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Random networks

Pure, abstract random networks:
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Random networks

Pure, abstract random networks:

» Consider set of all networks with N labelled nodes
and m edges.
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Random networks

Pure, abstract random networks:

» Consider set of all networks with N labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.
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Random networks

Pure, abstract random networks:
» Consider set of all networks with N labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.

» To be clear: each network is equally probable.
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» Consider set of all networks with N labelled nodes
and m edges.

» Standard random network = References
one randomly chosen network from this set.

» To be clear: each network is equally probable.

» Sometimes equiprobability is a good assumption, but
it is always an assumption.
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Random networks

Pure, abstract random networks:

» Consider set of all networks with N labelled nodes
and m edges.

» Standard random network =
one randomly chosen network from this set.

» To be clear: each network is equally probable.

» Sometimes equiprobability is a good assumption, but
it is always an assumption.

» Known as Erdés-Rényi random networks or ER
graphs.
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Random networks—basic features:

» Number of possible edges:

N
osms(2)-

» Limit of m = 0: empty graph.

N(N —1)

2
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Random networks—basic features:

» Number of possible edges:

N\  N(N-1)
ST Lt e e
S <2> 2
» Limit of m = 0: empty graph.
» Limit of m = (§): complete or fully-connected graph.

» Number of possible networks with N labelled nodes:
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Random Networks

Random networks—basic features:

» Number of possible edges:

» Limit of m = 0: empty graph.
» Limit of m = (§): complete or fully-connected graph.
» Number of possible networks with N labelled nodes:

In2N2

2(N) ~ ez

» Given m edges, there are (( )) different possible
networks.

(o]
UV]\IRSIH |§|
¥ VERMONT 10!

Qv 6of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Random Networks

Random networks—basic features:

» Number of possible edges:

» Limit of m = 0: empty graph.
» Limit of m = (§): complete or fully-connected graph.
» Number of possible networks with N labelled nodes:

In2N2

2(N) ~ ez

» Given m edges, there are (( )) different possible
networks.

» Crazy factorial explosion for 1 < m < (5).
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Random Networks

Random networks—basic features:

» Number of possible edges:

» Limit of m = 0: empty graph.
» Limit of m = (§): complete or fully-connected graph.
» Number of possible networks with N labelled nodes:

» Given m edges, there are ((g])) different possible
networks.

» Crazy factorial explosion for 1 < m < (5).

» Real world: links are usually costly so real networks 5 :
are almost always sparse. W‘&Rﬁ&'&‘i}i 2
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Random networks

How to build standard random networks:
» Given N and m.
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Random networks

How to build standard random networks:
» Given N and m.
» Two probablistic methods
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Random networks

How to build standard random networks:
» Given N and m.
» Two probablistic methods (we’ll see a third later on)
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Random networks

How to build standard random networks:

» Given N and m.
» Two probablistic methods (we’ll see a third later on)

1. Connect each of the (}) pairs with appropriate
probability p.
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Random networks

How to build standard random networks:

» Given N and m.
» Two probablistic methods (we’ll see a third later on)

1. Connect each of the (}) pairs with appropriate
probability p.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

How to build standard random networks:

» Given N and m.
» Two probablistic methods (we’ll see a third later on)

1. Connect each of the (}) pairs with appropriate
probability p.
» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Random networks

How to build standard random networks:

>

>

Given N and m.
Two probablistic methods (we’ll see a third later on)

. Connect each of the (y) pairs with appropriate

probability p.
» Useful for theoretical work.

. Take N nodes and add exactly m links by selecting

edges without replacement.
» Algorithm: Randomly choose a pair of nodes i and j,
i # j, and connect if unconnected; repeat until all m
edges are allocated.
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Random networks

How to build standard random networks:

>

>

Given N and m.
Two probablistic methods (we’ll see a third later on)

. Connect each of the (y) pairs with appropriate

probability p.
» Useful for theoretical work.

