

Scale-Free Networks Original model Model details Analysis A more plausil mechanism Robustness

Redner & Krapivisky's model Analysis

References

UNIVERSITY

Scale-Free Networks

Robustness

Redner & Krapivisky's mod

Superlinear atta

References

Original model

Licensed under the Creative Commons Attribution-No

Outline

Original model

Introduction Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's model

Generalized model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-free networks

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

- One of the seminal works in complex networks: Laszlo Barabási and Reka Albert, Science, 1999: "Emergence of scaling in random networks" [2]
- Somewhat misleading nomenclature...

Networks Original model Introduction Model details Analysis A more plau Redner & Krapivisky's model Analysis

VERMONT

• 𝔍 𝔄 𝔅 𝔅 𝔅 𝔅

UNIVERSITY

•) < (~ 4 of 57

Scale-free networks

Scale-free networks are not fractal in any sense.

- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Redner & Krapivisky's model

Scale-Free Networks

Analysis

A more pla mechanism Robustnes

Generalized

Analysis

Original model Introduction Model details

わ q C+ 5 of 57

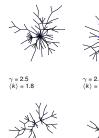
Scale-Free Networks

Analysis A more pla mechanism

Robustness

Original model Introduction Model details

Random networks: largest components



 $\gamma = 2.5$ $\langle k \rangle = 1.6$

わへで 6 of 57

Networks Original model Introduction Model details Analysis Redner & Krapivisky's model Generalized Analysis Universality? Sublinear attachm kernels Superlinear attach kernels

References

わくで 7 of 57

Sublinear attach kernels Superlinear atta kernels References

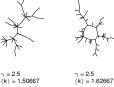
Scale-Free Scale-free networks

The big deal:

We move beyond describing of networks to finding mechanisms for why certain networks are the way they are.

A big deal for scale-free networks:

- How does the exponent γ depend on the mechanism?
- Do the mechanism details matter?



Redner & rapivisky's mode

References

Scale-Free

Heritage

Work that presaged scale-free networks

- ▶ 1924: G. Udny Yule ^[9]: # Species per Genus
- ▶ 1926: Lotka^[4]: # Scientific papers per author
- ▶ 1953: Mandelbrot^[5]): Zipf's law for word frequency through optimization
- ▶ 1955: Herbert Simon^[8, 10]: Zipf's law, city size, income, publications, and species per genus
- ▶ 1965/1976: Derek de Solla Price ^[6, 7]: Network of Scientific Citations

BA model

- Barabási-Albert model = BA model.
- Key ingredients: Growth and Preferential Attachment (PA).
- Step 1: start with m₀ disconnected nodes.
- Step 2:
 - 1. Growth-a new node appears at each time step *t* = 0, 1, 2,
 - 2. Each new node makes m links to nodes already present.
 - 3. Preferential attachment-Probability of connecting to *i*th node is $\propto k_i$.
- ► In essence, we have a rich-gets-richer scheme.

BA model

- **Definition:** A_k is the attachment kernel for a node with degree k.
- ► For the original model:

$$A_k = k$$

- Definition: $P_{\text{attach}}(k, t)$ is the attachment probability.
- ► For the original model:

$$P_{\text{attach}}(\text{node } i, t) = \frac{k_i(t)}{\sum_{j=1}^{N(t)} k_j(t)} = \frac{k_i(t)}{\sum_{k=m}^{k_{\text{max}}(t)} k N_k(t)}$$

where $N(t) = m_0 + t$ is # nodes at time t and $N_k(t)$ is # degree k nodes at time t.

