Random Networks
 Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics \& Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont
10

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

The VERMONT つQ® 1 of 65

Outline

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component Simple, physically-motivated analysis

References VERMONT
$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

Outline

Basics
 Definitions

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis
References

Random networks

Basics

Definitions
How to build
Some visual examples

Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis
References

UNIVERSITY VERMONT

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

っの® 4 of 65

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.

$\left|\begin{array}{l}0 \\ 6 \\ 0\end{array}\right|$

Random networks

 one randomly chosen network from this set.- To be clear: each network is equally probable.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Simple,
physically-motivated
analysis

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

っの^ 4 of 65

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$
ЭQ® 4 of 65

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = one randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

Random network generator for $N=3$:

- Get your own exciting generator here (\boxplus).
- As N, our polyhedral die rapidly becomes a ball...

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,
physically-motivated analysis

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

つQ® 6 of 65

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

つQ® 6 of 65

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.

Random Networks

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

$|$| \circ |
| :---: |
| 0 |

ЭQ® 6 of 65

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$
2\binom{N}{2} \sim e^{\frac{\ln 2}{2} N^{2}} .
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,
physically-motivated
analysis

っの® 6 of 65

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.
- Number of possible networks with N labelled nodes:

$$
2\binom{N}{2} \sim e^{\frac{\ln 2}{2} N^{2}} .
$$

- Given m edges, there are $\left(\begin{array}{c}\left(\begin{array}{c}N \\ 2 \\ m\end{array}\right)\end{array}\right)$ different possible networks.

Random Networks

っの® 6 of 65

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- Number of possible networks with N labelled nodes:

$$
2\binom{N}{2} \sim e^{\frac{\ln 2}{2} N^{2}} .
$$

- Given m edges, there are $\left(\begin{array}{c}\left(\begin{array}{c}N \\ 2 \\ m\end{array}\right)\end{array}\right)$ different possible networks.
- Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$.

Random networks-basic features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- Number of possible networks with N labelled nodes:

$$
2\binom{N}{2} \sim e^{\frac{\ln 2}{2} N^{2}} .
$$

- Given m edges, there are $\left(\begin{array}{c}\left(\begin{array}{c}N \\ 2 \\ m\end{array}\right)\end{array}\right)$ different possible networks.
- Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$.
- Real world: links are usually costly so real networks are almost always sparse.

$|$| \circ |
| :---: |
| 0 |

Outline

Basics

How to build

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis
References

のQ® 7 of 65

Random networks

How to build standard random networks:

- Given N and m.

(we'll see a third later on)

- Useful for theoretical work.

> -Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are;allocated.
> - Best for adding relatively small numbers of links (most cases).
> >1 and 2 are effectively equivalent for large N.

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

References

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated analysis

References

- Useful for theoretical work.

Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges arezallocated.
 - Best for adding relatively small numbers of links (most cases).
 >1 and 2 are effectively equivalent for large N .

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

- Useful for theoretical work.

> Algorithm: Randomly choose a pair of nodes i and j. $i \neq j$, and connect if unconnected; repeat until all m edges areaallocated.
> - Best for adding relatively small numbers of links (most cases).
> >1 and 2 are effectively equivalent for large N.

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component

Simple,

physically-motivated analysis

つの® 8 of 65

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
2. Take N nodes and add exactly m links by selecting edges without replacement.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{|c|}0 \\ 0\end{array}\right|$
ЭQ® 8 of 65

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$
ЭQ® 8 of 65

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

- Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

- Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
- Best for adding relatively small numbers of links (most cases).

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$|$| \circ |
| :---: |
| 0 |

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

- Algorithm: Randomly choose a pair of nodes i and j, $i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
- Best for adding relatively small numbers of links (most cases).
- 1 and 2 are effectively equivalent for large N.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$|$| 0 |
| :---: | :---: | :---: | :---: | :---: |
| 0 |

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated analysis

つQ® 9 of 65

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

つQ® 9 of 65

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\langle k\rangle=\frac{2\langle m\rangle}{N}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{c}0 \\ 0\end{array}\right|$
Эดल 9 of 65

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{aligned}
& \quad\langle k\rangle=\frac{2\langle m\rangle}{N} \\
& =\frac{2}{N} p \frac{1}{2} N(N-1)
\end{aligned}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{N} p \frac{1}{2} N(N-1)
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{N} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

- Which is what it should be...

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

ЭQ® 9 of 65

Random networks

A few more things:

- For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

- Which is what it should be...
- If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as $N \rightarrow \infty$.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Outline

Basics

Some visual examples

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
physically－motivated analysis

っのく 10 of 65

Random networks: examples

Random Networks

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Random networks: examples

Random Networks

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- $N=500$

Random networks：examples

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.

