Structure detection methods

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 1 of 55

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

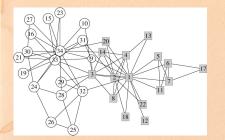
Final words

References

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

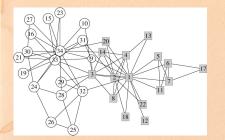
2 of 55

▲ Zachary's karate club^[10, 7]

The issue:

how do we elucidate the internal structure of large networks across many scales?

Structure detection methods


Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

▲ Zachary's karate club ^[10, 7]

 Possible substructures: hierarchies, cliques, rings, ...
 Plus:

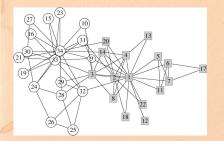
The issue:

how do we elucidate the internal structure of large networks across many scales?

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

20 3 of 55

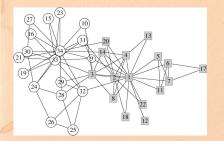
▲ Zachary's karate club ^[10, 7]

- Possible substructures: hierarchies, cliques, rings, ...
- Plus: All combinations of substructures.

The issue:

how do we elucidate the internal structure of large networks across many scales?

Structure detection methods


Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

▲ Zachary's karate club ^[10, 7]

- Possible substructures: hierarchies, cliques, rings, ...
- Plus: All combinations of substructures.
- Much focus on hierarchies...

The issue:

how do we elucidate the internal structure of large networks across many scales?

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Outline

Overview

Methods Hierarchy by aggregation

Hierarchy by christon Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

 Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Note: evidently works for non-networked data.
 Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside
- Gall above property Modularity

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data
 Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge. likely with clusters inside
- Gall above property Modularity

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
 - Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside
- Gall above property Modularity

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - 2. Sequentially add links between nodes based on closeness.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - 2. Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - 2. Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - 2. Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Bottom up problems:

Tend to plainly not work on data sets with known modular structures.

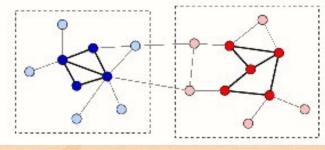
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection


Final words

Bottom up problems:

- Tend to plainly not work on data sets with known modular structures.
- Good at finding cores of well-connected (or similar) nodes...

but fail to cope well with peripheral, in-between nodes.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

20 0 6 of 55

Outline

Overview

Methods

Hierarchy by division

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 7 of 55

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that has significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman a Girvan (PRE, 2004). ^[7]
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001).^[5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^{[3}

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 8 of 55

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
 - We It first work through "Finding and evaluating community structure in networks" by Newman and Cirvan (PRE, 2004). ^[7]
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001).^[5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^{[5}

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[7]
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). ^[5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^{[5}

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[7]
- See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001).^[5, 6]

 "Community structure in social and biological networks" by Girvan and Newman (PNAS, 20

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

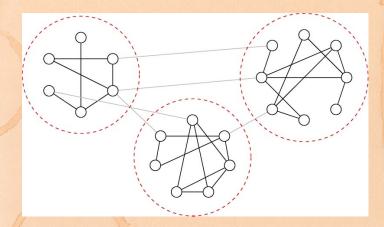
Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[7]
- See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001).^[5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^[3]

Structure detection methods

Overview

Methods


Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

 Idea: Edges that connect communities have higher betweenness than edges within communities.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

20 P of 55

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- Recompute edge betweenness
 Repeat steps 2 and 3 until all edges are remove
- 5 Record when
- components appear as
- 6 Generate dendogram
- revealing hierarch
- structure.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.

- 5 Record when
- components appear as
- 6 Generate dendogram revealing hierarchical

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- Remove edge with highest betweenness.
- 3. Recompute edge betweenness

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.