• When (N + 1)th node is added, the expected increase in the degree of node *i* is

$$E(k_{i,N+1}-k_{i,N})\simeq mrac{k_{i,N}}{\sum_{i=1}^{N(t)}k_i(t)}$$

- Assumes probability of being connected to is small.
- Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable.
- Approximate $k_{i,N+1} k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{j=1}^{N(t)}k_j(t)}$$

w

Approximate

Deal with denominator: each added node brings m new edges.

$$\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$$

The node degree equation now simplifies:

$$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m\frac{k_i(t)}{\sum_{i=1}^{N(t)}k_i(t)} = m\frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$$

- Rearrange and solve:
- $\frac{\mathrm{d}k_i(t)}{k_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i t^{1/2}}$
- Next find $c_i \ldots$

Approximate analysis

Know ith node appears at time

$$t_{i,\text{start}} = \begin{cases} i - m_0 & \text{for } i > m_0 \\ 0 & \text{for } i \le m_0 \end{cases}$$

So for $i > m_0$ (exclude initial nodes), we must have

$$k_i(t) = m \left(\frac{t}{t_{i,\text{start}}}\right)^{1/2}$$
 for $t \ge t_{i,\text{start}}$.

- All node degrees grow as $t^{1/2}$ but later nodes have larger t_{i,start} which flattens out growth curve.
- Early nodes do best (First-mover advantage).

Analysis A more pla mechanism Robustness Redner & Krapivisky's model Analysis

References

Scale-Free Networks

Model details

Original model

UNIVERSITY • 𝔍 𝔍 𝔍 𝔄 𝔅 𝔅

Scale-Free Networks

Original model Analysis A more pla mechanism Robustness Redner & (rapivisky's mode Generalized mo Analysis Universality? References

UNIVERSITY •୨ < C ∾ 14 of 57

Scale-Free Networks

Original model Model details Analysis A more pl mechanisi Robustne

Redner & Krapivisky's model Analysis Universality? Sublinear attachm kernels Superlinear attach kernels

References

Scale-Free

Networks Original model

Model details Analysis A more pla Redner & Krapivisky's model

Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels

References

Scale-Free Networks

Introduction Model details

Analysis

Analysis

Sublinear atta

References

A more plaus mechanism Robustness

Redner & Krapivisky's model

Original model

UNIVERSITY

•) < (~ 8 of 57

Scale-Free Networks

Model details

A more plau mechanism

Robustness

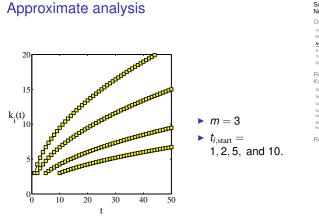
References

Redner & Krapivisky's mode

Original model

t)

where
$$t = N(t) - m_0$$
.



Degree distribution

- So what's the degree distribution at time t?
- Use fact that birth time for added nodes is distributed uniformly:

$$P(t_{i,\text{start}}) \mathrm{d}t_{i,\text{start}} \simeq \frac{\mathrm{d}t_{i,\text{start}}}{t+m_0}$$

Using

$$k_i(t) = m\left(\frac{t}{t_{i,\text{start}}}\right)^{1/2} \Rightarrow t_{i,\text{start}} = \frac{m^2 t}{k_i(t)^2}.$$

and by understanding that later arriving nodes have lower degrees, we can say this:

$$\mathsf{Pr}(k_i < k) = \mathsf{Pr}(t_{i,\text{start}} > \frac{m^2 t}{k^2}).$$

Degree distribution

Using the uniformity of start times:

$$\Pr(k_i < k) = \Pr(t_{i,\text{start}} > \frac{m^2 t}{k^2}) \simeq \frac{t - \frac{m^2 t}{k^2}}{t + m_0}$$

▶ Differentiate to find **Pr**(*k*):

$$\mathbf{Pr}(k) = \frac{\mathrm{d}}{\mathrm{d}k} \mathbf{Pr}(k_i < k) = \frac{2m^2 t}{(t+m_0)k^3}$$

$$\sim 2m^2k^{-3}$$
 as $m \to \infty$.