Random Networks

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated
analysis

Random networks: examples

Next slides:
Example realizations of random networks

- $N=500$
- Vary m, the number of edges from 100 to 1000.
- Average degree $\langle k\rangle$ runs from 0.4 to 4 .

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,
physically-motivated
analysis

のQく 11 of 65

Random networks: examples

Next slides:
Example realizations of random networks

- $N=500$
- Vary m, the number of edges from 100 to 1000.
- Average degree $\langle k\rangle$ runs from 0.4 to 4 .
- Look at full network plus the largest component.

$|$| \circ |
| :---: |
| 0 |

Random networks: examples

entire network:

largest component:

$N=500$, number of edges $m=100$ average degree $\langle k\rangle=0.4$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Random networks: examples

entire network:

largest component:

$N=500$, number of edges $m=200$ average degree $\langle k\rangle=0.8$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure

Clustering

Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Random networks: examples

largest component:

$N=500$, number of edges $m=230$ average degree $\langle k\rangle=0.92$

Random Networks

Basics

Definitions

How to build

Random networks: examples

largest component:

$N=500$, number of edges $m=240$ average degree $\langle k\rangle=0.96$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure

Clustering

Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

つのल 15 of 65

Random networks: examples

entire network:

largest component:

$N=500$, number of edges $m=250$ average degree $\langle k\rangle=1$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Random networks: examples

largest component:

Random Networks

Basics

Definitions

How to build

Clustering

Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated analysis
$N=500$, number of edges $m=260$ average degree $\langle k\rangle=1.04$

Random networks: examples

largest component:

$N=500$, number of edges $m=280$ average degree $\langle k\rangle=1.12$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Random networks: examples

entire network:

largest component:

Random Networks

Basics

Definitions

How to build

Clustering

Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis
$N=500$, number of edges $m=300$ average degree $\langle k\rangle=1.2$

っดल 19 of 65

Random networks：examples

largest component：

$N=500$ ，number of edges $m=500$ average degree $\langle k\rangle=2$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure

Clustering

Degree distributions

Configuration model

Random friends are strange
Largest component
Simple，

physically－motivated

 analysis
Random networks: examples

entire network:

largest component:

$N=500$, number of edges $m=1000$ average degree $\langle k\rangle=4$

Random Networks

Basics

Definitions

How to build

Some visual examples
Structure

Clustering

Degree distributions
Configuration model

Random friends are strange

Largest component

Simple,

physically

References

のดく 21 of 65

Random networks: examples for $N=500$

$m=230$
$\langle k\rangle=0.92$
$\langle k\rangle=0.8$
$m=100$
$\langle k\rangle=0.4$

$$
\begin{array}{ll}
m=260 & m=280 \\
\langle k\rangle=1.04 & \langle k\rangle=1.12
\end{array}
$$

$m=300$
$\langle k\rangle=1.2$
$m=500$
$\langle k\rangle=2$
$m=240$
$\langle k\rangle=0.96$
$m=250$
$\langle k\rangle=1$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions

Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

References

$$
m=1000
$$

$\langle k\rangle=4$

Random networks: largest components

Random Networks

Basics

Definitions

How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis
$m=100$
$\langle k\rangle=0.4$

$$
m=200
$$

$\langle k\rangle=0.8$

$$
\begin{aligned}
& m=230 \\
& \langle k\rangle=0.92
\end{aligned}
$$

$m=260$
$m=280$
$\langle k\rangle=1.04$
$\langle k\rangle=1.12$
$m=300$
$\langle k\rangle=1.2$

$$
m=240
$$

$\langle k\rangle=0.96$
$m=250$
$\langle k\rangle=1$

References

$m=1000$
$\langle k\rangle=4$
$\langle k\rangle=2$

Random networks: examples for $N=500$

Random Networks

Basics

Definitions
How to build
Some visual examples
Structure

Clustering

Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis
$m=250$
$\langle k\rangle=1$

$m=250$
$m=250$
$\langle k\rangle=1$
$\langle k\rangle=1$
$m=250$
$\langle k\rangle=1$
$m=250$
$\langle k\rangle=1$
$m=250$
$\langle k\rangle=1$

$m=250$
$m=250$
$\langle k\rangle=1$
$\langle k\rangle=1$

References

Random networks: largest components

Random Networks

Basics

Definitions

How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

$$
m=250
$$

$\langle k\rangle=1$

$$
m=250
$$

$$
\langle k\rangle=1
$$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$$
m=250
$$

$$
\langle k\rangle=1
$$

$$
m=250
$$

$$
m=250
$$

$m=250$

$$
\langle k\rangle=1
$$

$$
\langle k\rangle=1
$$

$m=250$
$\langle k\rangle=1$
$\langle k\rangle=1$
$m=250$
$\langle k\rangle=1$

References

Outline

Structure Clustering

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

っのल 26 of 65

Clustering in random networks:

- For method 1, what is the clustering coefficient for a finite network?

