Generating Functions for Random Networks

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Generating Functions

Functions

Definitions

Giant Component Condition

Useful results
Size of the Giant

Component
Average Component Size

Outline

Generating Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

References

Generating Functions

Generating Functions

Definition

Basic Properties

Component sizes
Useful results

Size of the Giar

Average Component Size

Generating functions

- ► Idea: Given a sequence a₀, a₁, a₂,..., associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

▶ The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

- ▶ Roughly: transforms a vector in R^{∞} into a function defined on R^{1} .
- Related to Fourier, Laplace, Mellin, ...

Generating Functions

Generating Functions

Definitions

Basic Properties

Useful results
Size of the Giant

Average Component Size

Simple example

Rolling dice:

 $p_k^{(\Box)} = \mathbf{Pr}(\text{throwing a } k) = 1/6 \text{ where } k = 1, 2, ..., 6.$

$$F^{(\square)}(x) = \sum_{k=1}^{6} \rho_k x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

We'll come back to this simple example as we derive various delicious properties of generating functions.

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results
Size of the Giant
Component

Average Component Size

Example

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where $c = 1 - e^{-\lambda}$.

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1 - x e^{-\lambda}}.$$

- Notice that $F(1) = c/(1 e^{-\lambda}) = 1$.
- For probability distributions, we must always have F(1) = 1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results
Size of the Giant

Component
Average Component Size

Properties of generating functions

Average degree:

$$\langle k \rangle = \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \bigg|_{x=1}$$
$$= \frac{d}{dx} F(x) \bigg|_{x=1} = F'(1)$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

So:

$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1 - e^{-\lambda})}.$$

Generating Functions

Generating Functions

Definitions

Basic Properties

Giant Component Condition

Useful results
Size of the Giant
Component

Properties of generating functions

Useful pieces for probability distributions:

Normalization:

$$F(1) = 1$$

First moment:

$$\langle k \rangle = F'(1)$$

▶ Higher moments:

$$\langle k^n \rangle = \left(x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \Big|_{x=1}$$

kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} F(x) \bigg|_{x=0}$$

Generating Functions

Functions

Basic Properties

Component sizes
Useful results

Size of the Giant Component Average Component Size

Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's reexpress our condition in terms of generating functions.
- ▶ We first need the g.f. for R_k.
- We'll now use this notation:

$$F_P(x)$$
 is the g.f. for P_k .
 $F_R(x)$ is the g.f. for R_k .

Condition in terms of g.f. is:

$$\langle k \rangle_R = F'_R(1) > 1.$$

Now find how F_R is related to F_P ...

Generating Functions

Generating Functions

Basic Properties

Giant Component Condition

Size of the Giant Component

Edge-degree distribution

We have

$$F_R(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} \frac{(k+1)P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{i=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{i=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$= \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \sum_{j=1}^{\infty} P_j x^j = \frac{1}{\langle k \rangle} \frac{\mathrm{d}}{\mathrm{d}x} \left(F_P(x) - P_0 \right) = \frac{1}{\langle k \rangle} F_P'(x).$$

Finally, since $\langle k \rangle = F_P'(1)$,

$$F_R(x) = \frac{F_P'(x)}{F_P'(1)}$$

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results
Size of the Giant
Component

Average Component Size

Edge-degree distribution

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1$.
- Since we have $F_R(x) = F_P(x)/F_P(1)$,

$$F'_{R}(x) = \frac{F''_{P}(x)}{F'_{P}(1)}$$

▶ Setting x = 1, our condition becomes

$$\frac{F_P''(1)}{F_P'(1)} > 1$$

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results

Average Component Size

Size distributions

To figure out the size of the largest component (S_1) , we need more resolution on component sizes.

Definitions:

- π_n = probability that a random node belongs to a finite component of size $n < \infty$.
- ρ_n = probability a random link leads to a finite subcomponent of size $n < \infty$.

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, \rho_n$

neighbors ⇔ components

Generating Functions

Generating Functions

Definition

Clast Conservat Condition

Component sizes

Size of the Giant Component

Referenc

Size distributions

G.f.'s for component size distributions:

-

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n$$
 and $F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$

The largest component:

- Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
- ▶ Therefore: $S_1 = 1 F_{\pi}(1)$.

Our mission, which we accept:

Find the four generating functions

$$F_P, F_R, F_\pi$$
, and F_ρ .