Scale-Free Networks Original model Model details Analysis A more plau mechanism Robustness Redner & Krapivisky's model Analysis

References

•⊃ < C + 16 of 57

Scale-Free Networks

Analysis A more pla mechanisn

Robustness

Original model

Degree distribution

- We thus have a very specific prediction of $\mathbf{Pr}(k) \sim k^{-\gamma}$ with $\gamma = \mathbf{3}$.
- Typical for real networks: $2 < \gamma < 3$.
- Range true more generally for events with size distributions that have power-law tails.
- > $2 < \gamma < 3$: finite mean and 'infinite' variance (wild)
- In practice, $\gamma < 3$ means variance is governed by upper cutoff.
- > γ > 3: finite mean and variance (mild)

UNIVERSITY

うへで 19 of 57

sky's mode

Examples		Scale-Free Networks
		Original model Introduction Model details Anore plausible mechanism Rebustness Redner & Krapivisky's mo Generation model
WWW	$\gamma \simeq$ 2.1 for in-degree	Analysis Universality?
WWW	$\gamma \simeq$ 2.45 for out-degree	Sublinear attachment kernels
Movie actors	$\gamma \simeq$ 2.3	Superlinear attachmen kernels
Words (synonyms)	$\gamma\simeq$ 2.8	References

The Internets is a different business...

From Barabási and Albert's original paper^[2]:

10 А

10

10

10⁻⁶

10 10 В

10² k 10 10

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with $\mathcal{N}=212,250$ vertices and average connectivity $\langle k\rangle=28.78$. (B) WVWV, $\mathcal{N}=325,729$, $\langle k\rangle=5.46$ (G). (C) Power grid data, $\mathcal{N}=4941$, $\langle k\rangle=2.67$. The dashed lines have slopes (A) $\gamma_{actor}=2.3$, (B) $\gamma_{www}=2.1$ and (C) $\gamma_{power}=4$.

10

10⁻⁴

10⁻³

UNIVERSITY わへで 20 of 57

Scale-Free Networks

Original model Model details Analysis A more pi mechanis

Redner & Krapivisky's model Generalize Analysis Universality Sublinear attar kernels

С

References

わへで 21 of 57

Real data

10

10

10⁻⁵

10⁻⁶

10 10 10

(¥) H

うへで 18 of 57

Things to do and guestions

- Vary attachment kernel.
- Vary mechanisms:
 - 1. Add edge deletion
 - 2. Add node deletion
 - 3. Add edge rewiring
- Deal with directed versus undirected networks.
- Important Q.: Are there distinct universality classes for these networks?
- Q.: How does changing the model affect γ?
- Q.: Do we need preferential attachment and growth?
- Q.: Do model details matter?
- The answer is (surprisingly) yes.

Preferential attachment

- Let's look at preferential attachment (PA) a little more closely.
- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- For example: If $P_{\text{attach}}(k) \propto k$, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- ▶ PA is .: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Scale-Free Networks Original model

Analysis Redner & Krapivisky's model Analysis

References

UNIVERSITY

• 𝔍 𝔄 22 of 57

Scale-Free Networks

Robustness

- We've looked at some aspects of contagion on scale-free networks:
 - 1. Facilitate disease-like spreading.
 - 2. Inhibit threshold-like spreading.
- Another simple story concerns system robustness.
- Albert et al., Nature, 2000: "Error and attack tolerance of complex networks"^[1]

Scale-Free Networks

Original mode Model details

UNIVERSITY • 𝔍 𝔄 27 of 57

Scale-Free Networks

Robustness

Redner &

References

UNIVERSITY

• へ へ へ 28 of 57

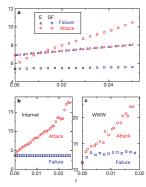
rapivisky's mode

Original model ntroduction Vodel detail

Standard random networks (Erdős-Rényi) versus Scale-free networks b Scale-free Exponential

Albert et al., 2000

Robustness



Albert et al., 2000

Scale-Free Networks Original model Model details Analysis A more pla Robustness

Redner & Krapivisky's model diameter as a function Analysis Sublinear atta kernels

scale-free networks References blue symbols =

Plots of network

removed

of fraction of nodes

Erdős-Rényi versus

random removal

targeted removal

(most connected first)

red symbols =

from

Redner & Krapivisky's mode Superlinear a

References

Preferential attachment through randomness

- Instead of attaching preferentially, allow new nodes to attach randomly.
- Now add an extra step: new nodes then connect to some of their friends' friends.
- Can also do this at random.
- We know that friends are weird...
- Assuming the existing network is random, we know probability of a random friend having degree k is

$$Q_k \propto k P_k$$

So rich-gets-richer scheme can now be seen to work in a natural way.

