Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

200 1 of 65

Outline

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Outline

Basics Definitions

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Barmon kiends are strange Largest component Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 3 of 65

Pure, abstract random networks:

Consider set of all networks with *N* labelled noc and *m* edges.
Standard random network = one randomly chosen network from this set.
To be clear: each network is equally probable.
Sometimes equiprobability is a good assumptio it is always an assumption.
Known as Erdős-Rényi random networks or ER

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Pure, abstract random networks:

 Consider set of all networks with N labelled nodes and m edges.

Standard random network =
one randomly chosen network from this set.
To be clear: each network is equally probable.
Sometimes equiprobability is a good assumption.
Known as Erdős-Rényi random networks or ER graphs.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- Sometimes equiprobability is a good assumption.
 it is always an assumption.
 Known as Ercos Renyi random networks or ER graphs

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.

graphs

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Random network generator for N = 3:

- Get your own exciting generator here (\boxplus) .
- ► As N /, our polyhedral die rapidly becomes a ball...

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

990 5 of 65

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

Limit of m = 0, empty graph.
 Limit of m = (^N/₂): complete or fully-connected graph
 Number of possible networks with N labelled nodes

Given on ecces, mere are (v_m) unterent possible networks.
 Orazy factorial explosion for 1 < m < (^N₂)
 Real world: links are usually costly so real netwo are almost always sparse.

Random Networks

Basics

Definitions How to build Some visual examples

> tructure Clustering

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 C 6 of 65

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

Limit of m = 0: empty graph.

Given *m* edges, there are (\sqrt{n}) different possible networks. Crazy factorial explosion for $1 \ll m \ll {n \choose 2}$ Real world: links are usually costly so real networ

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 C 6 of 65

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.

Given *m* edges, there are (⁽ⁿ⁾/_m) different possible networks.
 Crazy factorial explosion for 1 < m < (^N/₂).
 Real world: links are usually costly so teat networks are linkest always sparse.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 C 6 of 65

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}$$

Given *m* edges, there are (^v_m) different possible networks.
 Crazy factorial explosion for 1 < *m* < (^N₂)
 Real world: links are usually costly so real netwo are almost always sparse.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}$$

Given *m* edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.

Real world: links are usually costly so real netw

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}$$

Given *m* edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.

Crazy factorial explosion for 1

 m (^N₂)

 Real world:
 m

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Number of possible edges:

$$0 \le m \le \binom{N}{2} = \frac{N(N-1)}{2}$$

- Limit of m = 0: empty graph.
- Limit of $m = \binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2}N^2}$$

- Given *m* edges, there are $\binom{\binom{N}{2}}{m}$ different possible networks.
- Crazy factorial explosion for $1 \ll m \ll \binom{N}{2}$.
- Real world: links are usually costly so real networks are almost always sparse.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Outline

Basics Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Barmon kiends are strange Largest component Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, ohveirally-motivated

How to build standard random networks:

Given N and m.

(we'll see a third later on)

- probability n
 - Useful for theoretical work.
- Take N nodes and add exactly m links by selecting edges without replacement.
 - Algorithm: Randomly choose a pair of nodes i and j, i ≠ j, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - 1 and 2 are effectively equivalent for large N

Random Networks

Basics

Definition

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods well see a third later only

- Useful for theoretical work.
- Algorithm: Randomly choose a pair of nodes *i* and *j i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
- Best for adding relatively small numbers of links (most cases).
- 1 and 2 are effectively equivalent for large N

Random Networks

Basics

Definition

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

Useful for theoretical work.

- Algorithm: Randomly choose a pair of nodes *i* and *j i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
- Best for adding relatively small numbers of links (most cases).
- 1 and 2 are effectively equivalent for large N

Random Networks

Basics

Definition

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
 - Useful for theoretical work.
 - lake /v hodes and add exactly m links by selecting edges without replacement
 - Algorithm: Randomly choose a pair of nodes i and j, i \neq j, and connect if unconnected; repeat until all m edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - 1 and 2 are effectively equivalent for large N

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
 - Useful for theoretical work.
- Take N nodes and add exactly m links by selecting edges without replacement.

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
 - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
 - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
 - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
 - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
 - Best for adding relatively small numbers of links (most cases).

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)
- 1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability *p*.
 - Useful for theoretical work.
- 2. Take *N* nodes and add exactly *m* links by selecting edges without replacement.
 - ► Algorithm: Randomly choose a pair of nodes *i* and *j*, *i* ≠ *j*, and connect if unconnected; repeat until all *m* edges are allocated.
 - Best for adding relatively small numbers of links (most cases).
 - 1 and 2 are effectively equivalent for large N.

Random Networks

Basics

Definitions

How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2}$$

d or average degree is

$$=\frac{2}{N}\rho_{2}^{1}N(N-1)=\frac{2}{N}\rho_{2}^{1}N(N-1)=\rho(N-1)$$

Random Networks

Basics

Definitions

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

9 9 0 9 of 65

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

or average degree is

$$= \frac{2}{N} \rho \frac{1}{2} N(N-1) = \frac{2}{N} \rho \frac{1}{2} N(N-1) = \rho(N-1)$$

Random Networks

Basics

Definition

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

Random Networks

Basics

Definition

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)$$

Random Networks

Basics

Definition

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

200 9 of 65

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)$$

Random Networks

Basics

Definition

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

Random Networks

Basics

Definitions

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

Which is what it should be...

Random Networks

Basics

Definitions

How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

A few more things:

For method 1, # links is probablistic:

$$\langle m \rangle = p \binom{N}{2} = p \frac{1}{2} N(N-1)$$

So the expected or average degree is

$$\langle k \rangle = \frac{2 \langle m \rangle}{N}$$

$$=\frac{2}{N}p\frac{1}{2}N(N-1)=\frac{2}{N}p\frac{1}{2}N(N-1)=p(N-1).$$

- Which is what it should be...
- If we keep $\langle k \rangle$ constant then $p \propto 1/N \to 0$ as $N \to \infty$.