Simple,

physically-motivated

```
analysis
```


っの® 27 of 65

Clustering in random networks:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient: ${ }^{[1]}$

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

$|$| \circ |
| :---: |
| 0 |

のQく 27 of 65

Clustering in random networks：

－For method 1，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient：

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
physically－motivated
analysis
－Recall：$C_{2}=$ probability that two friends of a node are also friends．

Clustering in random networks:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

- Recall: $C_{2}=$ probability that two friends of a node are also friends.
- Or: $C_{2}=$ probability that a triple is part of a triangle.

Clustering in random networks:

- For method 1, what is the clustering coefficient for a finite network?
- Consider triangle/triple clustering coefficient:

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

Random Networks
Basics
Definitions
How to build
Some visuat examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

- Recall: $C_{2}=$ probability that two friends of a node are also friends.
- Or: $C_{2}=$ probability that a triple is part of a triangle.
- For standard random networks, we have simply that

$$
C_{2}=p .
$$

Other ways to compute clustering：

Random Networks

Basics

Definitions

－Expected number of triples in entire network：

$$
\frac{1}{2} N(N-1)(N-2) p^{2}
$$

（Double counting dealt with by $\frac{1}{2}$ ．）

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

> Largest component

Simple，
physically－motivated
analysis

つのく 28 of 65

Other ways to compute clustering:

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

$$
\frac{1}{6} N(N-1)(N-2) p^{3}
$$

(Over-counting dealt with by $\frac{1}{6}$.)

$$
\frac{1}{2} N(N-1)(N-2) p^{2}
$$

(Double counting dealt with by $\frac{1}{2}$.)

- Expected number of triangles in entire network:

Other ways to compute clustering:

- Expected number of triples in entire network:

$$
\frac{1}{2} N(N-1)(N-2) p^{2}
$$

(Double counting dealt with by $\frac{1}{2}$.)

- Expected number of triangles in entire network:

$$
\frac{1}{6} N(N-1)(N-2) p^{3}
$$

(Over-counting dealt with by $\frac{1}{6}$.)

$$
C_{2}=\frac{3 \times \text { \#triangles }}{\# \text { triples }}=\frac{3 \times \frac{1}{6} N(N-1)(N-2) p^{3}}{\frac{1}{2} N(N-1)(N-2) p^{2}}=p .
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated analysis

UNIVERSITY of VERMONT

っのल 28 of 65

Other ways to compute clustering:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Other ways to compute clustering:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

のQく 29 of 65

Other ways to compute clustering:

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated
analysis

- Triangle occurs with probability p^{3}. $p^{2} \times(1-p)+p^{2} \times p=p^{2}$.

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Other ways to compute clustering:

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- Triangle occurs with probability p^{3}.
- Therefore,

$$
C_{2}=\frac{p^{3}}{p^{2}}=p
$$

Clustering in random networks:

- So for large random networks ($N \rightarrow \infty$), clustering drops to zero.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange Largest component

Simple,
physically-motivated analysis

のQく 30 of 65

Clustering in random networks:

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,

physically-motivated
analysis

- Key structural feature of random networks is that they locally look like
pure branching networks
- So for large random networks ($N \rightarrow \infty$), clustering drops to zero.

Clustering in random networks:

- Key structural feature of random networks is that they locally look like
pure branching networks
- No small loops.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,

physically-motivated
analysis

Outline

Structure

Clustering
Degree distributions Configuration model
Random friends are strange Largest component
Simple，
physically－motivated
analysis

Structure

Degree distributions

Random networks
 Degree distribution：

－Recall $P_{k}=$ probability that a randomly selected node has degree k ．

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated
analysis

$|$| \circ |
| :---: |
| 0 |

Random networks

Degree distribution:

- Recall $P_{k}=$ probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

|ö|

Random networks

Degree distribution:

- Recall $P_{k}=$ probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are ' $N-1$ choose k ' ways the node can be connected to k of the other $N-1$ nodes.

Random networks

Degree distribution:

- Recall $P_{k}=$ probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are ' $N-1$ choose k ' ways the node can be connected to k of the other $N-1$ nodes.
- Each connection occurs with probability p, each non-connection with probability $(1-p)$.