Superlin kernels References

VERMONT

わへで 24 of 57

Scale-Free

Networks

Model details

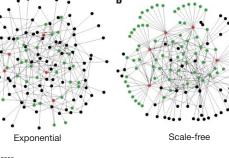
Original model

A more plausible me

Redner & Krapivisky's mode Sublinear atta

Original model A more plausible mechanism

Robustness



Robustness

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Generalized model

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[3] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing the details of the attachment kernel.
- ▶ We'll follow RK's approach using rate equations (⊞).

Generalized model

► Here's the set up:

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

where N_k is the number of nodes of degree k.

- 1. The first term corresponds to degree k 1 nodes becoming degree k nodes.
- 2. The second term corresponds to degree k nodes becoming degree k - 1 nodes.
- 3. Detail: $A_0 = 0$
- 4. One node is added per unit time.
- 5. Seed with some initial network (e.g., a connected pair)

Scale-Free Networks

Original model Model details Analysis A more plausible Robustness Redner & Krapivisky's model Analysis Sublinear atta kernels References

Generalized model

In general, probability of attaching to a specific node of degree k at time t is

Pr(attach to node *i*) =
$$\frac{A_k}{A(t)}$$

where $A(t) = \sum_{k=1}^{\infty} A_k N_k(t)$.

- E.g., for BA model, $A_k = k$ and $A = \sum_{k=1}^{\infty} kN_k(t)$.
- For $A_k = k$, we have

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) = 2t$$

since one edge is being added per unit time.

Detail: we are ignoring initial seed network's edges.

VERMONT • 𝔍 𝔍 𝔅 35 of 57

Scale-Free Networks

Model details

Analysis A more plau mechanism Robustness

Analysis

References

Original model

Redner & Krapivisky's model

Generalized model

So now

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{A} \left[A_{k-1} N_{k-1} - A_k N_k \right] + \delta_{k1}$$

becomes

$$\frac{\mathrm{d}N_k}{\mathrm{d}t} = \frac{1}{2t}\left[(k-1)N_{k-1} - kN_k\right] + \delta_{k1}$$

- As for BA method, look for steady-state growing solution: $N_k = n_k t$.
- We replace dN_k/dt with $dn_kt/dt = n_k$.
- We arrive at a difference equation:

$$n_k = \frac{1}{2t} \left[(k-1)n_{k-1}t - kn_k t \right] + \delta_{k1}$$

Generalized model

► Rearrange and simply:

$$n_k = \frac{1}{2}(k-1)n_{k-1} - \frac{1}{2}kn_k + \delta_{k1}$$

$$\Rightarrow (k+2)n_k = (k-1)n_{k-1} + 2\delta_{k1}$$

Two cases:

$$k = 1$$
: $n_1 = 2/3$ since $n_0 = 0$

$$k > 1: n_k = \frac{(k-1)}{k+2}n_{k-1}$$

Scale-Free

Networks
Original model
Introduction
Model details
Analysis
A more plausible

Robustness
Redner & Krapivisky's mod
Generalized model
Analysis Universality?
Sublinear attachment kernels
Superlinear attachment kernels
References

Networks Original model Model details Analysis

Scale-Free

Redner & Krapivisky's model Analysis Sublinear atta kernels

References

Scale-Free Networks

Model details A more pla Redner & Krapivisky's model neralized model Sublinear attac