Structure detection methods

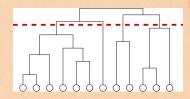
Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

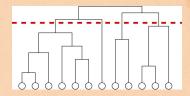
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling


Spectral methods Hierarchies & Missing Links General structure detection

Final words

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in I that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

 $Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

na @ 11 of 55

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

 $Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

na @ 11 of 55

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

How do we know which divisions are meaningful?
 Modularity measure: difference in fraction of within component rodes to that expected for randomized

 $Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

How do we know which divisions are meaningful?

component nodes to that expected for randomized

 $Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr} \mathbf{E} - ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 11 of 55

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 11 of 55

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$$

where e_{ij} is the fraction of edges between identified
communities *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

29 C 11 of 55

Test case:

Generate random community-based networks.

Add edges randomly within and across communitie

 $\langle k \rangle_{\rm in} = 6$ and $\langle k \rangle_{\rm out} = 2$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

na @ 12 of 55

Test case:

- Generate random community-based networks.
- \triangleright *N* = 128 with four communities of size 32.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 0 12 of 55

Test case:

- Generate random community-based networks.
- \blacktriangleright *N* = 128 with four communities of size 32.
- Add edges randomly within and across communities.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Test case:

- Generate random community-based networks.
- \blacktriangleright *N* = 128 with four communities of size 32.
- Add edges randomly within and across communities.

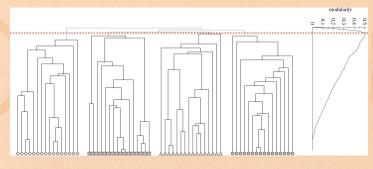
Example:

 $\langle k \rangle_{\rm in} = 6$ and $\langle k \rangle_{\rm out} = 2$.

Structure detection methods

Overview

Methods


Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

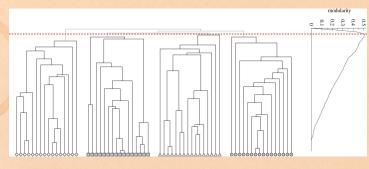
Final words

• Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.

Structure detection methods

Overview

Methods


Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

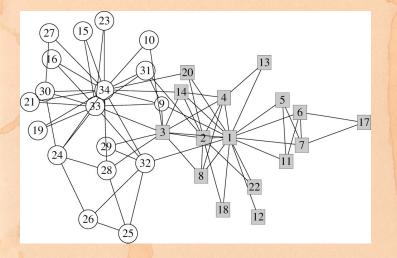
Final words

- Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Structure detection methods

Overview

Methods


Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Factions in Zachary's karate club network.^[10]

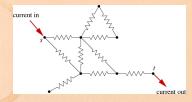
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling


Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

DQ @ 14 of 55

Unit resistors on each edge.

s (source) and t (sinf set up unit currents in s and out at t. Measure absolute current along each edge t. $|t_{c.st}|$.

Structure detection methods

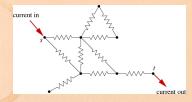
Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

Sum $|I_{i,j}|$ over all pairs of nodes to obtain electronic betweenness for edge (. (Equivalent to random walk betweenness.) Electronic betweenness for edge between nodes (and): $B_{ij}^{abc} = a_{ij} |V_i - V_j|$.

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.

Structure detection methods

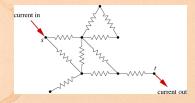
Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

Sum $|I_{ij}|$ over all pairs of nodes to obtain electronic betweenness for edge (. (Equivalent to random walk betweenness.) Electronic betweenness for edge between nodes (and): $|B_{j}^{elec} = a_{j}|V_{i} - V_{j}$.

200 15 of 55

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.

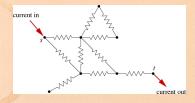
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling


Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Sum *V* and over all pairs of nodes to obtain electronic betweenness for edge *t*.
(Equivalent to random walk betweenness.)
Electronic betweenness for edge between nodes *t* and *p*: *D*^{alex} = *a*₀ |*V*₁ - *V*₁|.

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.

Structure detection methods

Overview

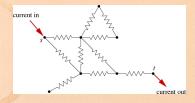
Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words


References

Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .

andom walk betweenness.

200 15 of 55

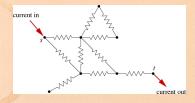
- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.

Structure detection methods

Overview

Methods

Hierarchy by aggregation


Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)
- Electronic betweenness for edge between nodes i and j:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

Define some arbitrary voltage reference.

Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a$ Between unconnected nodes, $R_{ij} = \infty = 1/a$

 $\mathbf{a}_{i}(\mathbf{V}, \mathbf{V}) = V_{i} \sum_{j} a_{ij} - \sum_{j} a_{ij} V_{j}$ $= V_{i}k_{i} - \sum_{j} a_{ij} V_{j} = \sum_{j} [k_{i}\delta_{ij} V_{j} - a_{ij} V_{j}]$ $= [(\mathbf{K} - \mathbf{A})\vec{V}]_{i}$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 16 of 55

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

Between connected nodes, R_{ij} =
 Between unconnected nodes, R_i
 We can therefore write

 $= V_i \sum_j a_{ij} - \sum_j a_{ij} V_j$ $= V_i k_i - \sum_j a_{ij} V_j = \sum_j [k_i \delta_{ij} V_j - a_{ij} V_j]$ $= [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

• Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

na (~ 16 of 55

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.

 $V_{i} = V_{i} \sum_{j} a_{ij} - \sum_{j} a_{ij} V_{j}$ $= V_{i}k_{i} - \sum_{j} a_{ij}V_{j} = \sum_{j} [k_{i}\delta_{ij}V_{j} - a_{ij}V_{j}]$ $= [(\mathbf{K} - \mathbf{A})\vec{V}]_{i}$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

 $= V_i \sum_j a_{ij} - \sum_j a_{ij} V_j$ = $V_i k_i - \sum_j a_{ij} V_j = \sum_j [k_i \delta_{ij} V_j - a_{ij} V_j$ = $[(\mathbf{K} - \mathbf{A}) \vec{V}]_i$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij}(V_i - V_j)$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij}(V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij}(V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$ $= V_i k_i - \sum_{j} a_{ij} V_j = V_i \sum_{j} a_{ij} V_j$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij}(V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$ $= V_i k_i - \sum_{j} a_{ij} V_j = \sum_{j} [k_i \delta_{ij} V_j - a_{ij} V_j]$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node *i* must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij}(V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$ $= V_i k_i - \sum_{j} a_{ij} V_j = \sum_{j} [k_i \delta_{ij} V_j - a_{ij} V_j]$ $= [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Write right hand side as [I^{ext}]_i = δ_{is} - δ_{it}, where I^{ext} holds external source and sink currents.

 $\mathbf{L} = \mathbf{K} - \mathbf{A}$ is a beast of some utility—known as the Laplacian.

 Solve for voltage vector V by LU decomposition (Gaussian elimination).

Do not compute an inverse!

 Note: voltage offset is arbitrary so no unique solutio
 Presuming network has one component, null space of K A is one dimensional.

Structure detection methods

Overview

Method

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

DQ @ 17 of 55

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

DQ @ 17 of 55

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K} - \mathbf{A}) \, \vec{V} = I^{\text{ext}}.$$

L = K – A is a beast of some utility—known as the Laplacian.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

DQ @ 17 of 55

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K}-\mathbf{A})\,\vec{V}=I^{\mathrm{ext}}.$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector V by LU decomposition (Gaussian elimination).

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K}-\mathbf{A})\,\vec{V}=I^{\mathrm{ext}}.$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector V by LU decomposition (Gaussian elimination).
- Do not compute an inverse!

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K}-\mathbf{A})\vec{V}=I^{\text{ext}}.$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector V by LU decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K}-\mathbf{A})\vec{V}=I^{\text{ext}}.$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector V by LU decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Write right hand side as [I^{ext}]_i = δ_{is} δ_{it}, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K}-\mathbf{A})\vec{V}=I^{\text{ext}}.$$

- L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector V by LU decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ► In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random wa between pairs of nodes *i* and *j*.
 Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a
 - onsider all pairs of nodes
- Random walk betweenness of an edge absolute difference in probability a random walk travels on way versus the other along the edge.
 - Equivalent/to electronic betweenness

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

200 18 of 55

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Alternate betweenness measures:

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Alternate betweenness measures:

Random walk betweenness:

- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Alternate betweenness measures:

Random walk betweenness:

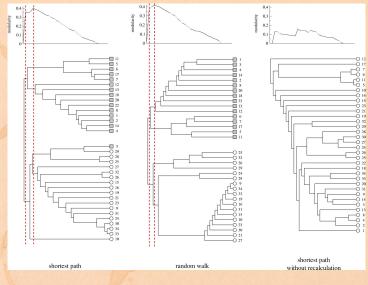
- Asking too much: Need full knowledge of network to travel along shortest paths.
- One of many alternatives: consider all random walks between pairs of nodes *i* and *j*.
- Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Structure detection methods

Overview

Methods

Hierarchy by aggregation


Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Hierarchy by division

Structure detection methods

Overview

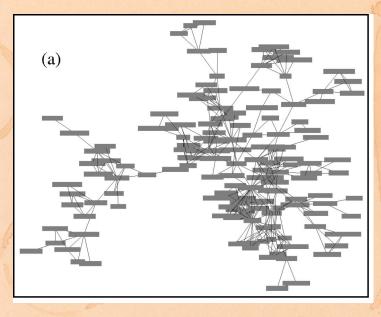
Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words


References

 Third column shows what happens if we don't recompute betweenness after each edge removal.

200 19 of 55

Scientists working on networks

Structure detection methods

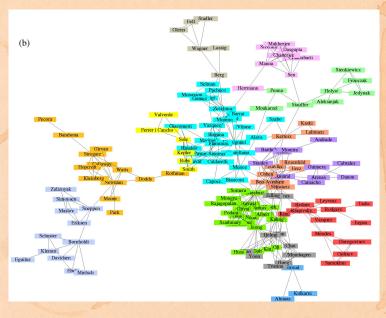
Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

20 of 55

UNIVERSITY

Scientists working on networks

Structure detection methods

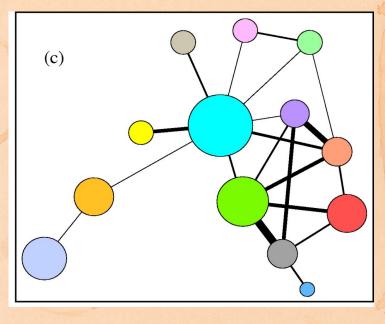
Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

2 0 0 21 of 55

UNIVERSITY

Scientists working on networks

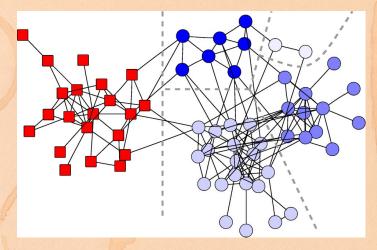
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division


Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Dolphins!

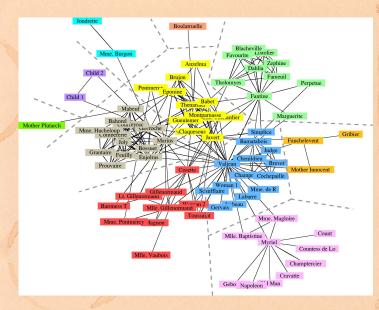
Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling


Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Les Miserables

Structure detection methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

✓ Q (~ 24 of 55)

INIVERSITY

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

 "Extracting the hierarchical organization of complex systems"
 Sales-Pardo *et al.*, PNAS (2007)^[8, 9]

 As for Newman and Girvan approach, aim is to find partitions with maximum modularity;

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

 "Extracting the hierarchical organization of complex systems"
 Sales-Pardo *et al.*, PNAS (2007)^[8, 9]

Consider all partitions of networks into m groups

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- "Extracting the hierarchical organization of complex systems"
 Sales-Pardo *et al.*, PNAS (2007)^[8, 9]
- Consider all partitions of networks into m groups
- As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$\boldsymbol{Q} = \sum_{i} [\boldsymbol{e}_{ii} - (\sum_{j} \boldsymbol{e}_{ij})^{2}] = \mathrm{Tr} \boldsymbol{\mathsf{E}} - ||\boldsymbol{\mathsf{E}}^{2}||_{1}$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

 Consider partition network, i.e., the network of all possible partitions.