Random Networks

Basics

Definition

How to build Some visual examples

tructure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Outline

Basics Definitions How to build Some visual examples

tructure

Clustering Degree distributions Configuration model Bandom kiends are strange Largest component Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

200 10 of 65
Next slides: Example realizations of random networks

Vary *m*, the number of edges from 100 to 1000.
 Average degree (*k*) runs from 0.4 to 4.
 Lexit—a, full network plus the largest component.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

na (~ 11 of 65

Next slides: Example realizations of random networks

- ► *N* = 500
- Nary *m*, the number of edges from 100 to 1000
 Average degree (k) runs from 0.4 to 4.
 - Leok at full network plus the largest componen

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

200 11 of 65

Next slides: Example realizations of random networks

- ► *N* = 500
- Vary m, the number of edges from 100 to 1000.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Next slides:

Example realizations of random networks

- ► *N* = 500
- Vary m, the number of edges from 100 to 1000.
- Average degree (k) runs from 0.4 to 4.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Next slides:

Example realizations of random networks

- ► *N* = 500
- Vary m, the number of edges from 100 to 1000.
- Average degree (k) runs from 0.4 to 4.
- Look at full network plus the largest component.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

N = 500, number of edges m = 100average degree $\langle k \rangle = 0.4$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

N = 500, number of edges m = 200average degree $\langle k \rangle = 0.8$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

N = 500, number of edges m = 230average degree $\langle k \rangle = 0.92$

entire network:

largest component:

N = 500, number of edges m = 240average degree $\langle k \rangle = 0.96$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

N = 500, number of edges m = 250average degree $\langle k \rangle = 1$

N,m

entire network:

N = 500, number of edges m = 260average degree $\langle k \rangle = 1.04$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

N = 500, number of edges m = 280average degree $\langle k \rangle = 1.12$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

N = 500, number of edges m = 300average degree $\langle k \rangle = 1.2$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

entire network:

largest component:

N = 500, number of edges m = 500average degree $\langle k \rangle = 2$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 of 65

entire network:

largest component:

N = 500, number of edges m = 1000average degree $\langle k \rangle = 4$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Random networks: examples for N=500

m = 100 $\langle k \rangle = 0.4$ m = 200 $\langle k \rangle = 0.8$

 $\begin{array}{l}m=240\\\langle k\rangle=0.96\end{array}$

 $\begin{array}{l}m=250\\\langle k\rangle=1\end{array}$

大

m = 260 $\langle k \rangle = 1.04$

m = 300 $\langle k \rangle = 1.2$

m = 500 $\langle k \rangle = 2$

 $\begin{array}{l} m = 1000 \\ \langle k \rangle = 4 \end{array}$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Random networks: largest components

m = 100 $\langle k \rangle = 0.4$

m = 200 $\langle k \rangle = 0.8$

m = 230 $\langle k \rangle = 0.92$

m = 250 $\langle k \rangle = 1$

Definitions

How to build

Some visual examples

Degree distributions Configuration model Random friends are strange Simple. physically-motivated

m = 260 $\langle k \rangle = 1.04$

m = 280

 $\langle k \rangle = 1.12$

m = 300 $\langle k \rangle = 1.2$

m = 500

 $\langle k \rangle = 2$

m = 1000 $\langle k \rangle = 4$

23 of 65

Random networks: examples for N=500

m = 250 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

m = 250

 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

Bandom Networks

Definitions

How to build

Some visual examples

Degree distributions Configuration model Random friends are strange Simple. physically-motivated

Random networks: largest components

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

m = 250 $\langle k \rangle = 1$

Bandom Networks

Definitions

How to build

Some visual examples

Degree distributions Random friends are strange physically-motivated

References

25 of 65

m = 250 $\langle k \rangle = 1$

Outline

Basics

Definitions How to build Some visual examples

Structure Clustering

Degree distributions Configuration model Barateon kiends are strange Cargest component Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

26 of 65

For method 1, what is the clustering coefficient for a finite network?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

27 of 65

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:^[1]

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:^[1]

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$

Recall: C₂ = probability that two friends of a node are also friends.

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:^[1]

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$

- Recall: C₂ = probability that two friends of a node are also friends.
- Or: C₂ = probability that a triple is part of a triangle.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:^[1]

 $C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$

- Recall: C₂ = probability that two friends of a node are also friends.
- Or: C₂ = probability that a triple is part of a triangle.
- For standard random networks, we have simply that

$$C_2 = p$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

Expected number of triples in entire network:

$$\frac{1}{2}N(N-1)(N-2)p^2$$

(Double counting dealt with by $\frac{1}{2}$.)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Expected number of triples in entire network:

$$\frac{1}{2}N(N-1)(N-2)p^{2}$$

(Double counting dealt with by ¹/₂.)
 Expected number of triangles in entire network:

$$\frac{1}{6}N(N-1)(N-2)p^{3}$$

(Over-counting dealt with by $\frac{1}{6}$.)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Expected number of triples in entire network:

$$\frac{1}{2}N(N-1)(N-2)p^{2}$$

(Double counting dealt with by ¹/₂.)
 Expected number of triangles in entire network:

$$\frac{1}{6}N(N-1)(N-2)p^{3}$$

(Over-counting dealt with by $\frac{1}{6}$.)

$$C_2 = \frac{3 \times \#\text{triangles}}{\#\text{triples}} = \frac{3 \times \frac{1}{6}N(N-1)(N-2)p^3}{\frac{1}{2}N(N-1)(N-2)p^2} = p$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

DQ @ 28 of 65

Or: take any three nodes, call them a, b, and c.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple. physically-motivated analysis

References

29 of 65

- Or: take any three nodes, call them a, b, and c.
 Triple a-b-c centered at b occurs with probability
 - $p^2 \times (1-p) + p^2 \times p = p^2$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physical/-motivated analysis

- Or: take any three nodes, call them a, b, and c.
- Triple *a-b-c* centered at *b* occurs with probability $p^2 \times (1-p) + p^2 \times p = p^2$.

Triangle occurs with probability p³.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

- Or: take any three nodes, call them a, b, and c.
- Triple *a-b-c* centered at *b* occurs with probability $p^2 \times (1-p) + p^2 \times p = p^2$.
- Triangle occurs with probability p³.
- Therefore,

$$C_2=\frac{p^3}{p^2}=p.$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

So for large random networks (N→∞), clustering drops to zero.

Key structural feature of random networks is that the locally look like pure branching networks

No small loops.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 0 30 of 65

- So for large random networks (N → ∞), clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strangee Largest component Simple, physically-motivated analysis

References

20 0 30 of 65

- So for large random networks (N→∞), clustering drops to zero.
- Key structural feature of random networks is that they locally look like pure branching networks
- No small loops.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physical/-motivated analysis

Outline

Basics

Definitions How to build Some visual examples

Structure

Degree distributions

Configuration model Banagent kiends are strange Largest contronent Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, ohvsically-motivated

References

DQ @ 31 of 65
Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- networks: each possible link is realized with probability p.
 Now consider one node: there are 'N 1 choose ways the node can be connected to k of the othe N 1 nodes.
 - Each connection occurs with probability p, each non-connection with probability (1 - p) Therefore have a binomial distribution:

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

References

2 C 32 of 65

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.