References

VERMONT

r

VERMONT

Scale-Free

Analysis A more plau

Original model Introduceon Model details

Generalized model

Now find n_k :

$$k > 1: n_{k} = \frac{(k-1)}{k+2} n_{k-1} = \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} n_{k-2}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} n_{k-3}$$
$$= \frac{(k-1)}{k+2} \frac{(k-2)}{k+1} \frac{(k-3)}{k} \frac{(k-4)}{k-1} n_{k-4}$$

$$= \frac{(k-1)(k-2)(k-3)(k-4)(k-5)\cdots 5 4 3 2}{(k-1)(k-2)\cdots 8 7 6 5 4} n_1$$

$$\Rightarrow n_k = \frac{6}{k(k+1)(k+2)} n_1 = \frac{4}{k(k+1)(k+2)} \sim k^{-3}$$

Scale-Free

Networks Original model

Model details Analysis

A more plausi mechanism Robustness

References

VERMONT

Scale-Free Networks

Introduction Model details Analysis A more plausib mechanism

Universality?

Original model

Redner & Krapivisky's model

Universality?

As expected, we have the same result as for the BA model:

 $N_k(t) = n_k(t)t \propto k^{-3}$ for large k.

- Now: what happens if we start playing around with the attachment kernel A_k ?
- Again, is the result $\gamma = 3$ universal (\boxplus)?
- Natural modification: $A_k = k^{\nu}$ with $\nu \neq 1$.
- But we'll first explore a more subtle modification of A_k made by Redner/Krapivsky^[3]
- ▶ Keep A_k linear in k but tweak details.
- Idea: Relax from $A_k = k$ to $A_k \sim k$ as $k \to \infty$.

Universality?

Recall we used the normalization:

$$A(t) = \sum_{k'=1}^{\infty} k' N_{k'}(t) \simeq 2t \text{ for large } t.$$

We now have

$$A(t) = \sum_{k'=1}^{\infty} A_{k'} N_{k'}(t)$$

where we only know the asymptotic behavior of A_k .

- We assume that $A = \mu t$
- We'll find μ later and make sure that our assumption is consistent.
- As before, also assume $N_k(t) = n_k t$.

Universality?

►

For
$$A_k = k$$
 we had

- $n_k = \frac{1}{2} \left[(k-1)n_{k-1} kn_k \right] + \delta_{k1}$
- This now becomes

$$n_k = \frac{1}{\mu} \left[\mathbf{A}_{k-1} \mathbf{n}_{k-1} - \mathbf{A}_k \mathbf{n}_k \right] + \delta_{k1}$$

$$\Rightarrow (\mathbf{A}_{k} + \mu)\mathbf{n}_{k} = \mathbf{A}_{k-1}\mathbf{n}_{k-1} + \mu\delta_{k1}$$

Again two cases:

 $k=1:n_1=\frac{\mu}{\mu+A_1}.$ $k > 1: n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k}$

Universality?

• Dealing with the k > 1 case:

$$n_k = n_{k-1} \frac{A_{k-1}}{\mu + A_k} = n_{k-1} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$

$$= n_{k-2} \frac{A_{k-2}}{A_{k_1}} \frac{1}{1 + \frac{\mu}{A_{k-1}}} \frac{A_{k-1}}{A_k} \frac{1}{1 + \frac{\mu}{A_k}}$$
$$= n_1 \frac{A_1}{A_k} \prod_{j=2}^k \frac{1}{1 + \frac{\mu}{A_j}}$$
$$= n_1 \frac{A_1}{A_k} \left(1 + \frac{\mu}{A_1}\right) \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}}$$
$$= \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} \text{ since } n_1 = \mu/(\mu + A_1)$$

Original model Introduction Model details Analysis A more plausible mechanism Robustness Redner & Krapivisky's model

Scale-Free Networks

Scale-Free Networks

Original model Introduction Model details Analysis A more plau mechanism Robustness Redner & Krapivisky's mode

Universality? Superlinear attach

References

UNIVERSITY •

Scale-Free Networks

Original model Model details Analysis A more plausible mechanism Robustness

Redner & Krapivisky's mode Generalized Universality?

Since μ depends on A_k , details matter...

