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell$$

- ▶ Observe power increases linearly with ℓ
- But r's effect is nonlinear:
 - increasing r makes flow easier but increases metabolic cost (as r²)
 - decreasing r decrease metabolic cost but impedance goes up (as r^{-4})

ntroduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source Geometric argument

Geometric argument Blood networks River networks

Distributed Sources

Facility location
Size-density law

Cartograms
A reasonable derivation

etworks

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

 $-4\Phi^2 \frac{8\eta\ell}{\pi r^6} + c2r\ell = 0$

► Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16n} = k^2 r^6$$

where k = constant.

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$=-4\Phi^2\frac{8\eta\ell}{\pi r^5}+c2r\ell$$

 $= k^2 r^6$

where k = constant

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

A reasonable derivation

networks
Public versus Private

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$=-4\Phi^2\frac{8\eta\ell}{\pi r^5}+c2r\ell=0$$

 $= k^2 r^6$

where k = constant

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

A reasonable derivation Global redistribution

Public versus Private

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$
$$= -4\Phi^2 \frac{8\eta \ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16\eta}$$

ntroduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

ublic versus Privati

Murray's law:

Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$
$$= -4\Phi^2 \frac{8\eta \ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16\eta} = k^2 r^6$$

where k = constant.

ntroduction

Optimal branching Murray's law

Murray s iaw Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution

etworks ublic versus Private

......

So we now have:

$$\Phi = kr^3$$

Flow rates at each branching have to add up (else our organism is in serious trouble...):

 $\Phi_0 = \Phi_1 + \Phi_2$

where again 0 refers to the main branch and 1 and 2

All of this means we have a groovy cribe-lay

 $r_0^3 = r_1^3 + r_2^3$

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location
Size-density law
Cartograms
A reasonable derivation

A reasonable derivation Global redistribution networks Public versus Private

Murray's law:

So we now have:

$$\Phi = kr^3$$

Flow rates at each branching have to add up (else our organism is in serious trouble...):

$$\Phi_0 = \Phi_1 + \Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Size-density law

A reasonable derivation

Murray's law:

So we now have:

$$\Phi = kr^3$$

Flow rates at each branching have to add up (else) our organism is in serious trouble...):

$$\Phi_0 = \Phi_1 + \Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches

All of this means we have a groovy cube-law:

$$r_0^3 = r_1^3 + r_2^3$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Size-density law

Outline

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation

Public versus Private

References

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

 $lackbox{\Phi}_{\omega}$ = volume rate of flow into an order ω vessel segment

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Murray meets Tokunaga:

- $Φ_ω$ = volume rate of flow into an order ω vessel segment
- Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Murray meets Tokunaga:

- Φ_{ω} = volume rate of flow into an order ω vessel segment
- Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

• Using $\phi_{\omega} = kr_{\omega}^3$

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k} r_{\omega-k}^{3}$$

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks
River networks

Distributed Sources

Facility location

Size-density law Cartograms

A reasonable derivation

Global redistribution networks

ublic versus Privat

Murray meets Tokunaga:

- $Φ_ω$ = volume rate of flow into an order ω vessel segment
- Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

• Using $\phi_{\omega} = kr_{\omega}^3$

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k} r_{\omega-k}^{3}$$

Find Horton ratio for vessel radius $R_r = r_{\omega}/r_{\omega-1}...$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Sources
Facility location

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

iblic versus Priva

Find R_r^3 satisfies same equation as R_n and R_v (v is for volume):

$$R_r^3 = R_n = R_v$$

> Is there more we could do here to constrain the

troduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed Sources

Facility location
Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus Private

Find R_r^3 satisfies same equation as R_n and R_v (v is for volume):

$$R_r^3 = R_n = R_v$$

Is there more we could do here to constrain the Horton ratios and Tokunaga constants?

ntroduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
Biver networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution

iblic versus Private

▶ Isometry: $V_{\omega} \propto \ell_{\omega}^3$

 $R_{\ell}^3 = R_{\nu} = R_n$

- ➤ We need one more constraint.
- ➤ West et al (1997) [26] achieve similar results following

So does Turcotte et al. (1998) [23] using Tokunaga

ntroduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
Biver networks

Distributed Sources

Size-density law
Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

- Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- ► Gives

$$R_{\ell}^3 = R_v = R_n$$

- We need one more constraint
- ➤ West et al (1997) [26] achieve similar results following

So does Turcotte et al. (1998) [23] using Tokunaga

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law
Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

- Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- ► Gives

$$R_{\ell}^3 = R_v = R_n$$

- We need one more constraint...
- What at al. (1007) [26] sobjete similar results follow

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation

Global redistribution networks Public versus Private

- Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- Gives

$$R_{\ell}^3 = R_{\nu} = R_n$$

- We need one more constraint...
- ▶ West et al (1997) [26] achieve similar results following Horton's laws.

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Murray meets Tokunaga:

- Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- Gives

$$R_{\ell}^3 = R_v = R_n$$

- We need one more constraint...
- ▶ West et al (1997) [26] achieve similar results following Horton's laws.
- So does Turcotte et al. (1998) [23] using Tokunaga (sort of).

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Outline

Introduction

Optimal branching
Murray meets Tok

Single Source

Geometric argument

Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation

Public versus Private

References

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Divor naturalia

Distributed

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution

networks Public versus Privat

D-----

Geometric argument

- Consider one source supplying many sinks in a volume V d-dim. region in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume $\rho = \rho(V)$, i.e., ρ may vary with region's volume V.

introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

iver networks

Distributed

Sources Eacility location

Size-density law

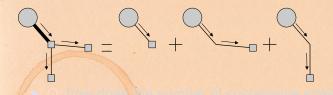
Cartograms
A reasonable derivation

lobal redistribution etworks

Public versus Private

Geometric argument

- Consider one source supplying many sinks in a volume V d-dim. region in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume $\rho = \rho(V)$, i.e., ρ may vary with region's volume V.
- See network as a bundle of virtual vessels:



Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

River networks

Distributed Sources

Facility location Size-density law

ze-density law

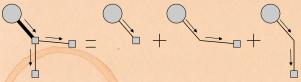
A reasonable derivation

alobal redistribution networks

Supply Networks

Geometric argument

- Consider one source supplying many sinks in a volume V d-dim. region in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume $\rho = \rho(V)$, i.e., ρ may vary with region's volume V.
- See network as a bundle of virtual vessels:



Q: how does the number of sustainable sinks N_{sinks} scale with volume V for the most efficient network design?

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

ze-density law

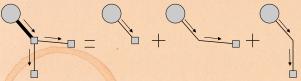
Cartograms
A reasonable derivation

Global redistribution networks

Supply Networks

Geometric argument

- Consider one source supplying many sinks in a volume V d-dim. region in a D-dim. ambient space.
- Assume sinks are invariant.
- Assume $\rho = \rho(V)$, i.e., ρ may vary with region's volume V.
- See network as a bundle of virtual vessels:



- Q: how does the number of sustainable sinks N_{sinks} scale with volume V for the most efficient network design?
- ▶ Or: what is the highest α for $N_{\text{sinks}} \propto V^{\alpha}$?