. Take N nodes and add exactly m links by selecting

edges without replacement.
» Algorithm: Randomly choose a pair of nodes i and j,
i # j, and connect if unconnected; repeat until all m
edges are allocated.
» Best for adding relatively small numbers of links
(most cases).
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Random networks Random Networks

How to build

How to build standard random networks:

» Given N and m.
» Two probablistic methods (we’ll see a third later on)

1. Connect each of the (}) pairs with appropriate
probability p.

» Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

» Algorithm: Randomly choose a pair of nodes i and j,
i # j, and connect if unconnected; repeat until all m
edges are allocated.

» Best for adding relatively small numbers of links
(most cases).

» 1 and 2 are effectively equivalent for large N.

1he (o]
é' UNIVERSITY |§|
¥ VERMONT 10!

Qv 8of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Random networks o

A few more things:

How to build

» For method 1, # links is probablistic: Structure

Clustering
De

€ tributions
N Configuration model

Random friends are strange
(m=p o g

References

1 B o)
UNIVERSITY |g|
P8 virvont 18]

DA 9of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Random networks Random Networks

Basics
A few more things: oot
» For method 1, # links is probabilistic: o

Clustering

(m) :p(’;’) — pAN(N - 1)

References

; %
<Q{ i
/

m Loy

UNIVERSITY |g|

¥-8 vervont 18]

DA 9of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Random networks
A few more things:

» For method 1, # links is probabilistic:

N

(m =p(3 ) = NN - 1)

» So the expected or average degree is
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A few more things:
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Random networks
A few more things:

» For method 1, # links is probablistic:

(m) :p<’;’) — pAN(N - 1)

» So the expected or average degree is

2l

PN — 1) = 5505

2
SN2
» Which is what it should be...

» If we keep (k) constant then p o 1/N — 0 as
N — .

NN —1)=p(N-1).
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Random networks: examples

Next slides:
Example realizations of random networks
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Random networks: examples

Next slides:

Example realizations of random networks
» N =500
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Random networks: examples

Basics

Structure

Next slides:
Example realizations of random networks

» N =500
» Vary m, the number of edges from 100 to 1000.
» Average degree (k) runs from 0.4 to 4.

References

) B (o]
UNIVERSITY |§|
¥-¥ vervont 18]

o> 11 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

RandOm networks_ examples Random Networks

Basics

Next slides:
Example realizations of random networks

» N =500 dogie
» Vary m, the number of edges from 100 to 1000.
» Average degree (k) runs from 0.4 to 4.

» Look at full network plus the largest component.
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Random networks: examples

entire network: largest component:

N =500, number of edges m = 100
average degree (k) =0.4
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Random networks: examples

entire network: largest component:

N =500, number of edges m = 200
average degree (k) = 0.8
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Random networks: examples

entire network: largest component:

N =500, number of edges m = 280
average degree (k) =1.12
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Clustering in random networks:

» For method 1, what is the clustering coefficient for a
finite network?
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Clustering in random networks:

» For method 1, what is the clustering coefficient for a
finite network?
» Consider triangle/triple clustering coefficient: ']
3 X #triangles
Co=—7"—""—
#triples
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» For method 1, what is the clustering coefficient for a
finite network? -
» Consider triangle/triple clustering coefficient: ! iy

3 X Ftriangles
Co=—F"—""""—
#triples

References

: » Recall: C, = probability that
1 two friends of a node are also
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Clustering in random networks:

Basics
» For method 1, what is the clustering coefficient for a .
finite network? S "Rt
. . . . . tructure
» Consider triangle/triple clustering coefficient: '] o
3 X Ftriangles .
Co=———"—
#triples
References
: » Recall: C, = probability that
1 two friends of a node are also
4 friends.
'l ' F=C. » Or: G, = probability that a
2 ‘,1) triple is part of a triangle.
3 Ao B
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Random Networks