 $=\frac{\mu}{\frac{A_1}{A_k}}\frac{A_1}{(A_1+\mu)}\frac{A_2}{(A_2+\mu)}\cdots\frac{k-1}{(k-1+\mu)}\frac{k}{(k+\mu)}$

of n_k given $A_k \to k$ as $k \to \infty$.

 $\propto \frac{\Gamma(k)}{\Gamma(k+\mu+1)} \sim \frac{\sqrt{2\pi}k^{k+1/2}e^{-k}}{\sqrt{2\pi}(k+\mu+1)^{k+\mu+1+1/2}e^{-(k+\mu+1)}}$ $\propto k^{-\mu-1}$

Time for pure excitement: Find asymptotic behavior

 $n_k = \frac{\mu}{A_k} \prod_{i=1}^k \frac{1}{1 + \frac{\mu}{A_i}} = \frac{\mu}{A_k} \prod_{i=1}^k \frac{A_j}{A_j + \mu}$

Universality?

For large k:

UNIVERSITY

わへで 41 of 57

Scale-Free Networks

VERMONT

Original model Model details Analysis A more plau

Redner & Krapivisky's model

Universality? Sublinear attachn kernels Superlinear attach kernels

References

Superlinear attachmer References

Universality?

- Now we need to find μ .
- Our assumption again: $A = \mu t = \sum_{k=1}^{\infty} N_k(t) A_k$
- Since $N_k = n_k t$, we have the simplification $\mu = \sum_{k=1}^{\infty} n_k A_k$
- Now subsitute in our expression for n_k :

$1\mu = \sum_{k=1}^{\infty} \frac{\mu}{A_k} \prod_{j=1}^k \frac{1}{1 + \frac{\mu}{A_j}} A_k$

- \blacktriangleright Closed form expression for μ .
- We can solve for μ in some cases.
- Our assumption that $A = \mu t$ is okay.

Universality?

- Amazingly, we can adjust A_k and tune γ to be anywhere in $[2,\infty)$.
- $\gamma = 2$ is the lower limit since

$$\mu = \sum_{k=1}^{\infty} A_k n_k \sim \sum_{k=1}^{\infty} k n_k$$

must be finite.

Let's now look at a specific example of A_k to see this range of γ is possible.

Universality?

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Find $\gamma = \mu + 1$ by finding μ .

1

• Expression for μ :

$$1 = \sum_{k=1}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$
$$= \frac{1}{1 + \frac{\mu}{A_1}} + \sum_{k=2}^{\infty} \prod_{j=1}^{k} \frac{1}{1 + \mu}$$

 $\frac{\mu}{A_i}$

$$1 - \frac{1}{1 + \frac{\mu}{A_1}} = \frac{1}{1 + \frac{\mu}{A_1}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}}$$
$$\frac{\frac{\mu}{\alpha}}{1 + \frac{\mu}{\alpha}} = \frac{1}{1 + \frac{\mu}{\alpha}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1 + \frac{\mu}{A_j}} \text{ since } A_1 = \alpha$$

Scale-Free Networks Original model

Model details Analysis A more plausi mechanism Redner & Krapivisky's model Analysis Universality? Sublinear attachment kernels Superlinear attachment kernels References

Universality?

► Carrying on:

$$\frac{\frac{\mu}{\alpha}}{\frac{1}{1+\frac{\mu}{\alpha}}} = \frac{1}{\frac{1}{1+\frac{\mu}{\alpha}}} \sum_{k=2}^{\infty} \prod_{j=2}^{k} \frac{1}{1+\frac{\mu}{A_j}}$$
$$\frac{\mu}{\alpha} = \sum_{k=2}^{\infty} \frac{\Gamma(k+1)\Gamma(2+\mu)}{\Gamma(k+\mu+1)}$$

 $\Gamma(a+2)$

▶ Now use result that [3]

$$\sum_{k=2}^{\infty} \frac{\Gamma(a+k)}{\Gamma(b+k)} = \frac{\Gamma(a+2)}{(b-a-1)\Gamma(b+1)}$$
with $a = 1$ and $b = \mu + 1$.

$$\mu = \alpha \frac{\Gamma(3)}{(\mu + 1 - 1 - 1)\Gamma(2 + \mu)} \Gamma(2 + \mu)$$

$$\Rightarrow \mu(\mu - 1) = 2\alpha$$

Universality?