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

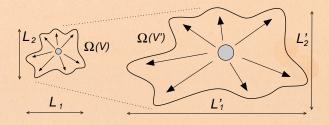
Size-density law

Cartograms

Global redistribution networks

Geometric argument

Allometrically growing regions:



Have d length scales which scale as

$$L_i \propto V^{\gamma_i}$$
 where $\gamma_1 + \gamma_2 + \ldots + \gamma_d = 1$.

- For isometric growth, $\gamma_i = 1/d$.
- For allometric growth, we must have at least two of the $\{\gamma_i\}$ being different

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Distributed

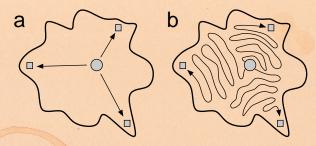
Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks

bublic versus Priv

▶ Best and worst configurations (Banavar et al.)



► Rather obviously:

min V. S. S. distances from source to sinks

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

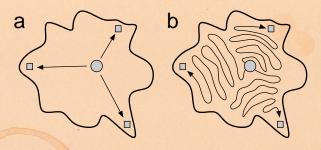
Facility location

Size-density law

A reasonable derivation Global redistribution

Public versus Private

▶ Best and worst configurations (Banavar et al.)



► Rather obviously: min $V_{\text{net}} \propto \sum$ distances from source to sinks.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

River networks

Distribute Sources

Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Minimal network volume:

Real supply networks are close to optimal:

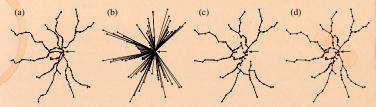


Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman [8]: "Shape and efficiency in spatial distribution networks"

Introduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument

iver networks

Distributed Sources

Facility location

Size-density law

reasonable derivation

tworks ublic versus Private

References

Minimal network volume:

Add one more element:

- Vessel cross-sectional area may vary with distance from the source.
- Flow rate increases as cross-sectional area decreases.
- e.g., a collection network may have vessels tapering as they approach the central sink.
- Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings.
- Consider vessel radius $r \propto (\ell + 1)^{-\epsilon}$, tapering from $r = r_{\text{max}}$ where $\epsilon \geq 0$.
- Gives $v \propto \ell^{1-2\epsilon}$ if $\epsilon < 1/2$
- ▶ Gives $\nu \propto 1 \ell^{-(2\epsilon-1)} \rightarrow 1$ for large ℓ if $\epsilon > 1/2$
- Previously, we looked at $\epsilon = 0$ only.

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source Geometric argument

Blood networks River networks

Distributed Sources

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution networks

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{\rm net} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$egin{aligned} \mathsf{min} \ V_{\mathsf{net}} & \propto \int_{\Omega_{d,D}(V)}
ho \left| \left| ec{x}
ight|
ight|^{1-2\epsilon} \mathrm{d}ec{x} \end{aligned}$$

Insert question 1, assignment 3 (⊞)

$$\propto
ho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max} = \max_i \gamma_i$.

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Minimal network volume:

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{
m net} \propto \int_{\Omega_{d,D}(V)}
ho \left| |ec{x}|
ight|^{1-2\epsilon} {
m d}ec{x}$$

Insert question 1, assignment 3 (⊞)

$$\propto \rho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max} = \max_{i} \gamma_{i}$.

For $\epsilon > 1/2$, find simply that

min
$$V_{\rm net} \propto \rho V$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Minimal network volume:

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\min V_{
m net} \propto \int_{\Omega_{d,D}(V)}
ho \left| |ec{x}|
ight|^{1-2\epsilon} {
m d}ec{x}$$

Insert question 1, assignment 3 (⊞)

$$\propto \rho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max} = \max_{i} \gamma_{i}$.

For $\epsilon > 1/2$, find simply that

min
$$V_{\rm net} \propto \rho V$$

So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source Geometric argument

Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation

Global redistribution networks Public versus Private

ublic versus Priv

For $0 \le \epsilon < 1/2$:

- ► If scaling is isometric we have $\gamma_{\text{miax}} = 1/d$

 $\min V_{\text{nor}} t_{\text{iso}} \propto \rho V^{1+(1-2\epsilon)}$

It scaling is allometric, we have $\gamma_{max} = \gamma_{allo} > 1/d$: and

min $V_{\rm ret ballo} \propto \rho V^{1+(1-2\epsilon)}$

sometrically growing volumes require less network volume than allometrically growing volumes:

min V_{ner/silo} — 0 as V — ∞

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location
Size-density law
Cartograms

A reasonable derivation Global redistribution networks

For $0 \le \epsilon < 1/2$:

- If scaling is isometric, we have $\gamma_{max} = 1/d$:

$$\min V_{\text{net/iso}} \propto \rho V^{1+(1-2\epsilon)/d}$$

- It soaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{ullo}} > 1/d$: and
- sometrically growing volumes require less network

min $V_{
m nevalur} = 0$ as $V = \infty$

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location
Size-density law

A reasonable derivation Global redistribution networks

For $0 \le \epsilon < 1/2$:

- If scaling is isometric, we have $\gamma_{max} = 1/d$:

$$\min V_{\text{net/iso}} \propto \rho V^{1+(1-2\epsilon)/d}$$

If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and

min
$$V_{
m net/allo} \propto
ho V^{1+(1-2\epsilon)\gamma_{
m allo}}$$

Isometrically growing volumes require less network volume than allometrically growing volumes:

mile V_{ant/iso} — 0 as V — x

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

For $0 \le \epsilon < 1/2$:

- If scaling is isometric, we have $\gamma_{max} = 1/d$:

$$\min V_{\text{net/iso}} \propto \rho V^{1+(1-2\epsilon)/d}$$

If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and

min
$$V_{
m net/allo} \propto \rho V^{1+(1-2\epsilon)\gamma_{
m allo}}$$

Isometrically growing volumes require less network volume than allometrically growing volumes:

$$rac{\text{min } V_{ ext{net/iso}}}{\text{min } V_{ ext{net/allo}}}
ightarrow 0 ext{ as } V
ightarrow \infty$$

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution networks

ublic versus Private

For $\epsilon > 1/2$:

- Network volume scaling is now independent of overall shape scaling.

Limits to scaling

- Can argue that a must effectively be 0 for real networks over large enough scales.
- Limit to how fast material can move, and how small material packages can be.
- ▶ e.g., blood velocity and blood cell size

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation

networks
Public versus Private

For $\epsilon > 1/2$:

- Network volume scaling is now independent of overall shape scaling.

Limits to scaling

- ➤ Can argue that e must effectively be 0 for real
- networks over large enough scales
 - Limit to how fast material can move, and how small material packages can be.
- ➤ e.g., blood velocity and blood cell size.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

lood networks

Distribute

Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus I

For $\epsilon > 1/2$:

- Network volume scaling is now independent of overall shape scaling.

Limits to scaling

- ► Can argue that ϵ must effectively be 0 for real networks over large enough scales.
- Limit to how fast material can move, and how small material packages can be.
- e.g., blood velocity and blood cell size.

Introduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument

River networks

Distribute

Facility location

Size-density law

A reasonable derivation

Global redistribution networks

Introduction

Optimal branching
Murray's law
Murray meets Tokun

Single Source

Geometric argument

Blood networks

River networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation

Public versus Private

References

Introduction

Optimal branching
Murray's law

Supply Networks

Murray meets Tokunaga

Single Source Geometric argument

Blood networks

River networks

Distributed

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- ► Material costly ⇒ expect lower optimal bound of
- For cardiovascular networks, d = D = 3
- ► Blood volume scales linearly with blood volume [18]
- ➤ Sink density must decrease as volume increases:

 $\rho \propto V^{-1/d}$

Density of suppliable sinks decreases with organism

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation

Global redistribution networks Public versus Private

-ublic versus Friv

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- Material costly ⇒ expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Size-density law

A reasonable derivation

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- Material costly \Rightarrow expect lower optimal bound of $V_{\text{net}} \propto \rho V^{(d+1)/d}$ to be followed closely.
- For cardiovascular networks, d = D = 3.

▶ Blood volume scales linearly with blood volume [18]

▶ Sink density must decrease as volume increases

 $a \propto V^{-1/d}$

Density of suppliable sinks decreases with organism

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution

Public versus Private

References

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- Material costly \Rightarrow expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.
- For cardiovascular networks, d = D = 3.
- ▶ Blood volume scales linearly with blood volume [18], $V_{\rm net} \propto V$.

Sink density must - decrease as volume increases:

√-1/d

Density of suppliable sinks decreases with organism

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Distributed

Sources
Facility location

Size-density law

A reasonable derivation Global redistribution networks

networks Public versus Private

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- Material costly \Rightarrow expect lower optimal bound of $V_{\text{net}} \propto \rho V^{(d+1)/d}$ to be followed closely.
- For cardiovascular networks, d = D = 3.
- ▶ Blood volume scales linearly with blood volume [18], $V_{\rm net} \propto V$.
- Sink density must ∴ decrease as volume increases:

$$\rho \propto V^{-1/d}$$
.

Density of suppliable sinks decreases with organism

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source Geometric argument

Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

blic versus Priva

- Velocity at capillaries and aorta approximately constant across body size [25]: $\epsilon = 0$.
- Material costly \Rightarrow expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.
- For cardiovascular networks, d = D = 3.
- ▶ Blood volume scales linearly with blood volume [18], $V_{\rm net} \propto V$.
- Sink density must ∴ decrease as volume increases:

$$\rho \propto V^{-1/d}$$
.

Density of suppliable sinks decreases with organism size.

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source Geometric argument Blood networks

Distributed

Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V$$

For d = 3 dimensional organisms, we have

$$P \propto M^{2/3}$$

- Including other constraints may raise scaling exponent to a higher less efficient value.
- ► Exciting bonus: Scaling obtained by the supply network story and the surface area law only match for isometrically growing shapes. Insert question 3. assignment 3 (⊞)

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Sources

Size-density law

Cartograms

Cartograms

A reasonable derivation Global redistribution

etworks Public versus Priva

Defeuence

Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V \propto \rho M$$

 \blacktriangleright For d=3 dimensional organisms, we have

 $P \propto M^{2/3}$

- Including other constraints may raise scaling exponent to a higher less efficient value.
- ► Exciting bonus: Scaling obtained by the supply network story and the surface area law only match for isometrically growing shapes. Insert question 3 assignment 3 (⊞)

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Sources

Facility location Size-density law

Cartograms

Cartograms
A reasonable derivation

A reasonable derivation Global redistribution

Public versus Priva

▶ Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Size-density law

A reasonable derivation

▶ Then P, the rate of overall energy use in Ω , can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

For d=3 dimensional organisms, we have

$$P \propto M^{2/3}$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source Geometric argument

Blood networks

Size-density law

A reasonable derivation

Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

For d = 3 dimensional organisms, we have

$$P \propto M^{2/3}$$

- Including other constraints may raise scaling exponent to a higher, less efficient value.
- Exciting bonus: Scaling obtained by the supply network story and the surface area law only match too isometrically growing shapes. Insert question 3 assignment 3 (H)

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Blood networks

Distributed

Sources
Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

For d = 3 dimensional organisms, we have

$$P \propto M^{2/3}$$

- Including other constraints may raise scaling exponent to a higher, less efficient value.
- ► Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes. Insert question 3, assignment 3 (⊞)

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argume

Blood networks

Distributed

Sources

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

-ublic versus Fr

Recap:

- The exponent $\alpha = 2/3$ works for all birds and mammals up to 10–30 kg
- For mammals > 10–30 kg, maybe we have a new scaling regime
- ► Economos: limb length break in scaling around 20 kg
- White and Seymour, 2005: unhappy with large
- herbivore measurements. Find $a \simeq 0.686 \pm 0.014$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed

Facility location

Size-density law

Cartograms
A reasonable derivation

lobal redistribution atworks

Public versus Private

Optimal branching
Murray's law
Murray meets Tokunaga
Single Source

Geometric argument Blood networks

Recap:

- The exponent $\alpha = 2/3$ works for all birds and mammals up to 10–30 kg
- For mammals > 10–30 kg, maybe we have a new scaling regime

Size-

Size-density law Cartograms

A reasonable derivation Global redistribution

networks
Public versus Private

Recap:

- The exponent $\alpha = 2/3$ works for all birds and mammals up to 10–30 kg
- ► For mammals > 10–30 kg, maybe we have a new scaling regime
- ► Economos: limb length break in scaling around 20 kg

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation

networks
Public versus Private

Recap:

- The exponent $\alpha = 2/3$ works for all birds and mammals up to 10–30 kg
- ► For mammals > 10–30 kg, maybe we have a new scaling regime
- Economos: limb length break in scaling around 20 kg
- White and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 \pm 0.014$

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution setworks

blic versus Priva

Single Source

River networks

Supply Networks

Optimal branching

Murray's law Murray meets Tokunaga

Single Source Geometric argument

River networks

Size-density law

A reasonable derivation

- View river networks as collection networks.
- Many sources and one sink.
- Assume ρ is constant over time and $\epsilon = 0$:
 - $V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^3$
- Network volume grows faster than basin 'volume'
- ► It's all okay:
- Landscapes are d=2 surfaces living in D=3
- > Streams can grow not just in width but in depth
- ▶ If a > 0. V_{no} will grow more slowly but 3/2 appears to
 - be confirmed from real data.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

River networks

Dietributed

Sources

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution metworks

ublic versus Private

- View river networks as collection networks.
- Many sources and one sink.
- ► e?

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument

River networks

Size-density law

A reasonable derivation

- View river networks as collection networks.
- Many sources and one sink.
- \triangleright ϵ ?
- Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

- Network volume grows faster than basin 'volume'
- ▶ It's all okay

- Streams can grow not just in width but in depth
- If a > 0. V_m, will grow more slowly but 3/2 appears to be confirmed from real data

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

River networks

Distributed

Sources
Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus Priv

- View river networks as collection networks.
- Many sources and one sink.
- $ightharpoonup \epsilon$?
- Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

Network volume grows faster than basin 'volume' (really area).

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argume Blood networks

River networks

Distributed

Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

ublic versus Priva

- View river networks as collection networks.
- Many sources and one sink.
- $ightharpoonup \epsilon$?
- Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

- Network volume grows faster than basin 'volume' (really area).
- It's all okay:
 Landscapes are d=2 surfaces living in D=3 dimension.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argume Blood networks

River networks

Distributed

Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution letworks

- View river networks as collection networks.
- Many sources and one sink.
- $ightharpoonup \epsilon$?
- Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

- Network volume grows faster than basin 'volume' (really area).
- ► It's all okay: Landscapes are d=2 surfaces living in D=3 dimension.
- Streams can grow not just in width but in depth...