Clustering in random networks:
» For method 1, what is the clustering coefficient for a
finite network? Some visual exany
» Consider triangle/triple clustering coefficient: ']

Basics

Structure

3 X Ftriangles
Co=—7"—""—"—
#triples

References

» Recall: C, = probability that

L i two friends of a node are also
friends.
'l ' F=C. » Or: G, = probability that a
2 x.l) triple is part of a triangle. ﬁ\
] » For standard random \'( N/f’)
' networks, we have simply that s
7._ & o B
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Other ways to compute clustering:

» Expected number of triples in entire network:

%N(N L=

(Double counting dealt with by J.)
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Other ways to compute clustering:

» Expected number of triples in entire network:
1 2
§N(N —1)(N-2)p

(Double counting dealt with by J.)

» Expected number of triangles in entire network:

AN(N - 1)(N - 2)p°

(Over-counting dealt with by {.)
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Other ways to compute clustering:

» Expected number of triples in entire network:

>

1

SN(N = 1)(N - 2)p°

(Double counting dealt with by J.)
» Expected number of triangles in entire network:

AN(N - 1)(N - 2)p°

(Over-counting dealt with by {.)

C, =

3 x #ftriangles

3x EN(N—1)(N-2)p?

#triples

IN(N—1)(N—2)p2
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Other ways to compute clustering: gy
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How
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Some visual examples
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» Or: take any three nodes, call them a, b, and c. :

Random friends are strange
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Other ways to compute clustering:

» Or: take any three nodes, call them a, b, and c.
» Triple a-b-c centered at b occurs with probability
PP x (1 —p)+p? xp=p?
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Other ways to compute clustering:

» Or: take any three nodes, call them a, b, and c.

» Triple a-b-c centered at b occurs with probability
PP x (1 —p)+p? xp=p?

» Triangle occurs with probability pq.
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Other ways to compute clustering:

» Or: take any three nodes, call them a, b, and c.

» Triple a-b-c centered at b occurs with probability
pEx (1 p) o xp=p.

» Triangle occurs with probability pq.

» Therefore,

3
nggzzp.
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Clustering in random networks:

Basics
Definitions
How

uild

Some visual examples

Structure
Clustering

stributions

iguration mode

» So for large random networks

(N — o0), clustering drops to
zero.
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ClUSterlng |n random networksl Random Networks
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» So for large random networks
(N — o0), clustering drops to
zero.

» Key structural feature of
random networks is that they
locally look like
pure branching networks
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Clustering in random networks:

» So for large random networks
(N — o0), clustering drops to
zero.

» Key structural feature of
random networks is that they
locally look like
pure branching networks

» No small loops.
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Outline

Structure

Degree distributions
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Random networks
Degree distribution:

» Recall Px = probability that a randomly selected
node has degree k.
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Random networks
Degree distribution:
» Recall Py = probability that a randomly selected
node has degree k.

» Consider method 1 for constructing random
networks: each possible link is realized with
probability p.
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Random networks
Degree distribution:

» Recall Py = probability that a randomly selected
node has degree k.

» Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

» Now consider one node: there are ‘N — 1 choose Kk’

ways the node can be connected to k of the other
N — 1 nodes.

Random Networks

Degree distributions
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Random networks
Degree distribution:

» Recall Py = probability that a randomly selected
node has degree k.

» Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

» Now consider one node: there are ‘N — 1 choose Kk’
ways the node can be connected to k of the other
N — 1 nodes.

» Each connection occurs with probability p, each
non-connection with probability (1 — p).

Random Networks

Degree distributions
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Random networks
Degree distribution:

>

Recall Py = probability that a randomly selected

node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with

probability p.

Now consider one node: there are ‘N — 1 choose k’
ways the node can be connected to k of the other

N — 1 nodes.

Each connection occurs with probability p, each

non-connection with probability (1 — p).