Random networks

Degree distribution:

- Recall $P_{k}=$ probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- Now consider one node: there are ' $N-1$ choose k ' ways the node can be connected to k of the other $N-1$ nodes.
- Each connection occurs with probability p, each non-connection with probability $(1-p)$.
- Therefore have a binomial distribution:

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

$\left\lvert\, \begin{gathered}0 \\ 0\end{gathered}\right.$

Random networks

Basics

Definitions
How to build
Some visual examples

Structure

Limiting form of $P(k ; p, N)$:

Degree distributions Configuration model

Random friends are strange Largest component
Simple,
physically-motivated analysis

Random networks

Limiting form of $P(k ; p, N)$:

- Our degree distribution: $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$.

Random Networks
Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

のดく 33 of 65

Random networks

Limiting form of $P(k ; p, N)$ ：

－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
－What happens as $N \rightarrow \infty$ ？

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated
analysis

References

つのヘ 33 of 65

Random networks

Limiting form of $P(k ; p, N)$ ：

－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
－What happens as $N \rightarrow \infty$ ？

Structure

Clustering
Degree distributions
－We must end up with the normal distribution right？

$\left|\begin{array}{l}0 \\ 0\end{array}\right|$
っのヘ 33 of 65

Random networks

Limiting form of $P(k ; p, N)$ ：

－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
－What happens as $N \rightarrow \infty$ ？
－We must end up with the normal distribution right？
－If p is fixed，then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$ ．

Random networks

Random Networks

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$.
- But we want to keep $\langle k\rangle$ fixed...
- So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant.

Limiting form of $P(k ; p, N)$:

- Our degree distribution: $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$.
- What happens as $N \rightarrow \infty$?

UNIVERSTIY of VERMONT

っの® 33 of 65

Limiting form of $P(k ; p, N)$:

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

のดく 34 of 65

Limiting form of $P(k ; p, N)$:

Definitions

How to build
Some visual examples

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
& \quad=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

のดく 34 of 65

Limiting form of $P(k ; p, N)$:

Random Networks
Basics
Definitions
How to build
Some visual examples

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{gathered}
P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
=\frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{gathered}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Limiting form of $P(k ; p, N)$:

Random Networks
Basics
Definitions
How to build
Some visual examples

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{N^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!N^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

UNIVERSITY vervont

Limiting form of $P(k ; p, N)$:

Random Networks
Basics
Definitions
How to build
Some visual examples

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{A^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!A^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

UNIVERSITY vervont

Limiting form of $P(k ; p, N)$:

Random Networks
Basics
Definitions
How to build
Some visual examples

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
& \simeq \frac{A^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!A^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{y}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

UNIVERSITY VERMONT

Limiting form of $P(k ; p, N)$:

- We are now here:

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Random Networks

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

(Use l'Hôpital's rule to prove.)

Limiting form of $P(k ; p, N)$:

- We are now here:

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

- Now use the excellent result:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated analysis

のดく 35 of 65

Limiting form of $P(k ; p, N)$:

- We are now here:

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

- Now use the excellent result:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

(Use l'Hôpital's rule to prove.)

- Identifying $n=N-1$ and $x=-\langle k\rangle$:

$$
P(k ;\langle k\rangle) \simeq \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}\left(1-\frac{\langle k\rangle}{N-1}\right)^{-k}
$$

Random Networks
Basics
Definitions
How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component

Simple,
physically-motivated
analysis

っの® 35 of 65

Limiting form of $P(k ; p, N)$:

- We are now here:

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

- Now use the excellent result:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

(Use l'Hôpital's rule to prove.)

- Identifying $n=N-1$ and $x=-\langle k\rangle$:

$$
P(k ;\langle k\rangle) \simeq \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}\left(1-\frac{\langle k\rangle}{N-1}\right)^{-k} \rightarrow \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

- This is a Poisson distribution (\boxplus) with mean $\langle k\rangle$.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

っの® 35 of 65

Poisson basics：

Random Networks

Basics

Definitions
How to build
Some visual examples

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

－$\lambda>0$
－$k=0,1,2,3, \ldots$
－Classic use：probability that an event occurs k times in a given time period，given an average rate of occurrence．
－e．g．： phone calls／minute， horse－kick deaths．
－＇Law of small numbers＇

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Simple，
physically－motivated

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions Configuration model
Random friends are strange Largest component
Simple，
physically－motivated analysis

Poisson basics:

- Normalization: we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

- Checking:

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

Poisson basics:

- Normalization: we must have
- Checking:

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

$$
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!}
$$

Poisson basics:

- Normalization: we must have
- Checking:

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle}
\end{gathered}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Poisson basics:

- Normalization: we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle}=1 \checkmark
\end{gathered}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!}
\end{gathered}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Poisson basics:

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

$$
\begin{aligned}
& =e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
& =\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!}
\end{aligned}
$$

Poisson basics:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Poisson basics:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Poisson basics:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=\langle k\rangle \checkmark
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.