Exercise section occurs with probability ρ , each non-connection with probability $(1 - \rho)$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, ohysically-motivated

References

2 C 32 of 65

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N 1 choose k' ways the node can be connected to k of the other N 1 nodes.

Federation occurs with probability p, each non-connection with probability (1 - p). Therefore have a binomial distribution: (N = 1) to a solution

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N 1 choose k' ways the node can be connected to k of the other N 1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1 p).

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Degree distribution:

- Recall P_k = probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are 'N 1 choose k' ways the node can be connected to k of the other N 1 nodes.
- Each connection occurs with probability p, each non-connection with probability (1 p).
- Therefore have a binomial distribution:

$$P(k; \boldsymbol{p}, \boldsymbol{N}) = \binom{N-1}{k} \boldsymbol{p}^{k} (1-\boldsymbol{p})^{N-1-k}.$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strang Largest component Simple, physically-motivated analysis

Limiting form of P(k; p, N):

P(k; p, N) = (^{*}_k) pⁿ (1 − p)ⁿ
What happens as N → ∞?
We must end up with the normal distribution right
If p is fixed, then we would end up with a Gaussia with average degree (k) ≃ pN → ∞.
But we want to keep (k) fixed...
So examine limit of P(k; p, N) when p → 0 and N → ∞. with (k) = p(N − 1) = constant.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 33 of 65

Limiting form of P(k; p, N):

• Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

2 C 33 of 65

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as $N \to \infty$?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 C 33 of 65

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as $N \to \infty$?
- We must end up with the normal distribution right?

But we want to keep (k) fixed...
 So examine limit of P(k, p, N) when p → 0 and N → ∞ with (k) = p(N − 1) = constant

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Pegree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree ⟨k⟩ ≃ pN → ∞.

Nmit of P(k, p, N) when $p \to 0$ and $\langle k \rangle = p(N-1) = \text{constant.}$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Pegree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Limiting form of P(k; p, N):

- Our degree distribution: $P(k; p, N) = {\binom{N-1}{k}}p^k(1-p)^{N-1-k}.$
- What happens as $N \to \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree (k) ≃ pN → ∞.
- But we want to keep $\langle k \rangle$ fixed...
- So examine limit of P(k; p, N) when $p \to 0$ and $N \to \infty$ with $\langle k \rangle = p(N-1) = \text{constant.}$

Random Networks

Basics

Definitions How to build Some visual example

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

References

2 0 0 34 of 65

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)(N-2)\cdots(N-k)}{k!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Bandom Networks

Da @ 34 of 65

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$= \frac{(N-1)(N-2)\cdots(N-k)}{k!} \frac{\langle k \rangle^k}{(N-1)^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$
$$= \frac{N^k (1 - \frac{1}{N})\cdots(1 - \frac{k}{N})}{k!N^k} \frac{\langle k \rangle^k}{(1 - \frac{1}{N})^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

20 C 34 of 65

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$= \frac{(N-1)(N-2)\cdots(N-k)}{k!} \frac{\langle k \rangle^k}{(N-1)^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$
$$= \frac{\mathcal{M}^k (1 - \frac{1}{N})\cdots(1 - \frac{k}{N})}{k! \mathcal{M}^k} \frac{\langle k \rangle^k}{(1 - \frac{1}{N})^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model

Random friends are strange Largest component Simple, physically-motivated analysis

References

Da @ 34 of 65

Substitute $p = \frac{\langle k \rangle}{N-1}$ into P(k; p, N) and hold k fixed:

$$P(k; p, N) = \binom{N-1}{k} \left(\frac{\langle k \rangle}{N-1}\right)^k \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

$$=\frac{(N-1)!}{k!(N-1-k)!}\frac{\langle k\rangle^k}{(N-1)^k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}$$

$$= \frac{(N-1)(N-2)\cdots(N-k)}{k!} \frac{\langle k \rangle^k}{(N-1)^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$
$$\simeq \frac{\mathcal{M}^k(1-\frac{1}{N})\cdots(1-\frac{k}{N})}{k!\mathcal{M}^k} \frac{\langle k \rangle^k}{(1-\frac{1}{N})^k} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

2 C 34 of 65

We are now here:

$$P(k; p, N) \simeq \frac{\langle k \rangle^k}{k!} \left(1 - \frac{\langle k \rangle}{N-1}\right)^{N-1-k}$$

(Use l'Hôpital's rule to prove.

Poisson distribution (⊞)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

2 C 35 of 65

We are now here:

$$P(k; p, N) \simeq rac{\langle k
angle^k}{k!} \left(1 - rac{\langle k
angle}{N-1}
ight)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x.$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

Poisson distribution (⊞)

We are now here:

$$P(k; p, N) \simeq rac{\langle k
angle^k}{k!} \left(1 - rac{\langle k
angle}{N-1}
ight)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and $x = -\langle k \rangle$:

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k}$$

Poisson distribution (⊞)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions Configuration model Random friends are strange Largest component Simple.

physically-motivated analysis

We are now here:

$$P(k; p, N) \simeq rac{\langle k
angle^k}{k!} \left(1 - rac{\langle k
angle}{N-1}
ight)^{N-1-k}$$

Now use the excellent result:

$$\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x$$

(Use l'Hôpital's rule to prove.)

• Identifying n = N - 1 and $x = -\langle k \rangle$:

$$P(k;\langle k\rangle) \simeq \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle} \left(1 - \frac{\langle k\rangle}{N-1}\right)^{-k} \to \frac{\langle k\rangle^k}{k!} e^{-\langle k\rangle}$$

▶ This is a Poisson distribution (\boxplus) with mean $\langle k \rangle$.