 Detn: Two partitions are connected if they differ on by the reassignment of a single node.
 Look for local maxima in partition network.

Construct an affinity matrix with entries A_i

A_{ij} = Pr random walker on modularity network ends up at a partition with i and j in the same group.

I. topological overlap between i and j =

atching neighbors for *i* and j divided by maximi

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.

Construct an affinity matrix with entries A_{ij}.
 A_{ij} = Pr random walker on modularity network ends up at a partition with *i* and *j* in the same group.
 C.f. topological overlap between *i* and *j* =

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

DQ @ 27 of 55

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.

Pr random walker on modularity network

t topological overlap between (and) =

ching neighbors for / and / divided by maxin

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ij}.

up at a partition with *i* and *i* in the same group.

f, topological overlap between *i* and *j*

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ij}.
- A_{ij} = Pr random walker on modularity network ends up at a partition with *i* and *j* in the same group.
- C.f. topological overlap between *i* and *j* =
 # matching neighbors for *i* and *j* divided by maximum of k_i and k_j.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

 A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix;

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

na ~ 28 of 55

A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix; Conclusion: no structure...

 Method obtains a distribution of classification hierarchies.

 Idea is to weight possible hierarchies according to their basin of attraction's size in the partition netwo
 Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
 Idea: bermute nodes to minimize following cost

Use simulated annealing (slow).
 Observation) should achieve same results for more general cost function: C = ^N/_N ∑^N_{i=1} ∑^N_{i=1} A_if(|i − f)

a field strictly monotonically increases to a strictly monotonically increases to a strictly monotonically increases to a strictly increases to a strictly increase to a strictly increases to a strictly increase to a strictly i

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.

 Idea is to weight possible inerarchies according to their basin of attraction's size in the partition network Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
 Idea: permute nodes to minimize following cost

Use simulated annealing (slow).
 Observation: should achieve same results for more general cost function: C = ¹/_N∑^N_{i=1}∑^N_{i=1} A_i/(|i = i)

Overview Methods

methods

Hierarchy by aggregation Hierarchy by division

Structure detection

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.

• Use simulated annealing (slow). • Observation: should achieve same results for mogeneral cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{N} A_{ij} f((i - i))$ Structure detection methods

Overview

Methods Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.

Structure detection methods

Overview

Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

 Use simulated annealing (slow).
 Observation: should achieve same results for mor general cost function: C = ¹/_N ∑^N_{i=1} ∑^N_{i=1} A_i f(|i − j

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

Use simulated annealing (slow).

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

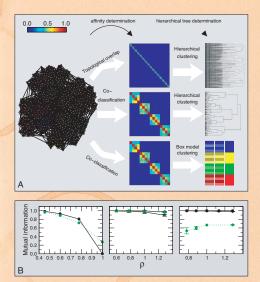
- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

- Use simulated annealing (slow).
- ► Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i j|)$ where *f* is a strictly monotonically increasing function of 0, 1, 2, ...

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

$$\langle k \rangle = 16$$

 3 tiered hierarchy.

20 C 30 of 55

Structure detection Shuffling for structure methods Overview • Define cost matrix as **T** with entries $T_{ij} = f(|i - j|)$. Hierarchy by aggregation Hierarchy by shuffling Final words UNIVERSITY 2 a a 31 of 55

- Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ► Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ► Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.

Discovered by numerical inspection...