- $\mu(\mu-1) = 2\alpha \Rightarrow \mu = \frac{1+\sqrt{1+8\alpha}}{2}$
 - Since $\gamma = \mu + 1$, we have

$$\mathbf{0} \leq lpha < \infty \Rightarrow \mathbf{2} \leq \gamma < \infty$$

Craziness...

Sublinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[3]

 $n_k \sim k^{u} e^{-c_1 k^{1u} + ext{correction terms}}$

- Stretched exponentials (truncated power laws).
- aka Weibull distributions.
- Universality: now details of kernel do not matter.
- Distribution of degree is universal providing $\nu < 1$.

Scale-Free Networks

Original model

References

Scale-Free Networks

Original model Introduction Model details Analysis A more plaus mechanism Robustness

Redner & Krapivisky's mode Universality? Superlinear attachn kernels

References

UNIVERSITY •

Scale-Free Networks

Original model Model details Analysis A more plau mechanism Robustness

Redner & Krapivisky's model Generalized r Analysis Universality? Sublinear attachment kernel Superlinear attachment kernels

References

References

Scale-Free Networks Original model

VERMONT

• う q (マ→ 45 of 57

Scale-Free Networks

Analysis

A more plausible mechanism Robustness

Universality?

References

Redner & Krapivisky's model

Original model

- Introduction Model details Analysis A more plausil mechanism
- Robustness Redner & Krapivisky's mode

Sublinear attachment kernels

Details:

For 1/2 < ν < 1:</p>

$$n_k \sim k^{-\nu} e^{-\mu \left(rac{k^{1-\nu}-2^{1-\nu}}{1-\nu}
ight)}$$

For 1/3 < ν < 1/2:</p>

 $n_k \sim k^{-\nu} e^{-\mu rac{k^{1u}}{1u} + rac{\mu^2}{2} rac{k^{1-2
u}}{1-2
u}}$

And for 1/(r + 1) < ν < 1/r, we have r pieces in exponential.</p>

Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For *ν* > 2, all but a finite # of nodes connect to one node.

Scale-Free

Networks Original model

Model details

A more plausible mechanism Robustness

Redner & Krapivisky's model

Analysis

Analysis

References II

- [5] B. B. Mandelbrot. An informational theory of the statistical structure of languages. In W. Jackson, editor, <u>Communication Theory</u>, pages 486–502. Butterworth, Woburn, MA, 1953. pdf (⊞)
 [6] D. J. d. S. Price. Networks of scientific papers. <u>Science</u>, 149:510–515, 1965. pdf (⊞)
 [7] D. J. d. S. Price. A general theory of bibliometric and other cumulative
- advantage processes. J. Amer. Soc. Inform. Sci., 27:292–306, 1976. [8] H. A. Simon.
- On a class of skew distribution functions. Biometrika, 42:425–440, 1955. pdf (⊞)

References III

[9] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21–, 1924.

[10] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Sublinear attachmer kernels Superlinear attachm kernels References

Analysis

VERMONT

Scale-Free Networks

Original model Introduction Model details Analysis A more plausible mechanism Robustness

Robustness Redner & Krapivisky's mode Generalized model Analysis Universality? Sublinear attachment kernels Bupeforences

References I

- R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. <u>Nature</u>, 406:378–382, 2000. pdf (⊞)
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf (⊞)
- [3] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf (⊞)
- [4] A. J. Lotka. The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16:317–323, 1926.

Scale-Free Networks Original model Introduction Model deals Anarysis Anarysis Robustness Redner & Krapivisky's model Generatien model Anarysis University? Sublicear stachment Kernel Superinser attachment Kernel

VERMONT

•⊃へで 54 of 57

2011VERSITY VERMONT