Random Networks

Basics

Definitions How to build

Structure

Clustering

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

$$P(k;\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

- ▶ λ > 0
- ▶ *k* = 0, 1, 2, 3, ...
- Classic use: probability that an event occurs k times in a given time period, given an average rate of occurrence.
- e.g.: phone calls/minute, horse-kick deaths.
- 'Law of small numbers'

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analycie

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{\langle k
angle^k}{k!}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analycie

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!}$$

$$= e^{-\langle k \rangle} e^{\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

References

DQ @ 37 of 65

Normalization: we must have

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = 1$$

Checking:

$$\sum_{k=0}^{\infty} P(k; \langle k \rangle) = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!}$$

$$=e^{-\langle k\rangle}e^{\langle k\rangle}=1\checkmark$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions

Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k \mathcal{P}(k;\langle k
angle) = \sum_{k=0}^{\infty} k rac{\langle k
angle^k}{k!} e^{-\langle k
angle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!}$$

 $a = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple.

physically-motivated analysis

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k P(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle \boldsymbol{k} \rangle \boldsymbol{e}^{-\langle \boldsymbol{k} \rangle} \sum_{k=1}^{\infty} \frac{\langle \boldsymbol{k} \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^i}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple.

physically-motivated analysis

References

Mean degree: we must have

$$\langle k \rangle = \sum_{k=0}^{\infty} k \mathcal{P}(k; \langle k \rangle).$$

Checking:

$$\sum_{k=0}^{\infty} k P(k; \langle k \rangle) = \sum_{k=0}^{\infty} k \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}$$

$$= e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^k}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{k=1}^{\infty} \frac{\langle k \rangle^{k-1}}{(k-1)!}$$

$$= \langle k \rangle e^{-\langle k \rangle} \sum_{i=0}^{\infty} \frac{\langle k \rangle^{i}}{i!} = \langle k \rangle e^{-\langle k \rangle} e^{\langle k \rangle} = \langle k \rangle \checkmark$$

Note: We'll get to a better and crazier way of doing this...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strat Largest component Simple, hysically-motivated

References

DQ @ 38 of 65

The variance of degree distributions for random networks turns out to be very important.

second moment

Variance is then

 $\langle k
angle^2 = \langle k
angle^2 + \langle k
angle - \langle k
angle^2 = \langle k
angle$

So standard deviation # is equal to \sqrt{k}.
 Note: This is a special property of Poissor distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component Simple,

physically-motivated analysis

References

2 C 39 of 65
- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

 $\langle k \rangle^2 = \langle k \rangle^2 + \langle k \rangle - \langle k \rangle^2 = \langle k
angle.$

So standard deviation - is equal to (-(-k)).
 Note: This is a special property of Poisson distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

 $\sigma^2 = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle^2$

So standard deviation σ is equal to √(k).
 Note: This is a special property of Poissor distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Variance is then

 $\sigma^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle^{2}$

So standard deviation *σ* is equal to √(*k*).
 Note: This is a special property of Poissor distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

 $\sigma^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle k \rangle^{2} + \langle k \rangle - \langle k \rangle^{2} = \langle k \rangle.$

So standard deviation *σ* is equal to √ (k).
 Note: This is a special property of Poissor distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

So standard deviation σ is equal to $\sqrt{\langle k \rangle}$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

Simple, physically-motivated analysis

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding (k) to find the second moment:

$$\langle \mathbf{k}^2 \rangle = \langle \mathbf{k} \rangle^2 + \langle \mathbf{k} \rangle.$$

Variance is then

$$\sigma^{2} = \langle \mathbf{k}^{2} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle^{2} + \langle \mathbf{k} \rangle - \langle \mathbf{k} \rangle^{2} = \langle \mathbf{k} \rangle.$$

- So standard deviation σ is equal to $\sqrt{\langle k \rangle}$.
- Note: This is a special property of Poisson distribution and can trip us up...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions Configuration model Random friends are strange Largest component

simple, physically-motivated analysis

Outline

Basics

Definitions How to build Some visual examples

Structure

Configuration model

Largest convolent Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions

Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

physically-motivated analysis

References

2 C 40 of 65

- So... standard random networks have a Poisson degree distribution
 - Also known as the configuration model.^[1] Can generalize construction method from ER trandom networks.
 - Assign each node a weight w from some distribution
 P_w and form links with probability
 - link between *i* and *j*) \propto *w*,*w*_{*j*}
 - 1. Randomly wiring up (and rewiring) already exi
 - Examining mechanisms that lead to networks with certain degree distributions.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k.

Can generalize construction method from ER random networks.

Assign each node a weight w from some distribution
 P_w and form links with probability

link between *i* and *j*) \propto *w*,*w*

 Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
 Examining mechanisms that lead to networks with exterior of the time of the time.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

Da @ 41 of 65

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]

- Assign each node a weight w from some distribution
 P_w and form links with probability
 - ink between i and $j) \propto w_i w_j$
 - Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
 Examining mechanisms that lead to networks with certain degree distributions

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution
 P_w and form links with probability
 - $P(\text{link between } i \text{ and } j) \propto w_i w_j$.

 Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
 Examining mechanisms that lead to networks with

certain degree distributions.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

na (~ 41 of 65

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$.

1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.

Examining mechanisms that lead to networks with certain degree distributions.

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$.

But we'll be more interested in

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

2 C 41 of 65

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$.

- But we'll be more interested in
 - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[1]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_w and form links with probability

 $P(\text{link between } i \text{ and } j) \propto w_i w_i$.

- But we'll be more interested in
 - 1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
 - Examining mechanisms that lead to networks with certain degree distributions.

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Coming up:

Example realizations of random networks with power law degree distributions:

Set P₀ = 0 (no isolated nodes)
 Vary exponent < between 2.10 and 2.91.
 As the last of full permark plue the last of the la

mponent

Apart from degree distribution, wiring is random

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

2 C 42 of 65

Coming up:

Example realizations of random networks with power law degree distributions:

► *N* = 1000.

Set P₀ = 0 (no isolated nodes).
 Vary exponent < between 2.10 and 2.91.
 Again, look at full network plus the largest component.
 Apart from degree distribution, wiring is ran

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

References

2 C 42 of 65

Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$ for $k \ge 1$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

analysis

Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$ for $k \ge 1$.
- Set $P_0 = 0$ (no isolated nodes).