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source
Geometric argument

Blood networks River networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

ublic versus Private

- View river networks as collection networks.
- Many sources and one sink.
- ▶ ∈?
- Assume ρ is constant over time and $\epsilon = 0$:

$$V_{\rm net} \propto \rho V^{(d+1)/d} = {\rm constant} \times V^{3/2}$$

- Network volume grows faster than basin 'volume' (really area).
- ► It's all okay: Landscapes are d=2 surfaces living in D=3 dimension.
- Streams can grow not just in width but in depth...
- If $\epsilon > 0$, V_{net} will grow more slowly but 3/2 appears to be confirmed from real data.

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source
Geometric argument

Blood networks River networks

Distributed Sources

Facility location Size-density law

Cartograms
A reasonable derivation

llobal redistribution etworks

Optimal branching

Murray meets Tokunaa

Single Source

Geometric argument Blood networks

Distributed Sources Facility location

Gize-density law

Cartograms

A reasonable derivation

Global redistribution networks
Public versus Private

References

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution

networks

How do we distribute sources?

- Focus on 2-d (results generalize to highe dimensions)
- ➤ Sources = hospitals, post offices, pubs
- Key problem: How do we cope with uneven population densities?
- Obvious: it density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?
- ► We is follow work by Stephan^[19, 20], Gastner and Newman (2006) ^[7]. Um *et al.* ^[24] and work cited by

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Murray meets Tokunaga

Single Source

Geometric argument Blood networks River networks

Distributed

Sources Facility location

Size-density law
Cartograms
A reasonable derivation
Global redistribution
networks
Public versus Private

How do we distribute sources?

Focus on 2-d (results generalize to higher dimensions)

- Sources = hospitals, post offices, pubs
- Key problem: How do we cope with uneven population densities?
- Obvious: it density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we
- ▶ We'll follow work by Stephan [19, 20], Gastner and Newman (2006) [7] Um at at. [24] and work cited by

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed

Sources Facility location

Size-density law
Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Unvious: It density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?
- ▶ We'll follow work by Stephan [19, 20]. Gastner and Newman (2006) [7]. Um et al. [24] and work cited by

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law
Cartograms
A reasonable derivation
Global redistribution
networks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Facility location Size-density law

A reasonable derivation

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Facility location

Size-density law

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly
- Which lattice is optimal?

Optimal branching Murray's law

Murray meets Tokunaga

Geometric argument

Facility location

Size-density law

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice

Optimal branching Murray's law

Murray meets Tokunaga

Facility location Size-density law

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?

Optimal branching Murray's law

Murray meets Tokunaga

Facility location Size-density law

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?

► We'll follow work by Stephan [19, 20], Gastner and Newman (2006) [7]. Um et al. [24] and work cited by

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law

artograms

A reasonable derivation Global redistribution networks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?
- ▶ We'll follow work by Stephan [19, 20], Gastner and Newman (2006) [7], Um et al. [24] and work cited by them.

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms A reasonable derivation

etworks ublic versus Private

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- Given resources to build and maintain N facilities
- ► Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- Given resources to build and maintain N facilities.
- ► Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
Biver networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution networks

ublic versus Privat

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
Biver networks

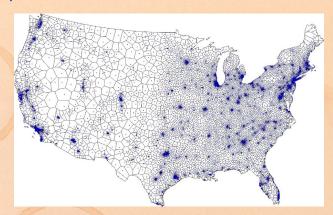
Distributed Sources

Facility location

Size-density law

Cartograms reasonable derivation

etworks



From Gastner and Newman (2006) [7]

- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

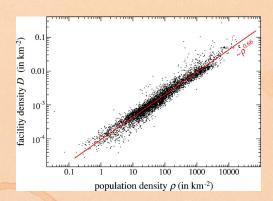
Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source Geometric argument

Facility location Size-density law



From Gastner and Newman (2006) [7]

▶ Optimal facility density D vs. population density ρ .

Supply Networks

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Distributed

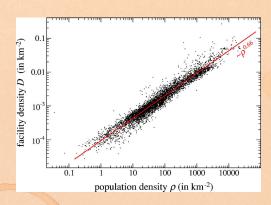
Facility location

Size-density law

A reasonable derivatio

Public versus Private

References



From Gastner and Newman (2006) [7]

- ▶ Optimal facility density D vs. population density ρ .
- Fit is $D \propto \rho^{0.66}$ with $r^2 = 0.94$.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

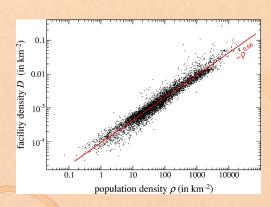
Distributed Sources

Facility location

Size-density law

A reasonable derivation

Public versus Private



From Gastner and Newman (2006) [7]

- ▶ Optimal facility density D vs. population density ρ .
- Fit is $D \propto \rho^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power...

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

artograms

A reasonable derivation Global redistribution networks

ublic versus P

Outline

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

River networks

Distributed Sources

Facility locatio

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Deferences

Supply Networks

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

istributed sources

Facility location Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

 $D \propto
ho^{2/3}$

- > Why
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region...

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation
Global redistribution

Public versus Private

 $D \propto
ho^{2/3}$

- ► Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility locat

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

 $D \propto
ho^{2/3}$

- ► Why?
- Again: Different story to branching networks where there was either one source or one sink.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility loc

Size-density law

A reasonable derivation Global redistribution

Public versus Private

$$D \propto \rho^{2/3}$$

- ► Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region...

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility loc

Size-density law

A reasonable derivation
Global redistribution

ublic versus Privat

- ► We first examine Stephan's treatment (1977) [19, 20]
- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort
- Also known as the Homer principle

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution networks Public versus Private

- ▶ We first examine Stephan's treatment (1977) [19, 20]
- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipt-like approach: invokes principle of minimal effort
- Also known as the Homer principle

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution networks

- ► We first examine Stephan's treatment (1977) [19, 20]
- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- ➤ Zipf-like approach: invokes principle of minimal effort.

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution networks

- ► We first examine Stephan's treatment (1977) [19, 20]
- "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer principle.

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation

blic versus Private

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as d and assume average speed of travel is v.
- Assume isometry: average travel distance \tilde{d} will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms A reasonable derivation

Global redistribution networks Public versus Private

......

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as d and assume average speed of travel is $\bar{\nu}$.
- ► Assume isometry, average travel distance \vec{d} will be

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

7-6-4-4-4

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Size-density law

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as d and assume average speed of travel is \bar{v} .
- Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Size-density law

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v}=cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed Sources

Facility location Size-density law

Size-density lav

A reasonable derivation Global redistribution networks

 Next assume facility requires regular maintenance (person-hours per day)

- Call this quantity
- If burden of mainenance is shared then average copper person is τ/P where P = population.
- ▶ Replace P by ρA where ρ is density.
- ▶ Total average time cost per person

$$/\bar{\mathbf{v}} + \tau/(\rho \mathbf{A}) = g\mathbf{A}^{1/2}/\bar{\mathbf{v}} + \tau/(\rho \mathbf{A})$$

▶ Now Minimize with respect to A...