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

- Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.
- Discovered by numerical inspection...
- The eigenvalues are

$$\lambda_1 = -\frac{1}{6}n(n^2 - 1),$$

 $\lambda_2 = +\sqrt{nS_{n,4}} + S_{n,2},$ and
 $\lambda_3 = -\sqrt{nS_{n,4}} + S_{n,2}.$

where

$$S_{n,2} = \frac{1}{12}n(n^2 - 1)$$
, and
 $S_{n,4} = \frac{1}{240}n(n^2 - 1)(3n^2 - 7)$

Structure detection methods

Overview

Method

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Eigenvectors

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$

 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and}$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Eigenvectors

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$

 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and}$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Remarkably,

 $T = \lambda_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^{\mathrm{T}} + \lambda_2 \hat{\mathbf{v}}_2 \hat{\mathbf{v}}_2^{\mathrm{T}} + \lambda_3 \hat{\mathbf{v}}_3 \hat{\mathbf{v}}_3^{\mathrm{T}}.$

The next step: figure out how to capitalize

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Eigenvectors

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$

 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and}$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Remarkably,

$$T = \lambda_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^{\mathrm{T}} + \lambda_2 \hat{\mathbf{v}}_2 \hat{\mathbf{v}}_2^{\mathrm{T}} + \lambda_3 \hat{\mathbf{v}}_3 \hat{\mathbf{v}}_3^{\mathrm{T}}.$$

The next step: figure out how to capitalize on this...

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

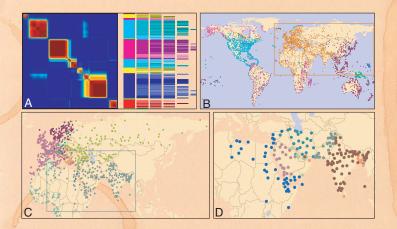
Table 1. Top-level structure of real-world networks

Network	Nodes	Edges	Modules	Main modules
Air transportation	3,618	28,284	57	8
E-mail	1,133	10,902	41	8
Electronic circuit	516	686	18	11
Escherichia coli KEGG	739	1,369	39	13
E. coli UCSD	507	947	28	17

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Shuffling for structure

Modules found match up with geopolitical units.

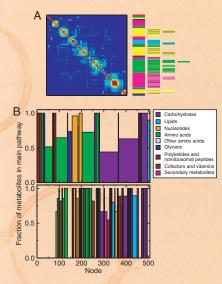
Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

na @ 34 of 55

Shuffling for structure

 Modularity structure for metabolic network of E. coli (UCSD reconstruction).

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods

Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

20 36 of 55

 "Detecting communities in large networks" Capocci et al.(2005)^[1]

Consider normal matrix K⁻¹A, random walk matrix A^TK⁻¹, Laplacian K – A, and AA^T.
 Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of

Build on Kleinberg's HITS algorithm

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 C 37 of 55

- "Detecting communities in large networks" Capocci *et al.*(2005)^[1]
- ► Consider normal matrix $\mathbf{K}^{-1}A$, random walk matrix $A^{\mathrm{T}}\mathbf{K}^{-1}$, Laplacian $\mathbf{K} \mathbf{A}$, and AA^{T} .

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

- "Detecting communities in large networks" Capocci et al.(2005)^[1]
- Consider normal matrix $\mathbf{K}^{-1}A$, random walk matrix $A^{\mathrm{T}}\mathbf{K}^{-1}$, Laplacian $\mathbf{K} \mathbf{A}$, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

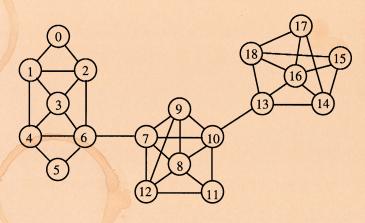
Final words

- "Detecting communities in large networks" Capocci et al.(2005)^[1]
- Consider normal matrix $\mathbf{K}^{-1}A$, random walk matrix $A^{\mathrm{T}}\mathbf{K}^{-1}$, Laplacian $\mathbf{K} \mathbf{A}$, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

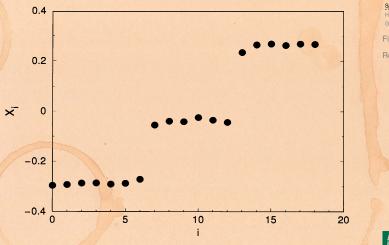
Final words

Example network:

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Second eigenvector's components:

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 C 39 of 55

VIVERSITY

- Network of word associations for 10616 words.
- Average in-degree of 7.
- Using 2nd to 11th evectors of a modified version of AA^T:

Table 1

Words most correlated to science, literature and piano in the eigenvectors of $Q^{-1}WW^{T}$

Science	1	Literature	1	Piano	1	
Scientific	0.994	Dictionary	0.994	Cello	0.993	
Chemistry	0.990	Editorial	0.990	Fiddle	0.992	
Physics	0.988	Synopsis	0.988	Viola	0.990	
Concentrate	0.973	Words	0.987	Banjo	0.988	
Thinking	0.973	Grammar	0.986	Saxophone	0.985	
Test	0.973	Adjective	0.983	Director	0.984	
Lab	0.969	Chapter	0.982	Violin	0.983	
Brain	0.965	Prose	0.979	Clarinet	0.983	
Equation	0.963	Topic	0.976	Oboe	0.983	
Examine	0.962	English	0.975	Theater	0.982	

Values indicate the correlation.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods Hierarchies & Missing Links General structure detection

Final words

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by shuffling Hierarchies & Missing Links

Final words

References

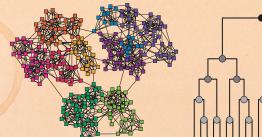
Structure detection methods

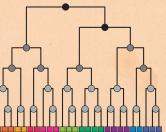
Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral method


Hierarchies & Missing Links General structure detection


Final words

References

2 0 41 of 55

Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.

r consensus dendogram

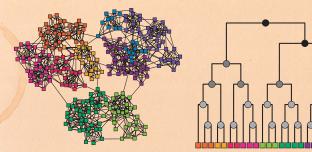
Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral methods


Hierarchies & Missing Links General structure detection

Final words

References

n a (~ 42 of 55

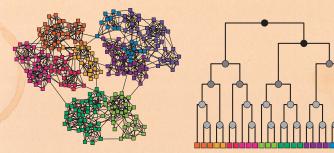
- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.

consensus dendogram

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division

Spectral methods

Hierarchies & Missing Links General structure detection

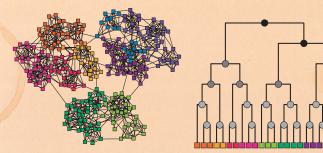
Final words

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division

Spectral method

Hierarchies & Missing Links General structure detection

Final words

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral method

Hierarchies & Missing Links General structure detection

Final words

Hierarchies and missing links

Model also predicts reasonably well

- 1. average degree,
- 2. clustering,
- 3. and average shortest path length.

Table 1 Comparison of original and resampled networks

Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{samp}$	C _{real}	C _{samp}	$d_{\rm real}$	d _{samp}	
T. pallidum	4.8	3.7(1)	0.0625	0.0444(2)	3.690	3.940(6)	
Terrorists	4.9	5.1(2)	0.361	0.352(1)	2.575	2.794(7)	
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)	

Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient C and average vertex-vertex distance *d* in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.

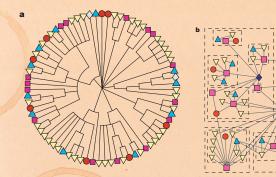
Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling


Spectral method

Hierarchies & Missing Links General structure detection

Final words

Hierarchies and missing links

Consensus dendogram for grassland species.

Structure detection methods

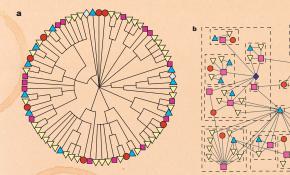
Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral methods

Hierarchies & Missing Links General structure detection


Final words

References

DQ @ 44 of 55

Hierarchies and missing links

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral methods

Hierarchies & Missing Links General structure detection

Final words

- Consensus dendogram for grassland species.
- Copes with disassortative and assortative communities.