Random Networks

Basics

Definitions How to build Some visual examp

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

analysis

Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$ for $k \ge 1$.
- Set $P_0 = 0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

physically-motivated analysis

Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$ for $k \ge 1$.
- Set $P_0 = 0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple,

physically-motivated analysis

Coming up:

Example realizations of random networks with power law degree distributions:

- ► *N* = 1000.
- $P_k \propto k^{-\gamma}$ for $k \ge 1$.
- Set $P_0 = 0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

Random Networks

Basics

Definitions How to build Some visual examp

Structure

Clustering

Degree distributions

Configuration model Random friends are strange

Largest component Simple, physically-motivated

Random networks: examples for N=1000

Simple. physically-motivated

 $\gamma = 2.1$ (k) = 3.448

 $\gamma = 2.55$

 $\langle k \rangle = 1.712$

 $\gamma = 2.19$ $\langle k \rangle = 2.986$

 $\gamma = 2.64$

 $\langle k \rangle = 1.6$

 $\gamma = 2.28$ $\langle k \rangle = 2.306$ $\gamma = 2.37$ (k) = 2.504

 $\gamma = 2.82$

 $\langle k \rangle = 1.386$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$

 $\gamma = 2.73$

 $\langle k \rangle = 1.862$

 $\gamma = 2.91$

 $\langle k \rangle = 1.49$

Da @ 43 of 65

Bandom Networks

Definitions Some visual examples

Degree distributions

Configuration model

Random networks: largest components

 $\gamma = 2.1$ (k) = 3.448

 $\gamma = 2.19$ $\langle k \rangle = 2.986$

 $\gamma = 2.37$ (k) = 2.504 $\gamma = 2.46$ $\langle k \rangle = 1.856$

 $\langle k \rangle = 1.49$

Bandom Networks

Definitions Some visual examples

Degree distributions

Configuration model

Simple.

physically-motivated

 $\gamma = 2.55$ $\langle k \rangle = 1.712$

 $\gamma = 2.64$ $\langle k \rangle = 1.6$

 $\gamma = 2.73$ $\langle k \rangle = 1.862$

 $\gamma = 2.82$ $\langle k \rangle = 1.386$

 $\gamma = 2.91$

Outline

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model

Random friends are strange

Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build

Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component

physically-motivated analysis

References

2 C 45 of 65

The degree distribution P_k is fundamental for our description of many complex networks
Again: P_k is the degree of randomly chosen node.
A second very important distribution arises from choosing randomly on edges rather than on nodes.
Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
Now choosing nodes based on their degree (i.e., and the second secon

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions

Random friends are strange

Largest component Simple, physically-motivated analysis

The degree distribution P_k is fundamental for our description of many complex networks

A second very important distribution arises from choosing randomly on edges rather than on nodes.
Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
Now choosing nodes based on their degree (i.e., size).

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Degree distributions

Configuration mode

Random friends are strange

Largest component Simple, physically-motivated analysis

References

20 46 of 65

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.

A second very important distribution arises from choosing randomly on edges rather than on nodes.
Define *Q_k* to be the probability the node at a random end of a randomly chosen edge has degree *k*.
Now choosing nodes based on their degree (i.e., size).

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

References

20 46 of 65

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
 Now choosing nodes based on their degree (i.e.,

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration mode

Random friends are strange

Largest component Simple, physically-motivated analysis

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

Normalized form:

$$Q_k = \frac{kP_k}{\sum_{k'=0}^{\infty} k'P_{k'}} - \frac{k!}{k!}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distribution

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

- The degree distribution P_k is fundamental for our description of many complex networks
- Again: P_k is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_k to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

Normalized form:

$$Q_{k} = \frac{kP_{k}}{\sum_{k'=0}^{\infty} k'P_{k'}} = \frac{kP_{k}}{\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

References

20 0 46 of 65

For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.

 R_k = probability that a friend of a random node hak to the friends.

 $rac{(k+1)P_{k+1}}{\langle k
angle}$

Equivalent for there having degree X = 1.
 Natural question: what's the expected number other friends that one friend has?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Random friends are strange

Largest component Simple, physically-motivated analysis

References

n a c 47 of 65

- For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:
 - R_k = probability that a friend of a random node has k other friends.

 Natural question, what's the expected number of other friends that one friend has?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component Simple, physically-motivated analysis

References

2 C 47 of 65

For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:

 R_k = probability that a friend of a random node has k other friends.

$$R_k = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}}$$

 Natural question what's the expected number of other friends that one friend has?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

References

na (~ 47 of 65
For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:

 R_k = probability that a friend of a random node has k other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

Natural question what's the expected number of other friends that one triend has?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:

 R_k = probability that a friend of a random node has k other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

Equivalent to friend having degree k + 1.

Natural question

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

For random networks, Q_k is also the probability that a friend (neighbor) of a random node has k friends.
 Useful variant on Q_k:

 R_k = probability that a friend of a random node has k other friends.

$$R_{k} = \frac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

- Equivalent to friend having degree k + 1.
- Natural question: what's the expected number of other friends that one friend has?

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated analysis

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_R = \sum_{k=0}^{\infty} k R_k$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple,

analysis

References

n a (~ 48 of 65

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} kR_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

argest component

physically-motivated analysis

References

2 C 48 of 65

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} k R_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$
$$= \frac{1}{\langle k \rangle} \sum_{k=1}^{\infty} k(k+1)P_{k+1}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration mode

Random friends are strange

argest component Simple,

physically-motivated analysis

References

n a (~ 48 of 65

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} k R_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

$$=rac{1}{\langle k
angle}\sum_{k=1}k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component

physically-motivated analysis

References

2 C 48 of 65

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_R = \sum_{k=0}^{\infty} k R_k = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributio

Configuration model

Random friends are strange

Largest component Simple

physically-motivated analysis

References

2 C 48 of 65

Given R_k is the probability that a friend has k other friends, then the average number of friends' other friends is

$$\langle k \rangle_{R} = \sum_{k=0}^{\infty} k R_{k} = \sum_{k=0}^{\infty} k \frac{(k+1)P_{k+1}}{\langle k \rangle}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{k}k(k+1)P_{k+1}$$

$$=\frac{1}{\langle k\rangle}\sum_{k=1}^{\infty}\left((k+1)^2-(k+1)\right)P_{k+1}$$

(where we have sneakily matched up indices)

$$= \frac{1}{\langle k \rangle} \sum_{j=0}^{\infty} (j^2 - j) P_j \quad \text{(using j = k+1)}$$
$$= \frac{1}{\langle k \rangle} (\langle k^2 \rangle - \langle k \rangle)$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distribution

Configuration model

Random friends are strange

Largest component

physically-motivated analysis

References

DQ @ 48 of 65

Note: our result, ⟨k⟩_R = 1/⟨k⟩ (⟨k²⟩ - ⟨k⟩), is true for all random networks, independent of degree distribution.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple.

