

Outline

Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

References

Generating functions

－Idea：Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$ ，associate each element with a distinct function or other mathematical object．
－Well－chosen functions allow us to manipulate sequences and retrieve sequence elements．

Definition：

－The generating function（g．f．）for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

－Roughly：transforms a vector in R^{∞} into a function defined on R^{1} ．
－Related to Fourier，Laplace，Mellin，．．．

चact 1 of 35

Generating
Functions
Generating
Functions
Defintions

Basic－Properitios
Giant Component Condition

Component Sizes Usetur results
Szze ot the Giamt Size ot the Giant
Component Averagene Component Size References

$$
F^{(\square)}(x)=\sum_{k=1}^{6} p_{k} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) .
$$

－We＇ll come back to this simple example as we derive various delicious properties of generating functions．

Properties of generating functions
－Average degree：

$$
\begin{aligned}
\langle k\rangle & =\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

－In general，many calculations become simple，if a little abstract．
－For our exponential example：

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

－So：
Simple example

Rolling dice：

$$
p_{k}^{(\square)}=\operatorname{Pr}(\text { throwing a } k)=1 / 6 \text { where } k=1,2, \ldots, 6 .
$$

のact 5 at
صのल 5 of 35

Generating
Functions
Generating
Functions
Defintions
Basic Propertios
Giant Component Condition
Gian Component C
Component tizes
seftul results
Size of the Giant
Component
Average Componen
References

Properties of generating functions
Useful pieces for probability distributions：
－Normalization：

$$
F(1)=1
$$

－First moment：

$$
\langle k\rangle=F^{\prime}(1)
$$

－Higher moments：

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

－k th element of sequence（general）：

$$
P_{k}=\left.\frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} F(x)\right|_{x=0}
$$

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：
$F_{P}(x)$ is the g．f．for P_{k} ．
$F_{R}(x)$ is the g．f．for R_{k} ．
－Condition in terms of g．f．is：

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1
$$

－Now find how F_{R} is related to $F_{P} \ldots$

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k}
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{aligned}
& \qquad F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
& =\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) \\
& \text { Finally, since }\langle k\rangle=F_{P}^{\prime}(1),
\end{aligned}
$$

$$
F_{R}(x)=\frac{F_{P}^{\prime}(x)}{F_{P}^{\prime}(1)}
$$

References

๑のcr 9 of 35

Generating
 Functions
 Generating
 Functions
 Defintions Basic Propertios
 Giant Component Condition Componen sizes Usesulu resuls
 Usetul resuls Size of the Giant Component Average Component Size References

$$
\frac{1}{2} \text { UNVYRESTITY } \mid \text { OV }
$$

$$
\text { のQく } 11 \text { of } 35
$$

References

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$ ．
－Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$ ，

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)}
$$

－Setting $x=1$ ，our condition becomes

$$
\frac{F_{P}^{\prime \prime}(1)}{F_{P}^{\prime}(1)}>1
$$

Edge－degree distribution

Size distributions

To figure out the size of the largest component $\left(S_{1}\right)$ ，we need more resolution on component sizes．
Definitions：
－$\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$ ．
－$\rho_{n}=$ probability a random link leads to a finite subcomponent of size $n<\infty$ ．

Local－global connection：

$$
P_{k}, R_{k} \Leftrightarrow \pi_{n}, \rho_{n}
$$

neighbors \Leftrightarrow components

Size distributions

G．f．＇s for component size distributions：
－

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

The largest component：
－Subtle key：$F_{\pi}(1)$ is the probability that a node belongs to a finite component．
－Therefore：$S_{1}=1-F_{\pi}(1)$ ．
Our mission，which we accept：
－Find the four generating functions

$$
F_{P}, F_{R}, F_{\pi} \text {, and } F_{\rho} .
$$

Generating
Functions
Generating
Functions
Defintions
Basic Propertios
$\underset{\text { Giant Component Condtion }}{\text { Component sizes }}$
Component sizes
Uselu resulis
Size of tio Giant
Size of the ciant
Component
References

のดc 15 of 35

Generating
Functions
Functions
Generating
Functions
Definilions
Basic Proeerties
Basic Properties
Giant Component Condition
Clian Component Con
Component sizes
Usewir results
Componentisizes
Usetu rosuls
Sze ot the Giant
SLze ot he Giant
Component
Average Component Size
References