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution

bublic versus Private

- Next assume facility requires regular maintenance (person-hours per day)
- ightharpoonup Call this quantity au
- ▶ If burden of mainenance is shared then average coper person is \(\tau/P\) where \(P = \text{population}.\)
- \triangleright Replace P by ρA where ρ is density.
- Total average time cost per person

$$\sigma/(\rho A) = gA^{1/2}/\bar{v} + \tau/(\rho A).$$

▶ Now Minimize with respect to A...

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

- Next assume facility requires regular maintenance (person-hours per day)
- ▶ Call this quantity τ
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- ▶ Replace P by A where is density.
- ▶ Total average time cost per person

$$q = qA^{1/2}/\bar{v} + \tau/(\rho A)$$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation

etworks Public versus Private

- Next assume facility requires regular maintenance (person-hours per day)
- ightharpoonup Call this quantity au
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- ▶ Replace P by ρA where ρ is density.

Optimal branching Murray's law

Murray meets Tokunaga

Geometric argument

Size-density law

- Next assume facility requires regular maintenance (person-hours per day)
- ▶ Call this quantity τ
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- ▶ Replace P by ρA where ρ is density.
- ▶ Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho A)$$

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Geometric argument Blood networks

istributed sources

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

-favanaa

- Next assume facility requires regular maintenance (person-hours per day)
- ightharpoonup Call this quantity au
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- ▶ Replace P by ρA where ρ is density.
- Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho A) = gA^{1/2}/\bar{v} + \tau/(\rho A).$$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

lingle Source

Geometric argument Blood networks River networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution

ublic versus Private

- Next assume facility requires regular maintenance (person-hours per day)
- ightharpoonup Call this quantity au
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- ▶ Replace P by ρA where ρ is density.
- Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho A) = gA^{1/2}/\bar{v} + \tau/(\rho A).$$

Now Minimize with respect to A...

Optimal branching Murray's law

Murray meets Tokunaga

Size-density law

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho A) \right)$$

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

Supply Networks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

acility location

Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Public versus Priv

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

Supply Networks

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

artograms

A reasonable derivation Global redistribution networks Public versus Private

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

► Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho}\right)^{2/3}$$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution

etworks Public versus Private

References

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

► Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho}
ight)^{2/3} \propto
ho^{-2/3}$$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho}
ight)^{2/3} \propto
ho^{-2/3}$$

▶ # facilities per unit area

$$A^{-1} \propto \rho^{2/3}$$

Murray's law

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

$$\frac{\partial T}{\partial A} = \frac{\partial}{\partial A} \left(cA^{1/2} / \bar{v} + \tau / (\rho A) \right)$$
$$= \frac{c}{2\bar{v}A^{1/2}} - \frac{\tau}{\rho A^2} = 0$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho}
ight)^{2/3} \propto
ho^{-2/3}$$

▶ # facilities per unit area

$$A^{-1} \propto \rho^{2/3}$$

► Groovy...

Supply Networks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation Global redistribution

Public versus Privat

An issue:

 Maintenance (τ) is assumed to be independent of population and area (P and A)

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Stephan's online book "The Division of Territory in Society" is here (⊞).

Supply Networks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Outline

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

River networks

Distributed Sources

Facility location

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Public versus Private

References

Supply Networks

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed Sources

acility location

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Supply Networks

Standard world map:

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Cartogram of countries 'rescaled' by population:

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Diffusion-based cartograms:

$$\nabla^2 \rho - \frac{\partial \rho}{\partial t} = 0$$

Optimal branching Murray's law Murray meets Tokunaga

Single Source Geometric argument

Size-density law

Cartograms

A reasonable derivation

Public versus Private

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- ➤ Algorithm due to Gastner and Newman (2004) ^[6] is based on standard diffusion:

- Allow density to diffuse and trace the movement of
- ➤ Diffusion is constrained by boundary condition of surrounding area having density 5.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
Biver networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source Geometric argument

Size-density law

Cartograms

A reasonable derivation Public versus Private

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- ► Algorithm due to Gastner and Newman (2004) [6] is based on standard diffusion:

$$\nabla^2 \rho - \frac{\partial \rho}{\partial t} = 0.$$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source
Geometric argument
Blood networks
Biver networks

Sources

Facility location Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- ► Algorithm due to Gastner and Newman (2004) [6] is based on standard diffusion:

$$\nabla^2 \rho - \frac{\partial \rho}{\partial t} = 0.$$

Allow density to diffuse and trace the movement of individual elements and boundaries.

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Geometric argument
Blood networks
River networks

Sources

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

Diffusion-based cartograms:

- Idea of cartograms is to distort areas to more accurately represent some local density ρ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- ► Algorithm due to Gastner and Newman (2004) [6] is based on standard diffusion:

$$\nabla^2 \rho - \frac{\partial \rho}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- ▶ Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}$.

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Geometric argument
Blood networks
River networks

Sources

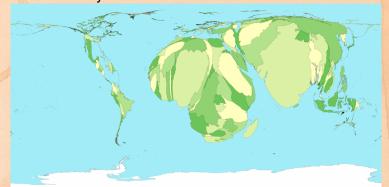
Size-density law

artograms

reasonable derivati

ublic versus Private

Child mortality:



ntroduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Energy consumption:

Introduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Sources
Facility location

Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Gross domestic product:

ntroduction

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Sources

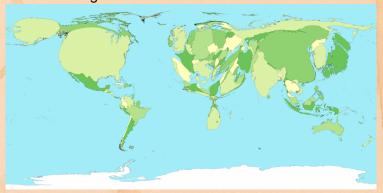
Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Supply Networks

Greenhouse gas emissions:



ntroduction

Optimal branching

Murray's law Murray meets Tokunaga

Murray meets Tokunag

Single Source
Geometric argument

Distributed

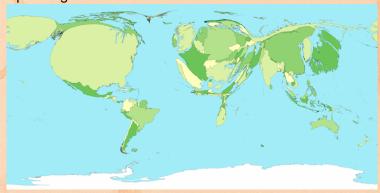
Sources
Facility location

Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Spending on healthcare:



Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

Cartograms

A reasonable derivation Public versus Private

Supply Networks

People living with HIV:

Optimal branching

Murray's law Murray meets Tokunaga

Single Source

Geometric argument

Facility location

Size-density law Cartograms

A reasonable derivation

Public versus Private

The preceding sampling of Gastner & Newman's cartograms lives here (⊞).

 A larger collection can be found at worldmapper.org (H)

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law Cartograms

A reasonable derivation Global redistribution networks Public versus Private

- The preceding sampling of Gastner & Newman's cartograms lives here (⊞).
- A larger collection can be found at worldmapper.org (⊞).

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

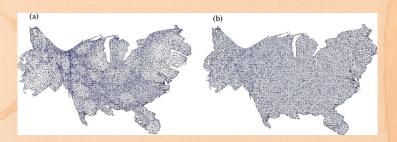
Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private References

Size-density law



Left: population density-equalized cartogram.

Right: (population density)2/8-equalized cartogra

From Gastner and Newman (2006) [7]

Supply Networks

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

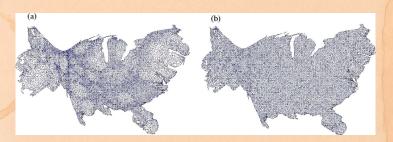
Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks Public versus Private

Size-density law



- Left: population density-equalized cartogram.
- ► Right: (population density)^{2/3}-equalized cartogram.