physically-motivated analysis

References

- Note: our result, ⟨k⟩_R = 1/⟨k⟩ (⟨k²⟩ ⟨k⟩), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple

physically-motivated analysis

References

- ▶ Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} (\langle k^2 \rangle \langle k \rangle)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k \rangle^2 + \langle k \rangle - \langle k \rangle \right)$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component

Simple, physically-motivated analysis

References

- ▶ Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} (\langle k^2 \rangle \langle k \rangle)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left(\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component

Simple, physically-motivated analysis

References

- Note: our result, ⟨k⟩_R = 1/⟨k⟩ (⟨k²⟩ ⟨k⟩), is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left(\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

 Again, neathess of results is a special property of the Poisson distribution.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple,

physically-motivated analysis

▶ Note: our result, $\langle k \rangle_R = \frac{1}{\langle k \rangle} (\langle k^2 \rangle - \langle k \rangle)$, is true for all random networks, independent of degree distribution.

For standard random networks, recall

$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle.$$

Therefore:

$$\langle k \rangle_{R} = \frac{1}{\langle k \rangle} \left(\langle k \rangle^{2} + \langle k \rangle - \langle k \rangle \right) = \langle k \rangle$$

- Again, neathess of results is a special property of the Poisson distribution.
- So friends on average have $\langle k \rangle$ other friends, and $\langle k \rangle + 1$ total friends...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distribution

Configuration mode

Random friends are strange

Largest component

physically-motivated analysis

References

Dac 49 of 65

Reason #1:

 $k_{R}=\langle k
angle rac{1}{\langle k
angle }\left(\langle k^{2}
angle -\langle k
angle
ight) =\langle k^{2}
angle -\langle k
angle$

 Key: Average depends on the 1st and 2nd moments of and not just the 1st moment.

We might guess ⟨k₂⟩ = ⟨k⟩(⟨k⟩ − 1) but it's actually ⟨k(k − 1)⟩.
 If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration mode

Random friends are strange

Simple, physically-motivated

References

2 C 50 of 65

Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_R$$

Key: Average depends on the 1st and 2nd moments of and not just the 1st moment.

We might guess ⟨k₂⟩ = ⟨k⟩(⟨k⟩ − 1) but it's actually ⟨k(k − 1)⟩.
 If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Simple, physically-motivated analysis

References

20 0 50 of 65

Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_{\mathbf{R}} = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left(\langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) \qquad (\mathbf{k}_2)$$

Key: Average depends on the 1st and 2nd moments of and not just the 1st moment.

We might guess ⟨k₂⟩ = ⟨k⟩(⟨k⟩ − 1) but it's actually ⟨k(k − 1)⟩.
 If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Simple,

References

na @ 50 of 65

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

Key: Average depends on the 1st and 2nd moments of a and not just the 1st moment.

We might guess ⟨k₂⟩ = ⟨k⟩(⟨k⟩ − 1) but it's actually ⟨k(k − 1)⟩.
 If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated

References

20 0 50 of 65

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.

We might guess ⟨k₂⟩ = ⟨k⟩(⟨k⟩ − 1) but it's actually ⟨k(k − 1)⟩.
 If P_k has a large second moment, then ⟨k₂⟩ will be big. (e.g., in the case of a power-law distribution)
 Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component Simple,

physically-motivated analysis

References

20 0 50 of 65

Reason #1:

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k \rangle \times \langle k \rangle_R = \langle k \rangle \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right) = \langle k^2 \rangle - \langle k \rangle.$$

- Key: Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.

(e.g., in the case of a power-law distribution

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component Simple, physically-motivated

Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_R = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left(\langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

Three peculiarities:

- 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
- 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big.

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration mode

Random friends are strange Largest component

Simple, physically-motivated analysis

Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_R = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left(\langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

Three peculiarities:

- 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
- If *P_k* has a large second moment, then ⟨*k*₂⟩ will be big. (e.g., in the case of a power-law distribution)

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component

physically-motivated analysis

Reason #1:

Average # friends of friends per node is

$$\langle \mathbf{k}_2 \rangle = \langle \mathbf{k} \rangle \times \langle \mathbf{k} \rangle_R = \langle \mathbf{k} \rangle \frac{1}{\langle \mathbf{k} \rangle} \left(\langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle \right) = \langle \mathbf{k}^2 \rangle - \langle \mathbf{k} \rangle.$$

Three peculiarities:

- 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
- 2. If *P_k* has a large second moment, then ⟨*k*₂⟩ will be big.
 (e.g., in the case of a power-law distribution)
- 3. Your friends really are different from you...

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component Simple, physically-motivated

More on peculiarity #3:

A node's average # of friends: (k)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple.

physically-motivated analysis

References

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Simple, physically-motivated analysis

References

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Random friends are strange

Largest component Simple,

physically-motivated analysis

References

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle} = \langle \mathbf{k} \rangle \frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle^2} = \langle \mathbf{k} \rangle \frac{\sigma^2 + \langle \mathbf{k} \rangle^2}{\langle \mathbf{k} \rangle^2}$$

(variance = b² = 0) can a node be the same as its hierds.
Intuition: for random networks, the more connecte node, the more likely it is to be chosen as a friend

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Random friends are strange

Largest component

simple, physically-motivated analysis

References

2 C 51 of 65

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle} = \langle \mathbf{k} \rangle \frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle^2} = \langle \mathbf{k} \rangle \frac{\sigma^2 + \langle \mathbf{k} \rangle^2}{\langle \mathbf{k} \rangle^2} = \langle \mathbf{k} \rangle \left(1 + \frac{\sigma^2}{\langle \mathbf{k} \rangle^2} \right)$$

(variance: v² = 0) can a node be the same as its friends.
 Intuition: for random networks, the more connected node, the more likely it is to be chosen as a friend.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Random friends are strange

Largest component

physically-motivated analysis

References

990 51 of 65

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component

Simple, physically-motivated analysis

References

N.M.

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle} = \langle \mathbf{k} \rangle \frac{\langle \mathbf{k}^2 \rangle}{\langle \mathbf{k} \rangle^2} = \langle \mathbf{k} \rangle \frac{\sigma^2 + \langle \mathbf{k} \rangle^2}{\langle \mathbf{k} \rangle^2} = \langle \mathbf{k} \rangle \left(1 + \frac{\sigma^2}{\langle \mathbf{k} \rangle^2} \right) \ge \langle \mathbf{k} \rangle$$

So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.