Random Networks

Basics

Definitions
How to build

Structure

Clustering
Degree distributions Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$|$| \circ |
| :---: |
| 0 |

のดく 39 of 65

Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding $\langle k\rangle$ to find the second moment:

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Random Networks

Structure

Clustering
Degree distributions

のQく 39 of 65

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Structure

Clustering
Degree distributions
－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}
$$

$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Structure

Clustering
Degree distributions

Simple，

physically－motivated
analysis
－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}
$$

｜ö

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Structure

Clustering
Degree distributions
－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle
$$

｜ö

Poisson basics:

Random Networks
Basics
Definitions
How to build

Structure

Clustering
Degree distributions

- Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle
$$

- So standard deviation σ is equal to $\sqrt{\langle k\rangle}$.

Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding $\langle k\rangle$ to find the second moment:

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

- Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle
$$

- So standard deviation σ is equal to $\sqrt{\langle k\rangle}$.
- Note: This is a special property of Poisson distribution and can trip us up...

Outline

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Structure

Configuration model

General random networks

- So... standard random networks have a Poisson degree distribution

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.

Random Networks
Basics
Definitions
How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

のQく 41 of 65

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.
- Also known as the configuration model. ${ }^{[1]}$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$
のQく 41 of 65

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.
- Also known as the configuration model.
- Can generalize construction method from ER random networks.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$
のQく 41 of 65

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.
- Also known as the configuration model.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_{w} and form links with probability
$P($ link between i and $j) \propto w_{i} w_{j}$.

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.
- Also known as the configuration model.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

- But we'll be more interested in

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

－But we＇ll be more interested in
1．Randomly wiring up（and rewiring）already existing nodes with fixed degrees．

General random networks

- So... standard random networks have a Poisson degree distribution
- Generalize to arbitrary degree distribution P_{k}.
- Also known as the configuration model.
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

- But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
2. Examining mechanisms that lead to networks with certain degree distributions.

Random networks：examples

Coming up：
Example realizations of random networks with power law degree distributions：

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated analysis

つのヘ 42 of 65

Random networks：examples

Coming up：
Example realizations of random networks with power law degree distributions：
－$N=1000$ ．

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated

つのヘ 42 of 65

Random networks：examples

Coming up：
Example realizations of random networks with power law degree distributions：
－$N=1000$ ．
－$P_{k} \propto k^{-\gamma}$ for $k \geq 1$ ．

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated

つのヘ 42 of 65

Random networks: examples

Coming up:
Example realizations of random networks with power law degree distributions:

- $N=1000$.
- $P_{k} \propto k^{-\gamma}$ for $k \geq 1$.
- Set $P_{0}=0$ (no isolated nodes).

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

|ö|

Random networks: examples

Coming up:
Example realizations of random networks with power law degree distributions:

- $N=1000$.
- $P_{k} \propto k^{-\gamma}$ for $k \geq 1$.
- Set $P_{0}=0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.

Random Networks
Basics
Definitions
How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

$|$| \circ |
| :---: |
| 0 |

Random networks: examples

Coming up:
Example realizations of random networks with power law degree distributions:

- $N=1000$.
- $P_{k} \propto k^{-\gamma}$ for $k \geq 1$.
- Set $P_{0}=0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$

Random networks: examples

Coming up:

Example realizations of random networks with power law degree distributions:

- $N=1000$.

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions

- $P_{k} \propto k^{-\gamma}$ for $k \geq 1$.
- Set $P_{0}=0$ (no isolated nodes).
- Vary exponent γ between 2.10 and 2.91.
- Again, look at full network plus the largest component.
- Apart from degree distribution, wiring is random.

Random networks: examples for $N=1000$

Random Networks

Basics

Definitions
How to build
Some visual examples

$\gamma=2.1$
$\langle k\rangle=3.448$

$\gamma=2.55$
$\langle k\rangle=1.712$
$\gamma=2.64$
$\langle k\rangle=1.6$

$\gamma=2.28$
$\langle k\rangle=2.306$

$\gamma=2.73$
$\langle k\rangle=1.862$

$\gamma=2.37$
$\langle k\rangle=2.504$

$\gamma=2.82$
$\langle k\rangle=1.386$

$\gamma=2.46$
$\langle k\rangle=1.856$

$\gamma=2.91$
$\langle k\rangle=1.49$

Structure

Clustering

Degree distributions

Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

Random networks: largest components

Random Networks

Basics

Definitions

How to build
Some visual examples

$$
\begin{array}{ll}
\gamma=2.55 & \gamma=2.64 \\
\langle k\rangle=1.712 & \langle k\rangle=1.6
\end{array}
$$

$\gamma=2.19$
$\langle k\rangle=2.986$

$\gamma=2.37$
$\langle k\rangle=2.504$
$\gamma=2.28$
$\langle k\rangle=2.306$

$\gamma=2.73$
$\langle k\rangle=1.862$

$\gamma=2.82$
$\langle k\rangle=1.386$

$\gamma=2.91$
$\gamma=2.46$
$\langle k\rangle=1.856$

$\langle k\rangle=1.49$

Structure

Clustering

Degree distributions

Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Outline

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

Structure

Random friends are strange

The edge-degree distribution:

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis
References

っの^ 46 of 65

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks

Random Networks

Basics

Definitions

のQく 46 of 65

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.