Useful results we＇ll need for g．f．＇s

Sneaky Result 1：
－Consider two random variables U and V whose values may be $0,1,2$ ，．
－Write probability distributions as U_{k} and V_{k} and g．f．＇s as F_{U} and F_{V} ．
－SR1：If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

then

$$
F_{W}(x)=F_{U}\left(F_{V}(x)\right)
$$

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} \\
\therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \ldots V_{i_{j}} x^{k} \\
=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}}
\end{gathered}
$$

Proof of SR1：

With some concentration，observe：

$$
\begin{aligned}
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{ \\
\sum_{k=0}} \underbrace{}_{\substack{x_{i}, i_{2}, \ldots, i_{j} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}}}^{x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}}
\end{aligned}
$$

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：
－Start with a random variable U with distribution U_{k} （ $k=0,1,2, \ldots$ ）
－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．
－

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x) \cdot \checkmark
\end{gathered}
$$

Useful results we＇ll need for g．f．＇s

Generalization of SR2：

－（1）If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x)
$$

－（2）If $V=U-i$ then

$$
\begin{gathered}
F_{V}(x)=x^{-i} F_{U}(x) \\
=x^{-i} \sum_{k=0}^{\infty} U_{k} x^{k}
\end{gathered}
$$

Connecting generating functions
－Goal：figure out forms of the component generating functions，F_{π} and F_{ρ} ．
－$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Therefore：$F_{\pi}(x)=\underbrace{x}_{\text {SR2 }} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {SRI }}$
－Extra factor of x accounts for random node itself．

Generating
Generating
Functions
Generating
Functions
Definitions
Deinitions
Basic Properties
Giann Componenent Condition
Component sizes
Usefulrosults
Usefultresults
Size of the Giant
SLze ot the Giant
Component
Average Component Size
References

๑ดく 21 of 35

Generating
Functions
Generating
Functions
Definitions
Basic Properties
Giant Component Conditio
Giant Component C
Component sizes
Component sizes
Useful results
SLze of the Giant
Component
Average Component Size
References

2i VERMONT
わのく 22 of 35

Generating
Functions
Functions
Generating
Functions
Defintions
Basic Propertios
Basiac Propertios
Giant Componen Condition
Component sizos
Usetur resuls
size ot the Gian！
Coineoin
Coimoine it
References

๑ดく 24 of 35

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
－
Therefore：$F_{\rho}(x)=\underbrace{x}_{\text {SRR2 }} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SRI }}$
－Again，extra factor of x accounts for random node itself．

Connecting generating functions

－We now have two functional equations connecting our generating functions：

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

－Taking stock：We know $F_{P}(x)$ and $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$ ．
－We first untangle the second equation to find F_{ρ}
－We can do this because it only involves F_{ρ} and F_{R} ．
－The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} ．

Component sizes

－Remembering vaguely what we are doing：

Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
－Set $x=1$ in our two equations：

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

References

義
つのc 25 of 35

Generating
 Functions
 Generating
 Functions
 Defintions
 Giant Componenent Conditio
 Component isizes Usefut resuls sizo ot the Giant References

Average component size
－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x)$ ．．．
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

－Now set $x=1$ in both equations．
－We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $\left.F_{\rho}(1)\right)$ ．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．

$$
\text { End result: }\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Average component size

－Our result for standard random networks：

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks．
－Look at what happens when we increase $\langle k\rangle$ to 1 from below．
－We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

－This blows up as $\langle k\rangle \rightarrow 1$ ．
－Reason：we have a power law distribution of component sizes at $\langle k\rangle=1$ ．
－Typical critical point behavior．．．．

Average component size
－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．
Extra on largest component size：
－For $\langle k\rangle=1, S_{1} \sim N^{2 / 3}$ ．
－For $\langle k\rangle<1, S_{1} \sim \log N$ ．

Generating
Functions
Generating
Functions
Basic Propertios
Giant Componen Condition
Component
Bizes
Component isizes
Uselut resuls
Size of the Ciant
Component
and
Average Component Size
References

2．Winvergry \mid Oig
のQく 33 of 35

Generating
Functions
Generating
Functions
Defititions
Basic Properties
Basic Properties
Giant Component Conadition
Giant Component
Component
Usefitu resulis
Useful results
Size ot the Giant Component Average Component Size References