Random Networks

Basics

Definitions How to build Some visual examp

Structure

Clustering

Degree distributions

Random friends are strange

Simple, physically-motivated analysis

References

na ~ 51 of 65

More on peculiarity #3:

- A node's average # of friends: (k)
- Friend's average # of friends: $\frac{\langle k^2 \rangle}{\langle k \rangle}$
- Comparison:

$$\frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle \frac{\langle k^2 \rangle}{\langle k \rangle^2} = \langle k \rangle \frac{\sigma^2 + \langle k \rangle^2}{\langle k \rangle^2} = \langle k \rangle \left(1 + \frac{\sigma^2}{\langle k \rangle^2} \right) \ge \langle k \rangle$$

- So only if everyone has the same degree (variance= $\sigma^2 = 0$) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Random Networks

Basics

Definitions How to build Some visual examp

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component Simple,

References

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- Defn: Component connected subnetwork of node such that L path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component component that comprise a non-seto fraction of a network as N – ∞.
- Note: Component = Cluster

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Largest component Simple, physically-motivated

References

Da @ 52 of 65

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.

As $N \rightarrow \infty$, does our network have a giant component?

- Defn: Component = connected subnetwork of node such that d path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Glant component component that comprise a non-zero fraction of a network as N – ∞.
- Note: Component = Cluster

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

argest component

ohysically-motivated analysis

References

2 C 52 of 65

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of node such that I path between each pair of nodes in the subnetwork, and no node outside of the subnetwork in agenteeted to it.
- Defn: Giant component component that comprise a non-zero fraction of a network as N – ∞.
- Note: Component = Cluster

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

argest component

hysically-motivated nalysis

References

2 0 0 52 of 65

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

Simple,

ohysically-motivated analysis

References

2 C 52 of 65
Two reasons why this matters

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as $N \rightarrow \infty$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering

Degree distributions

Random friends are strange

argest component Simple,

physically-motivated analysis

Two reasons why this matters

(Big) Reason #2:

- \$\langle k \rangle_R\$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As N → ∞, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that ∃ path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- ▶ Defn: Giant component = component that comprises a non-zero fraction of a network as $N \rightarrow \infty$.
- Note: Component = Cluster

Random Networks

Basics

Definitions How to build Some visual example

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange

argest component Simple,

Outline

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Barreconsciences are strange

Largest component

Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strang

Largest component Simple, physically-motivated analysis

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- All of this is the same as requiring (k)_B > 1.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

n < ?> 55 of 65

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.

Giant component condition (or percolation condition)

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

n a c 55 of 65

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k \rangle_R > 1$.

Giant component condition (or perc

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

analysis

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k \rangle_R > 1$.
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k \rangle_R > 1$.
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

Again, see that the second moment is an essential part of the story.

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k \rangle_R > 1$.
- Giant component condition (or percolation condition):

$$\langle k \rangle_R = rac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\langle k^2 \rangle > 2 \langle k \rangle$

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Standard random networks:

• Recall $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$.

 $\frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$

 Therefore when (k) > 1, standard random networks have a giant component.
 When (k) > 1, all components are finite.

► Fine example of a continuous phase transition (⊞)

 $\mathbf{k} \in \mathbf{W}$ we say $\langle k \rangle = 1$ marks the critical point of the system

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle}$$

Therefore when (k) > 1, standard random networks have a giant component.
 When (k) ______ all components are finite.
 Fine example of a continuous phase transition (⊞)
 We say (k) = 1-marks the critical point of the system

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

20 0 56 of 65

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle}$$

Therefore when (k) ≥ 1, standard random network have a giant component.
 When (k) 1, all components are finite.
 Fine example of a continuous phase transition (⊞).
 We say (k) = 1-marks the critical point of the system.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

physically-motivated analysis

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

Therefore when (k) = 1, standard random network have a grant component.
 When (k) = 1, all components are finite.
 Fine example of a continuous phase transition (⊞).

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

References

2 C 56 of 65

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

Therefore when (k) > 1, standard random networks have a giant component.

Fine example of a continuous phase transition (\boxplus)

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When $\langle k \rangle < 1$, all components are finite.

......

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When $\langle k \rangle < 1$, all components are finite.
- ► Fine example of a continuous phase transition (⊞).

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Standard random networks:

• Recall
$$\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$
.

Condition for giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \frac{\langle k \rangle^2 + \langle k \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- Therefore when (k) > 1, standard random networks have a giant component.
- When $\langle k \rangle < 1$, all components are finite.
- ► Fine example of a continuous phase transition (⊞).
- We say $\langle k \rangle = 1$ marks the critical point of the system.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strang

Largest component Simple, physically-motivated

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

 $=\infty \quad (\gg \langle k \rangle)$

So giant component always exists for these kinds

ing is k^{-3} if $\gamma > 3$ then we have to lo

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

na @ 57 of 65

Giant component Random networks with skewed *P_k*:

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

 $=\infty ~(\gg \langle k
angle).$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

20 0 57 of 65

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle)$$

ent always exists for these kinds

 3 ; if j > 3 then we have to lo

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

Deferences

20 0 57 of 65

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle$$

onent always exists for these kinc

 \mathbb{C}^3 if $\gamma > 3$ then we have to lo

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

References

20 0 57 of 65

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple,

ohysically-motivated analysis

References

• D Q (~ 57 of 65

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

So giant component always exists for these kinds of networks.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

na (~ 57 of 65

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

- So giant component always exists for these kinds of networks.
- Cutoff scaling is k⁻³: if γ > 3 then we have to look harder at ⟨k⟩_R.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

• e.g, if $P_k = ck^{-\gamma}$ with $2 < \gamma < 3$, $k \ge 1$, then

$$\langle k^2 \rangle = c \sum_{k=1}^{\infty} k^2 k^{-\gamma}$$

$$\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d}x$$

$$\propto x^{3-\gamma}\Big|_{x=1}^{\infty} = \infty \quad (\gg \langle k \rangle).$$

- So giant component always exists for these kinds of networks.
- Cutoff scaling is k⁻³: if γ > 3 then we have to look harder at ⟨k⟩_R.

• How about
$$P_k = \delta_{kk_0}$$
?

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

20 C 57 of 65

Giant component And how big is the largest component?