From Gastner and Newman (2006) [7]

Supply Networks

ntroduction

Optimal branching

Murray's law
Murray meets Tokunaga

Single Source

Geometric argument Blood networks

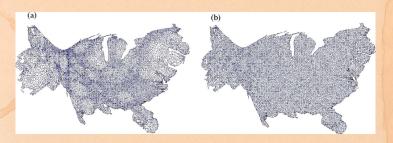
Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private



- Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- Facility density is uniform for $\rho^{2/3}$ cartogram.

From Gastner and Newman (2006) [7]

Optimal branching

Murray's law Murray meets Tokunaga

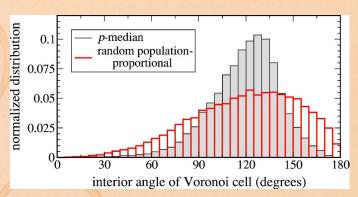
Single Source

Geometric argument

Size-density law

Cartograms

A reasonable derivation Public versus Private



From Gastner and Newman (2006) [7]

Cartogram's Voronoi cells are somewhat hexagonal.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivate Global redistribution

Public versus Private

Distributed Sources

A reasonable derivation

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Size-density law

Deriving the optimal source distribution:

$$F(\{\vec{x}_1, \dots, \vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_{i} ||\vec{x} - \vec{x}_i|| dx$$

Optimal branching Murray's law Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Optimal branching

Murray's law Murray meets Tokunaga

Single Source
Geometric argument

Size-density law
Cartograms
A reasonable derivation
Global redistribution
networks
Public versus Private

Size-density law

Deriving the optimal source distribution:

Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]

Assume given a fixed population density ρ defined of a spatial radius Ω

spatial region 12.

Formally, we want to find the locations of *n* sources that minimizes the cost function

 $\{\vec{x}_n\}$ = $\{\rho(\vec{x}) \min ||\vec{x} - \vec{x}_i|| d\vec{x}\}$

Also known as the p-median problem

Not easy... in fact this one is an NP-hard problem. [7]

Approximate solution originally due to

I The UNIVERSITY S

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]
- Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of *n* sources $\{x_1, \dots, x_n\}$ that minimizes the cost function

 $\{\vec{x}_n\}$ = $\int \rho(\vec{x}) \min ||\vec{x} - \vec{x}_i|| d\vec{x}$

- Also known as the p-median problem
- ▶ Not easy... in fact this one is an NP-hard problem. [7]
- Approximate solution originally due to

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

Deriving the optimal source distribution:

- ► Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]
- Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| d\vec{x}.$$

▶ Not easy, in fact this one is an NP-hard problem. [7]

Approximate solution originally due to

Introduction

Optimal branching
Murray's law

Murray s law Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

istributed

Sources

Size-density law

A reasonable derivation

networks
Public versus Private

References

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]
- Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| d\vec{x}.$$

- Also known as the p-median problem.
- Not easy... in fact this one is an NP-hard problem. [7]
- Approximate solution originally due to

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]
- Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| d\vec{x}.$$

- Also known as the p-median problem.
- Not easy... in fact this one is an NP-hard problem. [7]

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Blood networks

Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution letworks

Public versus Private

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [7]
- Assume given a fixed population density ρ defined on a spatial region Ω .
- Formally, we want to find the locations of n sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x} - \vec{x}_i|| d\vec{x}.$$

- Also known as the p-median problem.
- ▶ Not easy... in fact this one is an NP-hard problem. [7]
- Approximate solution originally due to Gusein-Zade [9].

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus Priva

Approximations:

- For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells (\boxplus) , one per source.
- \blacktriangleright Define A(x) as the area of the Voronoi cell containing
- ▶ As per Stephan's calculation, estimate typical distance from x to the nearest source (say i) as

 $c_i A(\vec{x})^{1/2}$

shape factor for the ith Voronoi cell

► Approximate c: as a constant c

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law

Cartograms A reasonable derivation

networks
Public versus Private

Approximations:

- For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells (\boxplus) , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- ► As per Stephan's calculation, estimate typical

e nearest source (say i).

 $c_i A(\vec{x})^{1/2}$

where c is a shape factor for the ith Voronoi cell.

► Approximate c: as a constant c

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location
Size-density law

A reasonable derivation

networks
Public versus Private

D-6----

Approximations:

- For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells (\boxplus) , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

 $c_i A(\vec{x})^{1/2}$

where c_i is a shape factor for the *i*th Voronoi cell.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks
River networks

Distributed Sources

Size-density law

A reasonable derivation Global redistribution

Public versus Privat

Approximations:

- For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$, the region Ω is divided up into Voronoi cells (\boxplus) , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the *i*th Voronoi cell.

► Approximate c_i as a constant c.

Introduction

Optimal branching Murray's law

Murray's law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

A reasonable derivation

networks Public versus Privat

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x}.$$

- ▶ We also have that the constraint that Voronoi cells divide up the overall area of Ω: $\sum_{i=1}^{n} A(\vec{x_i}) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

 $\int_{\mathcal{O}} \frac{\mathrm{d}X}{A(\vec{X})} = I$

- ightharpoonup Within each cell $A(\bar{x})$ is constant
- ➤ So. integral over each of the n cells equals 1

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location
Size-density law
Cartograms

A reasonable derivation

networks
Public versus Private

Carrying on:

► The cost function is now

$$F = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x}.$$

We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x_i}) = A_{\Omega}$.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

networks Public versus Privat

Carrying on:

► The cost function is now

$$F = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x}.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x_i}) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

So integral over each of the a cells equals

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Carrying on:

► The cost function is now

$$F = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x}.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x_i}) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

▶ Within each cell, $A(\vec{x})$ is constant.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution networks

Public versus Priva

Carrying on:

► The cost function is now

$$F = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x}.$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω: $\sum_{i=1}^{n} A(\vec{x_i}) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- ▶ Within each cell, $A(\vec{x})$ is constant.
- So... integral over each of the *n* cells equals 1.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Privat

Now a Lagrange multiplier story:

▶ By varying $\{\vec{x}_1, ..., \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} d\vec{x} \right)$$

- Next compute $\delta G/\delta A$, the functional derivative (\boxplus) the functional G(A).
- This gives

 $\left[\rho(\vec{x})A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} = 0$

> Setting the integrand to be zilch, we have

 $\rho(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law Cartograms

A reasonable derivation

networks Public versus Private

Now a Lagrange multiplier story:

▶ By varying $\{\vec{x}_1, ..., \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} d\vec{x} \right)$$

- Next compute $\delta G/\delta A$, the functional derivative (\boxplus) of the functional G(A).
- ➤ This gives

 $\rho(\vec{x})A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x})\right]^{-2} d\vec{x} = 0$

➤ Setting the integrand to be zilch, we have

 $\varphi(\vec{x}) = 2\lambda e^{-1} A(\vec{x})^{-3/2}$.