Random Networks

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model

Simple,

physically-motivated
analysis

のQく 46 of 65

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.

|ö|

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k.

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$
Q_{k} \propto k P_{k}
$$

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$
Q_{k} \propto k P_{k}
$$

- Normalized form:

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}
$$

The edge-degree distribution:

- The degree distribution P_{k} is fundamental for our description of many complex networks
- Again: P_{k} is the degree of randomly chosen node.
- A second very important distribution arises from choosing randomly on edges rather than on nodes.
- Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k.
- Now choosing nodes based on their degree (i.e., size):

$$
Q_{k} \propto k P_{k}
$$

- Normalized form:

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}=\frac{k P_{k}}{\langle k\rangle} .
$$

The edge-degree distribution:

- For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

๑のく 47 of 65

The edge-degree distribution:

- For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q_{k} :
$R_{k}=$ probability that a friend of a random node has k other friends.

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$
つQく 47 of 65

The edge-degree distribution:

- For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q_{k} :
$R_{k}=$ probability that a friend of a random node has k other friends.

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

のQく 47 of 65

The edge-degree distribution:

- For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q_{k} :
$R_{k}=$ probability that a friend of a random node has k other friends.

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Simple,

The edge-degree distribution:

- For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.
- Useful variant on Q_{k} :
$R_{k}=$ probability that a friend of a random node has k other friends.

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

- Equivalent to friend having degree $k+1$.

UNIVERSITY
if VERMONT

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge-degree distribution:

- Given R_{k} is the probability that a friend has k other friends, then the average number of friends' other friends is

$$
\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}
$$

Random Networks

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated analysis

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple，

physically－motivated analysls

つのヘ 48 of 65

The edge-degree distribution:

- Given R_{k} is the probability that a friend has k other friends, then the average number of friends' other friends is

$$
\begin{aligned}
\langle k\rangle_{R} & =\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
& =\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1}
\end{aligned}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated
analysis

The edge-degree distribution:

- Given R_{k} is the probability that a friend has k other friends, then the average number of friends' other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

(where we have sneakily matched up indices)

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated

analysis

The edge-degree distribution:

- Given R_{k} is the probability that a friend has k other friends, then the average number of friends' other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

(where we have sneakily matched up indices)

$$
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } j=k+1)
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated

analysis

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

$$
\begin{gathered}
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } j=k+1) \\
=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
\end{gathered}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple，

physically－motivated

analysis

The edge-degree distribution:

- Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.

Random Networks

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated analysis

っの® 49 of 65

The edge-degree distribution:

- Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

のQく 49 of 65

The edge-degree distribution:

- Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

- Therefore:

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

のQく 49 of 65

The edge-degree distribution:

- Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

- Therefore:

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

のQく 49 of 65

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

－Again，neatness of results is a special property of the Poisson distribution．

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
physically－motivated
analysis

The edge-degree distribution:

- Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.
- For standard random networks, recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

- Therefore:

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

- Again, neatness of results is a special property of the Poisson distribution.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

- So friends on average have $\langle k\rangle$ other friends, and $\langle k\rangle+1$ total friends...

Two reasons why this matters

Definitions

Reason \#1:
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
physically－motivated analysis

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
$$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions
Configuration model

Random friends are strange Largest component
Simple，
physically－motivated analysis

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple，
physically－motivated analysis

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．

Random Networks

Basics

Definitions

How to build

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
physically－motivated analysis

Reason \#1:

Two reasons why this matters

- Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.
- Three peculiarities:

1. We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it's actually $\langle k(k-1)\rangle$.

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

(e.g., in the case of a power-law distribution)

Two reasons why this matters

Reason \#1:

- Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.
- Three peculiarities:

1. We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it's actually $\langle k(k-1)\rangle$.
2. If P_{k} has a large second moment, then $\left\langle k_{2}\right\rangle$ will be big.