Define S₁ as the size of the largest component.

- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S$
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
 - Define δ as the probability that a randomly chosen nod does not belong to the largest component.

Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.

Dirty trick: If a randomly chosen node is not part of t targest component, then none of its neighbors are.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.

Dirty-trick: If a randomly chosen node is not part of lamest component, then none of its neighbors are

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S_1$.

Dirty trick

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

And how big is the largest component?

- Define S₁ as the size of the largest component.
- Consider an infinite ER random network with average degree (k).
- Let's find S₁ with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta = 1 S_1$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- So

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k$$

Substitute in Poisson distribution...

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Carrying on:

$\delta = \sum_{k=0}^{\infty} P_k \delta^k$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

20 C 59 of 65

Carrying on:

$$\boldsymbol{\delta} = \sum_{k=0}^{\infty} \boldsymbol{P}_k \boldsymbol{\delta}^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} \boldsymbol{e}^{-\langle k \rangle} \boldsymbol{\delta}^k$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

2 C 59 of 65
Carrying on:

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

20 C 59 of 65

Carrying on:

$$\delta = \sum_{k=0}^{\infty} P_k \delta^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle} \delta^k$$

$$=e^{-\langle k
angle}\sum_{k=0}^{\infty}rac{(\langle k
angle \delta)^k}{k!}$$

$$= e^{-\langle k \rangle} e^{\langle k \rangle \delta}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

2 C 59 of 65

Carrying on:

$$\boldsymbol{\delta} = \sum_{k=0}^{\infty} \boldsymbol{P}_k \boldsymbol{\delta}^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} \boldsymbol{e}^{-\langle k \rangle} \boldsymbol{\delta}^k$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!}$$

$$=e^{-\langle k\rangle}e^{\langle k\rangle\delta}=e^{-\langle k\rangle(1-\delta)}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

2 C 59 of 65

Carrying on:

$$\boldsymbol{\delta} = \sum_{k=0}^{\infty} \boldsymbol{P}_k \boldsymbol{\delta}^k = \sum_{k=0}^{\infty} \frac{\langle k \rangle^k}{k!} \boldsymbol{e}^{-\langle k \rangle} \boldsymbol{\delta}^k$$

$$= e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle \delta)^k}{k!}$$

$$=e^{-\langle k\rangle}e^{\langle k\rangle\delta}=e^{-\langle k\rangle(1-\delta)}$$

Now substitute in $\delta = 1 - S_1$ and rearrange to obtain:

$$S_1 = 1 - e^{-\langle k \rangle S_1}$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

n a (~ 60 of 65

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Bandom friends are strange

Largest component Simple, physically-motivated

References

20 0 60 of 65

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

• As
$$\langle k \rangle \rightarrow 0$$
, $S_1 \rightarrow 0$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Bandom friends are strange

Largest component Simple, physically-motivated

References

20 0 60 of 65

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

• As
$$\langle k \rangle \rightarrow 0$$
, $S_1 \rightarrow 0$.
• As $\langle k \rangle \rightarrow \infty$, $S_1 \rightarrow 1$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

• As
$$\langle k \rangle \rightarrow 0$$
, $S_1 \rightarrow 0$.

• As $\langle k \rangle \to \infty$, $S_1 \to 1$.

Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

References

n a (~ 60 of 65

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

- As $\langle k \rangle \rightarrow 0, S_1 \rightarrow 0.$
- As $\langle k \rangle \to \infty$, $S_1 \to 1$.
- Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.
- Only solvable for $S_1 > 0$ when $\langle k \rangle > 1$.

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

• We can figure out some limits and details for $S_1 = 1 - e^{-\langle k \rangle S_1}$.

First, we can write $\langle k \rangle$ in terms of S_1 :

$$\langle k
angle = rac{1}{S_1} \ln rac{1}{1-S_1}.$$

- As $\langle k \rangle \rightarrow 0, S_1 \rightarrow 0.$
- As $\langle k \rangle \to \infty$, $S_1 \to 1$.

Notice that at $\langle k \rangle = 1$, the critical point, $S_1 = 0$.

- Only solvable for $S_1 > 0$ when $\langle k \rangle > 1$.
- Really a transcritical bifurcation.^[2]

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strang

Largest component Simple, physically-motivated analysis

References

20 C 61 of 65

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors hav same probability a of belonging to the largest component.
- But we know our friends are different from us.
- Works for ER random networks because (k
- We need a separate probability & for the chance t an edge leads to the diant (infinite) component.
- We can sort many things out with sensible probabilistic arguments ...
- More detailed investigations will profit from a spot Generatingfunctionology.^[3]

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

2 C 62 of 65

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- Works for ER random networks because (k) = (k
 We need a separate probability 8' for the chance to an edge leads to the giant (infinite) component.
 We can sort many things out with sensible probabilistic arguments...
 - Generatingfunctionology ^[3]

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

2 C 62 of 65

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...

We need a separate probability of for the chance an edge leads to the giant (infinite) component. We can sort many things out with sensible probabilistic arguments... More detailed investigations will profit from a sp

Generatingfunctionology. ^{[3}

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.

an edge leads to the grant (infinite) component We can solve quary things out with sensible probabilistic arguments ... More detailed investigations will profit from a s Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

References

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.

probabilistic arguments

Generatingfunctionology.^{[3}

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...

Generatingfunctionology. ^{[3}

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k \rangle = \langle k \rangle_R$.
- We need a separate probability δ' for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generatingfunctionology.^[3]

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange

Largest component Simple, physically-motivated analysis

Outline

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model Bandom kiends are strange

Simple, physically-motivated analysis

References

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model

Random friends are strange

Largest component

Simple, physically-motivated analysis

References

20 63 of 65

Random Networks

Basics

Definitions How to build Some visual examples

Structure

Clustering Degree distributions Configuration model

Random friends are strang

Largest component

Simple, physically-motivated analysis

References

2 C 64 of 65

References I

M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003. pdf (⊞)

S. H. Strogatz. <u>Nonlinear Dynamics and Chaos</u>. Addison Wesley, Reading, Massachusetts, 1994.

[3] H. S. Wilf. Generatingfunctionology.

A K Peters, Natick, MA, 3rd edition, 2006. pdf (\boxplus)

Random Networks

Basics

Definitions How to build Some visual examples

Structure Clustering Degree distributions Configuration model Random friends are strange Largest component Simple, physically-motivated analysis

References

2 C 65 of 65