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Distributed

Facility location
Size-density law
Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Now a Lagrange multiplier story:

▶ By varying $\{\vec{x}_1,...,\vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} d\vec{x} \right)$$

- Next compute $\delta G/\delta A$, the functional derivative (\boxplus) of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] d\vec{x} = 0.$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Now a Lagrange multiplier story:

▶ By varying $\{\vec{x}_1, ..., \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} d\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} d\vec{x} \right)$$

- Next compute $\delta G/\delta A$, the functional derivative (\boxplus) of the functional G(A).
- ► This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] d\vec{x} = 0.$$

Setting the integrand to be zilch, we have:

$$\rho(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho^{-2/3}.$$

Finally, we indentify $1/A(\vec{x})$ as $D(\vec{x})$, an approximation of the local source density

▶ Substituting D = 1/A, we have

$$D(\vec{x}) = \left(\frac{c}{2\lambda}\rho\right)^{2/3}$$

Normalizing for solving for A:

 $D(\vec{x}) = 0 \frac{|\rho(\vec{x})|^{2/3}}{|\rho(\vec{x})|^{2/3} d\vec{x}} \propto [\rho(\vec{x})]^{2/3}$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location
Size-density law
Cartograms

Cartograms
A reasonable derivation

Global redistribution networks Public versus Private

References

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho^{-2/3}.$$

Finally, we indentify $1/A(\vec{x})$ as $D(\vec{x})$, an approximation of the local source density.

Optimal branching Murray's law Murray meets Tokunaga

Single Source

Size-density law

A reasonable derivation

Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho^{-2/3}.$$

- Finally, we indentify $1/A(\vec{x})$ as $D(\vec{x})$, an approximation of the local source density.
- Substituting D = 1/A, we have

$$D(\vec{x}) = \left(\frac{c}{2\lambda}\rho\right)^{2/3}.$$

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Size-density law

A reasonable derivation Public versus Private

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho^{-2/3}.$$

- Finally, we indentify $1/A(\vec{x})$ as $D(\vec{x})$, an approximation of the local source density.
- ▶ Substituting D = 1/A, we have

$$D(\vec{x}) = \left(\frac{c}{2\lambda}\rho\right)^{2/3}.$$

Normalizing (or solving for λ):

$$D(\vec{x}) = n \frac{[\rho(\vec{x})]^{2/3}}{\int_{\Omega} [\rho(\vec{x})]^{2/3} d\vec{x}} \propto [\rho(\vec{x})]^{2/3}.$$

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source Geometric argument

Geometric argument Blood networks River networks

Distributed Sources

Facility location Size-density law

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Outline

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

River networks

Distributed Sources

Facility location

Size-density law

Cartogram

A reasonable derivation

Global redistribution networks

Public versus Private

References

Supply Networks

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

River networks

Distributed

Sources

Size-density law

Cartograms

A reasonable derivation

Global redistribution networks

lic versus Private

-6-----

One more thing:

How do we supply these facilities?

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?

Supply Networks

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Size-density law Cartograms

Cartograms
A reasonable derivation

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\text{maint}} + \gamma C_{\text{travel}}$$
.

Supply Networks

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

Cartograms

A reasonable derivation

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\text{maint}} + \gamma C_{\text{travel}}$$
.

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij}+\delta(\#\mathsf{hops}).$$

Introduction

Optimal branching

Murray's law

Murray meets Tokunaga

ingle Source

Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

Cartograms A reasonable deri

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\text{maint}} + \gamma C_{\text{travel}}$$
.

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij}+\delta(\#\mathsf{hops}).$$

▶ When $\delta = 1$, only number of hops matters.

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

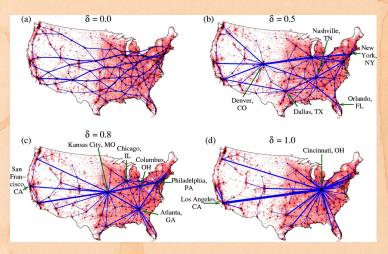
Facility location Size-density law

Cartograms

Cartograms

Global redistribution networks

2-6----



From Gastner and Newman (2006) [7]

Supply Networks

ntroduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location

Size-density law Cartograms

A reasonable derivation

Global redistribution networks

References

Outline

Distributed Sources

Public versus Private

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus Private

Beyond minimizing distances:

Optimal branching Murray's law Murray meets Tokunaga

Single Source Geometric argument

Size-density law A reasonable derivation

Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [24]
 - Um et al. find empirically and argue theoretically the connection between facility and population density

 $D \propto n^{\alpha}$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes
 - 1. For-profit, commercial facilities: $\alpha = 1$
 - 2. Pro-social, public facilities: $\alpha = 2/3$
- Um et al. investigate facility locations in the United States and South Korea.

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [24]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$D \propto \rho^{\alpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes
 - 1. For-profit, commercial facilities: $\alpha = 1$
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Unter all arrivestigate facility locations in the United States and South Korea.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [24]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$D \propto \rho^{\alpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;

Introduction

Optimal branching
Murray's law

Murray meets Tokunaga

Geometric argument

Distributed

Facility location Size-density law

Size-density law

A reasonable derivation

Public versus Private

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [24]
- Um et al. find empirically and argue theoretically that the connection between facility and population density

$$D \propto \rho^{\alpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source
Geometric argument
Blood networks

Distributed Sources

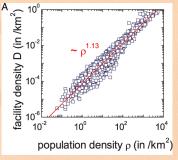
Facility location Size-density law

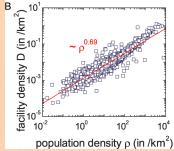
Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Public versus private facilities: evidence





- Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.

Supply Networks

ntroduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

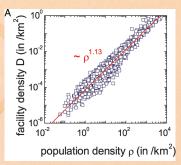
Distributed Sources

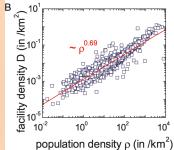
Facility location Size-density law

ze-density law

reasonable derivation flobal redistribution

Public versus Private





- Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.
- Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho \simeq 100$.

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location

Size-density law

A reasonable derivation

Public versus Private

Public versus private facilities: evidence

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
SK facility Bank	α (SE)	R ²
Bank	1.18(2)	0.96
Bank Parking place	1.18(2) 1.13(2)	0.96 0.91
Bank Parking place * Primary clinic	1.18(2) 1.13(2) 1.09(2)	0.96 0.91 1.00
Bank Parking place * Primary clinic * Hospital	1.18(2) 1.13(2) 1.09(2) 0.96(5)	0.96 0.91 1.00 0.97
Bank Parking place * Primary clinic * Hospital * University/college	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9)	0.96 0.91 1.00 0.97 0.89
Bank Parking place * Primary clinic * Hospital * University/college Market place	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2)	0.96 0.91 1.00 0.97 0.89 0.90
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3)	0.96 0.91 1.00 0.97 0.89 0.90
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3)	0.96 0.91 1.00 0.97 0.89 0.90 0.98
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org.	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2)	0.96 0.91 1.00 0.97 0.89 0.90 0.98 0.97
Bank Parking place * Primary clinic * Hospital * University/college Market place * Secondary school * Primary school Social welfare org. * Police station	1.18(2) 1.13(2) 1.09(2) 0.96(5) 0.93(9) 0.87(2) 0.77(3) 0.77(3) 0.75(2) 0.71(5)	0.96 0.91 1.00 0.97 0.89 0.90 0.98 0.97 0.84 0.94

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

Optimal branching Murray's law

Murray meets Tokunaga

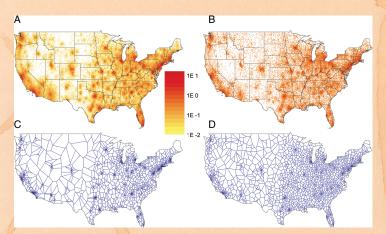
Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus private facilities: evidence



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

So what's going on?