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Component sizes Useful results

Size of the Giant Component Average Component Size

Useful results we'll need for g.f.'s

Sneaky Result 1:

- Consider two random variables U and V whose values may be 0, 1, 2, . . .
- Write probability distributions as U_k and V_k and g.f.'s as F_U and F_V .
- ▶ SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{U} V^{(i)}$$
 with each $V^{(i)} \stackrel{d}{=} V$

then

$$F_W(x) = F_U(F_V(x))$$

Generating Functions

ienerating unctions

Definition

Giant Component Condition

Useful results

Size of the Giant Component

Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \text{Pr}(\text{sum of } j \text{ draws of variable } V = k)$$

$$= \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\{i_{1},i_{2},\ldots,i_{j}\}|\\i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}}$$

$$\therefore F_{W}(x) = \sum_{k=0}^{\infty} W_{k} x^{k} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\{i_{1}, i_{2}, \dots, i_{j}\} | \\ i_{1}+i_{2}+\dots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} x^{k}$$

$$=\sum_{j=0}^{\infty} \frac{U_{j}}{\sum_{\substack{k=0\\i_{1}+i_{2}+\ldots+i_{j}=k}}^{\sum}} V_{i_{1}}x^{i_{1}}V_{i_{2}}x^{i_{2}}\cdots V_{i_{j}}x^{i_{j}}$$

Generating Functions

Generating Functions

Definition

Giant Component Condition

Useful results

Component
Average Component Size

Proof of SR1:

With some concentration, observe:

$$F_{W}(x) = \sum_{j=0}^{\infty} \bigcup_{k=0}^{\infty} \sum_{\substack{\{i_{1},i_{2},...,i_{j}\} \mid \\ i_{1}+i_{2}+...+i_{j}=k}} V_{i_{1}}x^{i_{1}}V_{i_{2}}x^{i_{2}}...V_{i_{j}}x^{i_{j}}$$

$$x^{k} \text{ piece of } \left(\sum_{i'=0}^{\infty} V_{i'}x^{i'}\right)^{j}$$

$$\left(\sum_{i'=0}^{\infty} V_{i'}x^{i'}\right)^{j} = (F_{V}(x))^{j}$$

$$= \sum_{j=0}^{\infty} \bigcup_{j} (F_{V}(x))^{j}$$

$$= F_{U}(F_{V}(x)) \checkmark$$

Generating **Functions**

Useful results

Useful results we'll need for g.f.'s

Sneaky Result 2:

- Start with a random variable U with distribution U_k (k = 0, 1, 2, ...)
- ▶ SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

▶ Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$.

$$\therefore F_V(x) = \sum_{k=0}^{\infty} V_k x^k = \sum_{k=1}^{\infty} U_{k-1} x^k$$

$$= x \sum_{i=0}^{\infty} U_j x^j = x F_U(x). \checkmark$$

Generating Functions

Generating Functions

Definition

Giant Component Condition

Useful results

Size of the Giant Component

Average Component Size

Useful results we'll need for a.f.'s

Generalization of SR2:

• (1) If V = U + i then

$$F_V(x) = x^i F_U(x).$$

 \triangleright (2) If V = U - i then

$$F_V(x) = x^{-i}F_U(x)$$

$$= x^{-i} \sum_{k=0}^{\infty} U_k x^k$$

Generating **Functions**

Functions

Useful results

Connecting generating functions

- ▶ Goal: figure out forms of the component generating functions, F_{π} and F_{ρ} .
- π_n = probability that a random node belongs to a finite component of size n

$$= \sum_{k=0}^{\infty} P_k \times \Pr\left(\text{ sum of sizes of subcomponents at end of } k \text{ random links} = n-1 \right)$$

Therefore:

$$F_{\pi}(x) = \underbrace{x}_{SR2} \underbrace{F_{P}(F_{\rho}(x))}_{SR1}$$

Extra factor of x accounts for random node itself.

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results
Size of the Giant

Component
Average Component Size

Connecting generating functions

- ρ_n = probability that a random link leads to a finite subcomponent of size n.
- Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1.

$$= \sum_{k=0}^{\infty} R_k \times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents} \\ \text{at end of } k \text{ random links} = n-1 \end{array}\right)$$

Therefore:
$$F_{\rho}(x) = \underbrace{x}_{SR2} \underbrace{F_{R}(F_{\rho}(x))}_{SR1}$$

Again, extra factor of x accounts for random node itself.

Generating Functions

Functions

Size of the Giant

Connecting generating functions

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- ► Taking stock: We know $F_P(x)$ and $F_R(x) = F'_P(x)/F'_P(1)$.
- lacktriangle We first untangle the second equation to find $F_
 ho$
- We can do this because it only involves F_{ρ} and F_{R} .
- The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} .

Generating Functions

Generating Functions

Definitions
Basic Properties

Component sizes
Useful results

Size of the Giant Component Average Component Size

Component sizes

- Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.
- Set x = 1 in our two equations:

$$F_{\pi}(1) = F_{P}(F_{\rho}(1))$$
 and $F_{\rho}(1) = F_{R}(F_{\rho}(1))$

- Solve second equation numerically for $F_{\rho}(1)$.
- ▶ Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$.

Generating Functions

Generating unctions

Definitions

Giant Component Condition

Useful results Size of the Giant

Component
Average Component Size

Component sizes

Example: Standard random graphs.