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Two reasons why this matters

Reason \#1:

- Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.
- Three peculiarities:

1. We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it's actually $\langle k(k-1)\rangle$.
2. If P_{k} has a large second moment, then $\left\langle k_{2}\right\rangle$ will be big.
(e.g., in the case of a power-law distribution)

Two reasons why this matters

Reason \#1:

- Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.
- Three peculiarities:

1. We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it's actually $\langle k(k-1)\rangle$.
2. If P_{k} has a large second moment, then $\left\langle k_{2}\right\rangle$ will be big.
(e.g., in the case of a power-law distribution)
3. Your friends really are different from you...

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated analysis

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated analysis

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange Largest component

Simple,
physically-motivated analysis

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}
$$

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}
$$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions

Configuration model

Random friends are strange Largest component

Simple,

physically-motivated analysis

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right)
$$

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated analysis

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle\kappa^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange Largest component

Simple,

physically-motivated

analysis

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

Simple,

physically-motivated

analysis

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

- So only if everyone has the same degree (variance $=\sigma^{2}=0$) can a node be the same as its friends.

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

- So only if everyone has the same degree (variance $=\sigma^{2}=0$) can a node be the same as its friends.
- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.

Random Networks

Basics

Definitions

How to build

Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysls

のQく 52 of 65

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

|ö|
のQく 52 of 65

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As $N \rightarrow \infty$, does our network have a giant component?

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated
analysis

|ö|
のQく 52 of 65

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As $N \rightarrow \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As $N \rightarrow \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as $N \rightarrow \infty$.

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,
physically-motivated

Two reasons why this matters

(Big) Reason \#2:

- $\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
- e.g., we'd like to know what's the size of the largest component within a network.
- As $N \rightarrow \infty$, does our network have a giant component?
- Defn: Component = connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
- Defn: Giant component = component that comprises a non-zero fraction of a network as $N \rightarrow \infty$.
- Note: Component = Cluster

Outline

Structure

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

Largest component

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated
analysis
References

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions

|ö|
のQく 55 of 65

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.

$\left|\begin{array}{|c|}0 \\ 0\end{array}\right|$

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k\rangle_{R}>1$.

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k\rangle_{R}>1$.
- Giant component condition (or percolation condition):

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,

|o
のQく 55 of 65

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k\rangle_{R}>1$.
- Giant component condition (or percolation condition):

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

- Again, see that the second moment is an essential part of the story.

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,

|ob

Structure of random networks

Giant component:

- A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
- Equivalently, expect exponential growth in node number as we move out from a random node.
- All of this is the same as requiring $\langle k\rangle_{R}>1$.
- Giant component condition (or percolation condition):

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

- Again, see that the second moment is an essential part of the story.
- Equivalent statement: $\left\langle k^{2}\right\rangle>2\langle k\rangle$

Random Networks
Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange

Simple,

Giant component

Some visual examples

Standard random networks:

- Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Standard random networks:

- Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.
- Condition for giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component
Simple,
physically-motivated
analysis

っの® 56 of 65

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Standard random networks:

- Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.
- Condition for giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component
Simple,
physically-motivated
analysis

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component
Simple，
physically－motivated
analysis

つのヘ 56 of 65

Giant component

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple，
－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．

Giant component

Standard random networks:

- Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.
- Condition for giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

- Therefore when $\langle k\rangle>1$, standard random networks have a giant component.
- When $\langle k\rangle<1$, all components are finite.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

っの® 56 of 65

Giant component

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．

Giant component

Standard random networks:

- Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.
- Condition for giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

- Therefore when $\langle k\rangle>1$, standard random networks have a giant component.
- When $\langle k\rangle<1$, all components are finite.
- Fine example of a continuous phase transition (\boxplus).
- We say $\langle k\rangle=1$ marks the critical point of the system.

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component Simple,
physically-motivated analysis

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x
\end{gathered}
$$

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component
Simple,
physically-motivated analysis

References

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,
physically-motivated analysis

- So giant component always exists for these kinds of networks.

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,
physically-motivated
analysis

- Cutoff scaling is k^{-3} : if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$.

Giant component

Random networks with skewed P_{k} :

- e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,
physically-motivated
analysis

- Cutoff scaling is k^{-3} : if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$.
- How about $P_{k}=\delta_{k k_{0}}$?

のQく 57 of 65

Giant component

And how big is the largest component？
－Define S_{1} as the size of the largest component．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated analysis

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are strange

Largest component Simple,

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.

Random Networks

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.

UNIVERSITY of VERMONT
$\left|\begin{array}{|c|}0 \\ 0\end{array}\right|$
のQく 58 of 65

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta=1-S_{1}$.

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta=1-S_{1}$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta=1-S_{1}$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Giant component

And how big is the largest component?