- Social institutions seek to minimize distance of travel.

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.

Supply Networks

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument

Size-density law

A reasonable derivation

- ► Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- Defins: For the *i*th facility and its Voronoi cell V_i , define
 - $n_i =$ population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - $ightharpoonup s_i = area of ith cell.$

Supply Networks

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- Defns: For the *i*th facility and its Voronoi cell V_i , define
 - n_i = population of the ith cell;
 - $ightharpoonup \langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - $ightharpoonup s_i = area of ith cell.$
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

ingle Source

Geometric argument Blood networks

Distributed Sources

Size-density law

Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors
- Defns: For the ith facility and its Voronoi cell V_i, define
 - n_i = population of the ith cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - \triangleright s_i = area of *i*th cell.
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

- Limits:
 - $\beta = 0$: purely commercial.
 - $\beta = 1$: purely social.

Optimal branching Murray's law

Murray meets Tokunaga

Size-density law

Optimal branching

Murray meets Tokunaga

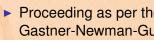
Public versus Private

Murray's law

Single Source

Size-density law

A reasonable derivation



Proceeding as per the Gastner-Newman-Gusein-Zade calculation, Um et al. obtain:

$$D(\vec{x}) = n \frac{[\rho(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho(\vec{x})]^{2/(\beta+2)} d\vec{x}} \propto [\rho(\vec{x})]^{2/(\beta+2)}.$$

Public versus private facilities: the story

Proceeding as per the Gastner-Newman-Gusein-Zade calculation, Um et al. obtain:

$$D(\vec{x}) = n \frac{[\rho(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho(\vec{x})]^{2/(\beta+2)} d\vec{x}} \propto [\rho(\vec{x})]^{2/(\beta+2)}.$$

▶ For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

Lyo. Social scanny is submitted.

Insert question 3, assignment

Introduction

Optimal branching

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location Size-density law

ize-density law artograms

A reasonable derivation Global redistribution networks

Public versus Private

Proceeding as per the Gastner-Newman-Gusein-Zade calculation, Um et al. obtain:

$$D(\vec{x}) = n \frac{[\rho(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho(\vec{x})]^{2/(\beta+2)} d\vec{x}} \propto [\rho(\vec{x})]^{2/(\beta+2)}.$$

- ▶ For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.
- For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.
- You can try this too: Insert question 3, assignment 4 (⊞).

Introduction

Optimal branching Murray's law

Murray s law Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed Sources

Facility location

Size-density law

reasonable derivation

Public versus Private

References I

- J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.
 Topology of the fittest transportation network.
 Phys. Rev. Lett., 84:4745–4748, 2000. pdf (⊞)
- [2] J. R. Banavar, A. Maritan, and A. Rinaldo.
 Size and form in efficient transportation networks.

 Nature, 399:130–132, 1999. pdf (⊞)
- [3] S. Bohn and M. O. Magnasco.
 Structure, scaling, and phase transition in the optimal transport network.

Phys. Rev. Lett., 98:088702, 2007. pdf (⊞)

[4] P. S. Dodds.

Optimal form of branching supply and collection networks.

Phys. Rev. Lett., 104(4):048702, 2010. pdf (⊞)

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Facility location Size-density law

Cartograms
A reasonable derivation

ilobal redistribution etworks

Public versus Priva

References II

[5] P. S. Dodds and D. H. Rothman.
Geometry of river networks. I. Scaling, fluctuations, and deviations.
Physical Review E, 63(1):016115, 2001. pdf (⊞)

[6] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf (H)

[7] M. T. Gastner and M. E. J. Newman.

Optimal design of spatial distribution networks.

Phys. Rev. E, 74:016117, 2006. pdf (\pm)

[8] M. T. Gastner and M. E. J. Newman.
Shape and efficiency in spatial distribution networks.

J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006.

pdf (H)

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

warray mooto rotatrag

Geometric argument
Blood networks

Distributed

Facility location Size-density law

artograms

Global redistribution networks

Public versus Private

References III

 [9] S. M. Gusein-Zade.
 Bunge's problem in central place theory and its generalizations.
 Geogr. Anal., 14:246–252, 1982.

[10] P. La Barbera and R. Rosso. Reply.

Water Resources Research, 26(9):2245–2248, 1990. pdf (⊞)

- [11] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421,939–942, 2003. pdf (⊞)
- [12] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of wood. Functional Ecology, 18:931–938, 2004. pdf (H)

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed Sources

Size-density law

A reasonable derivation Global redistribution networks

Public versus Private

[13] C. D. Murray.

The physiological principle of minimum work applied to the angle of branching of arteries.

J. Gen. Physiol., 9(9):835–841, 1926. pdf (⊞)

[14] C. D. Murray.

The physiological principle of minimum work. I. The vascular system and the cost of blood volume.

Proc. Natl. Acad. Sci., 12:207-214, 1926. pdf (⊞)

[15] C. D. Murray.

A relationship between circumference and weight in trees and its bearing on branching angles.

J. Gen. Physiol., 10:725-729, 1927. pdf (⊞)

ntroduction

Optimal branching
Murray's law

Murray meets Tokunaga

Single Source

Geometric argument
Blood networks

Distributed

Facility location Size-density law

Size-density law

A reasonable derivation Global redistribution networks

Public versus Priva

References V

[16] I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[17] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

[18] W. R. Stahl. Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22:453–460, 1967.

[19] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf (H)

Introduction

Optimal branching
Murray's law
Murray meets Tokunaga

Single Source

Geometric argument

Blood networks
River networks

Distributed Sources

Facility location Size-density law

Cartograms

A reasonable derivation Global redistribution networks

References VI

[20] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf (⊞)

[21] D. W. Thompson. On Growth and From. Cambridge University Pres. Great Britain, 2nd edition, 1952.

[22] D. W. Thompson. On Growth and Form — Abridged Edition. Cambridge University Press, Great Britain, 1961.

[23] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf (⊞)

Optimal branching Murray's law Murray meets Tokunaga

Size-density law

A reasonable derivation

References VII

[24] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf (⊞)

- [25] P. D. Weinberg and C. R. Ethier.
 Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas.

 Journal of Biomechanics, 40(7):1594–1598, 2007.

 pdf (H)
- [26] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology.

Science, 276:122-126, 1997. pdf (⊞)

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source
Geometric argument
Blood networks

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution networks

Public versus Priva

[27] Q. Xia.

The formation of a tree leaf.

Submitted. pdf (\(\pm\))

[28] Q. Xia.

Optimal paths related to transport problems.

Communications in Contemporary Mathematics,

5:251-279, 2003. pdf (⊞)

Introduction

Optimal branching Murray's law

Murray meets Tokunaga

Single Source

Geometric argument Blood networks

Distributed

Facility location
Size-density law
Cartograms

A reasonable derivation Global redistribution networks

Public versus Private