We can show $F_P(x) = e^{-\langle k \rangle (1-x)}$

$$\therefore F_{R}(x) = F'_{P}(x)/F'_{P}(1) = e^{-\langle k \rangle (1-x)}/e^{-\langle k \rangle (1-x')}|_{x'=1}$$

$$=e^{-\langle k\rangle(1-x)}=F_P(x)$$
 ...aha!

- RHS's of our two equations are the same.
- So $F_{\pi}(x) = F_{\rho}(x) = xF_{R}(F_{\rho}(x)) = xF_{R}(F_{\pi}(x))$
- Why our dirty (but wrong) trick worked earlier...

Generating Functions

Generating Functions

Definitions

Giant Component Condition

Useful results

Size of the Giant Component

Average Component Si

Component sizes

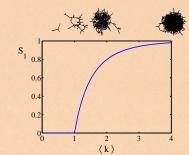
We are down to $F_{\pi}(x) = xF_{R}(F_{\pi}(x)) \text{ and } F_{R}(x) = e^{-\langle k \rangle (1-x)}.$

$$\therefore F_{\pi}(x) = xe^{-\langle k \rangle (1 - F_{\pi}(x))}$$

• We're first after $S_1 = 1 - F_{\pi}(1)$ so set x = 1 and replace $F_{\pi}(1)$ by $1 - S_1$:

$$1 - S_1 = e^{-\langle k \rangle S_1}$$

Or:
$$\langle k \rangle = \frac{1}{S_1} \ln \frac{1}{1 - S_1}$$



- Just as we found with our dirty trick ...
- Again, we (usually) have to resort to numerics ...

Generating **Functions**

Generating

Useful results Size of the Giant

- ▶ Next: find average size of finite components $\langle n \rangle$.
- ▶ Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- Try to avoid finding $F_{\pi}(x)$...
- Starting from $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$, we differentiate:

$$F'_{\pi}(x) = F_{P}\left(F_{\rho}(x)\right) + xF'_{\rho}(x)F'_{P}\left(F_{\rho}(x)\right)$$

▶ While $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$ gives

$$F_{\rho}'(x) = F_{R}(F_{\rho}(x)) + xF_{\rho}'(x)F_{R}'(F_{\rho}(x))$$

- Now set x = 1 in both equations.
- We solve the second equation for $F'_{\rho}(1)$ (we must already have $F_{\rho}(1)$).
- Plug $F'_{\rho}(1)$ and $F_{\rho}(1)$ into first equation to find $F'_{\pi}(1)$.

Generating Functions

Generating Functions

Definitions Designations

Giant Component Condi

Useful results

Component
Average Component Size

.....

Example: Standard random graphs.

- Use fact that $F_P = F_R$ and $F_\pi = F_\rho$.
- Two differentiated equations reduce to only one:

$$F'_{\pi}(x) = F_{P}(F_{\pi}(x)) + xF'_{\pi}(x)F'_{P}(F_{\pi}(x))$$

Rearrange:
$$F'_{\pi}(x) = \frac{F_P(F_{\pi}(x))}{1 - xF'_P(F_{\pi}(x))}$$

- ▶ Simplify denominator using $F'_P(x) = \langle k \rangle F_P(x)$
- Replace $F_P(F_\pi(x))$ using $F_\pi(x) = xF_P(F_\pi(x))$.
- Set x = 1 and replace $F_{\pi}(1)$ with $1 S_1$.

End result:
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1 - S_1)}{1 - \langle k \rangle (1 - S_1)}$$

Generating Functions

Generating Functions

Definitions
Basic Properties

Basic Properties
Giant Component Condition

Useful results
Size of the Giant
Component

Average Component Size

Our result for standard random networks:

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1 - S_1)}{1 - \langle k \rangle (1 - S_1)}$$

- Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase \(\lambda k \rangle \) to 1 from below.
- We have $S_1 = 0$ for all $\langle k \rangle < 1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- ▶ This blows up as $\langle k \rangle \rightarrow 1$.
- Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$.
- Typical critical point behavior....

Generating Functions

Generating Functions

Definitions
Basic Properties

Component sizes
Useful results

Average Component Size

▶ Limits of $\langle k \rangle = 0$ and ∞ make sense for

$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

- ▶ As $\langle k \rangle \rightarrow 0$, $S_1 = 0$, and $\langle n \rangle \rightarrow 1$.
- All nodes are isolated.
- ▶ As $\langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

Extra on largest component size:

- ▶ For $\langle k \rangle = 1$, $S_1 \sim N^{2/3}$.
- For $\langle k \rangle < 1$, $S_1 \sim \log N$.

Generating Functions

Generating unctions

Definitions

Basic Properties

Useful results

Size of the Giant Component

Average Component Size

References I

Generating Functions

Generating Functions

Basic Properties Giant Component Condition

Useful results Size of the Giant

Average Component Size