- Define S_{1} as the size of the largest component.
- Consider an infinite ER random network with average degree $\langle k\rangle$.
- Let's find S_{1} with a back-of-the-envelope argument.
- Define δ as the probability that a randomly chosen node does not belong to the largest component.
- Simple connection: $\delta=1-S_{1}$.
- Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.
- So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

- Substitute in Poisson distribution...

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering

Degree distributions
Configuration model
Random friends are strange
Largest component Simple，
physically－motivated analysis

つのく 59 of 65

Giant component

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple，
physically－motivated analysis

$$
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!}
$$

References

つのく 59 of 65

Giant component

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis

References

$$
\begin{aligned}
\delta= & \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
& =e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
= & e^{-\langle k\rangle} e^{\langle k\rangle \delta}
\end{aligned}
$$

Giant component

- Carrying on:

$$
\begin{aligned}
& \delta= \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
&=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
&=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
\end{aligned}
$$

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated analysis

References

のQく 59 of 65

Giant component

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component

Simple，
physically－motivated
analysis

$$
=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
$$

－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

$$
S_{1}=1-e^{-\langle k\rangle S_{1}} .
$$

㡙 ${ }^{\text {Zn }}$ UNVERSITY

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

- We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.

Structure

Clustering
Degree distributions
Configuration model

Giant component

- We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.
- First, we can write $\langle k\rangle$ in terms of S_{1} :

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}
$$

Structure

Clustering
Degree distributions
Configuration model

っの® 60 of 65

Giant component

- We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.
- First, we can write $\langle k\rangle$ in terms of S_{1} :

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

Structure

Clustering
Degree distributions
Configuration model

- As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.

Giant component

- We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.
- First, we can write $\langle k\rangle$ in terms of S_{1} :

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

Structure

Clustering
Degree distributions
Configuration model

- As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.
- As $\langle k\rangle \rightarrow \infty, s_{1} \rightarrow 1$.

Giant component

Random Networks
Basics
Definitions
How to build
Some visual examples

- We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.
- First, we can write $\langle k\rangle$ in terms of S_{1} :

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}
$$

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component

Simple,
physically-motivated
analysis

- As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.
- As $\langle k\rangle \rightarrow \infty, s_{1} \rightarrow 1$.
- Notice that at $\langle k\rangle=1$, the critical point, $S_{1}=0$.

Giant component

- As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.
- As $\langle k\rangle \rightarrow \infty, s_{1} \rightarrow 1$.
- Notice that at $\langle k\rangle=1$, the critical point, $S_{1}=0$.
- Only solvable for $S_{1}>0$ when $\langle k\rangle>1$.

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

Largest component
Simple,
physically-motivated
analysis

っの 60 of 65

Giant component

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model

Random friends are strange

- As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.
- As $\langle k\rangle \rightarrow \infty, s_{1} \rightarrow 1$.
- Notice that at $\langle k\rangle=1$, the critical point, $S_{1}=0$.
- Only solvable for $S_{1}>0$ when $\langle k\rangle>1$.
- Really a transcritical bifurcation. ${ }^{[2]}$

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}
$$

Giant component

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis
References

Giant component

Turns out we were lucky．．．

－Our dirty trick only works for ER random networks．

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model Random friends are strange Largest component Simple，
physically－motivated analysis

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．

Random Networks
Basics
Definitions
How to build

$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$
つのく 62 of 65

Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...

Random Networks
Basics
Definitions
How to build

UNIVERSITY of VERMONT
|ö|

Giant component

Turns out we were lucky．．．

－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．

Giant component

Turns out we were lucky．．．

－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that an edge leads to the giant（infinite）component．

$|$| \circ |
| :---: |
| 0 |

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that an edge leads to the giant（infinite）component．
－We can sort many things out with sensible probabilistic arguments．．．

$\left|\begin{array}{|c|}\circ \\ 0\end{array}\right|$

Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$.
- We need a separate probability δ^{\prime} for the chance that an edge leads to the giant (infinite) component.
- We can sort many things out with sensible probabilistic arguments...
- More detailed investigations will profit from a spot of Generatingfunctionology. ${ }^{[3]}$

Random Networks
Basics
Definitions
How to build

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis
References

Outline

Structure

Random Networks

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple,
physically-motivated ānā̄ȳis

Simple, physically-motivated analysis

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange Largest component
Simple，
$\bar{p} h \bar{y} \bar{s} \bar{i} c a ̄ l l y-m o t i v a t e d ~$ anālysis

References

っのく 64 of 65

References I

Random Networks
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Random friends are strange
Largest component
Simple,
physically-motivated
analysis
[2] S. H. Strogatz.
Nonlinear Dynamics and Chaos.
Addison Wesley, Reading, Massachusetts, 1994.
[3] H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdf (\boxplus)