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Structure detection methods

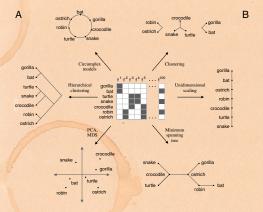
Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

General structure detection


Final words

References

n a c 45 of 55

"The discovery of structural form" Kemp and Tenenbaum, PNAS (2008)^[4]

Form

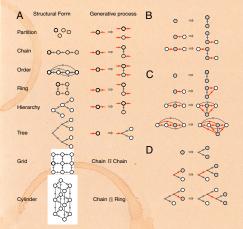
Structure

Data

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

General structure detection

Final words

 Top down description of form.

 Node replacement graph grammar: parent node becomes two child nodes.
 B-D: Growing chains, orders, and trace

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

General structure detection

Final words

References

NIVERSITY

- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link

General structure detection

Final words

- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link

General structure detection

Final words

References

NIVERSITY

Example learned structures:

Brever White

Rehnquis

Kennedy Thomas


Blackmun Stevens Souter

B

Marchall

Brennan

С

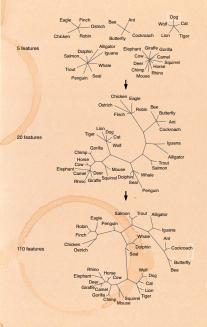
Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection


Final words

References

 Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

2 C 48 of 55

Effect of adding features on detected form.

Straight partition

simple tree

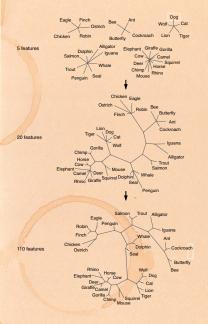
complex tree

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


General structure detection

Final words

References

2 C 49 of 55

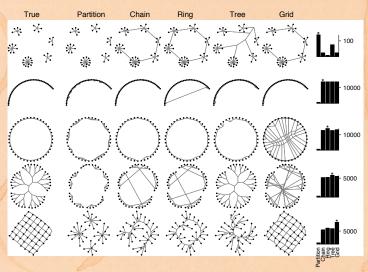
 Effect of adding features on detected form.

> Straight partition ↓ simple tree ↓ complex tree

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link

General structure detection

Final words

Performance for test networks.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

General structure detection

Final words

References

20 C 50 of 55

Final words:

Modern science in three steps:

1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 0 0 51 of 55

Final words:

Modern science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 0 0 51 of 55

Final words:

Modern science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 C 51 of 55

References I

 [1] [1] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori.
 Detecting communities in large networks.
 <u>Physica A: Statistical Mechanics and its</u> Applications, 352:669–676, 2005. pdf (⊞)

[2] [2] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks.

Nature, 453:98–101, 2008. pdf (⊞)

 [3] [3] M. Girvan and M. E. J. Newman.
 Community structure in social and biological networks.
 Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf (⊞)

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 C 52 of 55

References II

- [4] [4] C. Kemp and J. B. Tenenbaum. The discovery of structural form. <u>Proc. Natl. Acad. Sci.</u>, 105:10687–10692, 2008. pdf (⊞)
- [5] [5] M. E. J. Newman.
 Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
 <u>Phys. Rev. E</u>, 64(1):016132, 2001. pdf (⊞)

[6] [6] M. E. J. Newman.
 Erratum: Scientific collaboration networks. II.
 Shortest paths, weighted networks, and centrality
 [Phys. Rev. E 64, 016132 (2001)].
 Phys. Rev. E, 73:039906(E), 2006. pdf (⊞)

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References III

- [7] [7] M. E. J. Newman and M. Girvan.
 Finding and evaluating community structure in networks.
 Phys. Rev. E, 69(2):026113, 2004. pdf (⊞)
- [8] [8] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex systems.
 <u>Proc. Natl. Acad. Sci.</u>, 104:15224–15229, 2007. pdf (田)

 [9] [9] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral.
 Extracting the hierarchical organization of complex systems: Correction.
 Proc. Natl. Acad. Sci., 104:18874, 2007. pdf (⊞)

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

2 0 0 54 of 55

References IV

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

 [10] [10] W. W. Zachary. An information flow model for conflict and fission in small groups. J. Anthropol. Res., 33:452–473, 1977.

na @ 55 of 55