Therefore have a binomial distribution:

P(k;p, N) = (

N -1

k

)pk(1 e

Random Networks

Degree distributions
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Random networks

Limiting form of P(k; p, N)
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Random networks

Limiting form of P(k; p, N):

» Our degree distribution:

P(k; p,

N) =

(

N—1

Tl o)l
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Random networks

Limiting form of P(k; p, N):

» Our degree distribution:

Plp M) — (ot (=)t e

» What happens as N — o0?
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Random networks

Limiting form of P(k; p, N):
» Our degree distribution:
Plkip, N) = ()01 - pM1E.
» What happens as N — ~?
» We must end up with the normal distribution right?
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Random networks

Limiting form of P(k; p, N):

» Our degree distribution:
Plkip, N) = ()01 - pM1E.
» What happens as N — o0?
» We must end up with the normal distribution right?

» If pis fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.
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Random networks Random Networks

Basics
Definitions
How to builc

Structure

Limiting form of P(k; p, N):

» Our degree distribution: i o
P(kip, N) = (Y )pk(1 — o)1k S
What happens as N e OO’? References
We must end up with the normal distribution right?

If pis fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — oc.

v

v

v

4

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and ﬁ\
N — oo with (k) = p(N — 1) = constant. N

N

v
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Limiting form of P(k; p, N):

» Substitute p = ,\<, into P(k; p,

wnm- ()

k)

N —

N) and hold k fixed:

1

i

(k)

N —1

)N—1—k
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Random Networks

Limiting form of P(k; p, N): i

> Substitute p = <L into P(k; p, N) and hold k fixed:

o= () () ()

o (L (1; (k) )”*"k
KI(N —1—K)I (N — 1)k N
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Limiting form of P(k; p, N): Random Networks

Basics

> Substitute p= % into P(k. P, N) and hold k fixed: S»trt}cture

o= () () ()

siae () (k)k 1 AN
_k!(N—1—k)!(N_1)k( *N—1>

References

_N=D(N-2) - (N=K) (R g YV
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Limiting form of P(k; p, N): Random Networks

Basics

> Substitute p= % into P(k. P, N) and hold k fixed: S»tn}chue

P(k;p,N):(N;1> (N<k>1>k<1—N<k>1)N_1_k

siae () (k)k 1 AN
_k!(N—1—k)!(N_1)k( N—1>

References

_N=D(N-2) - (N=K) (R g YV
g z o (1-7s)

ONEIS S - ) oy iinlgh
o KINk (ER L (1_/\/1)
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Limiting form of P(k; p, N): Random Networks

Basics

> Substitute p= % into P(k. P, N) and hold k fixed: S»tn}chue

P(k;p,N):(N;1> (N<k>1>k<1—N<k>1)N_1_k

siae () (k)k 1 AN
_k!(N—1—k)!(N_1)k( N—1>

References

_N=D(N-2) - (N=K) (R g YV
g z o (1-7s)
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Limiting form of P(k; p, N): Random Networks

Basics

> Substitute p= % into P(k. P, N) and hold k fixed: S»tn}chue

P(k;p,N):(N;1> (N<k>1>k<1—N<k>1)N_1_k

siae () (k)k 1 AN
_k!(N—1—k)!(N_1)k( N—1>

References

_N=D(N-2) - (N=K) (R g YV
g z o (1-7s)
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Limiting form of P(k; p, N):

» We are now here:

P(k; p, N)

~

(k)"

(k)

K!

(1

N -1

)N—1—k
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Limiting form of P(k;
» We are now here:

P(k;p, N) ~

p, N):

(k) (k)
k! (1 SN

» Now use the excellent result:

lim

n—oo

(143) e

)N—1-k
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Limiting form of P(k; p, N):

» We are now here:

P(k; p, N) ~ (k) (1 i >N1k

k! N —1

» Now use the excellent result:
: eV
Jm (1+7) =¢"

(Use I'Hépital’s rule to prove.)
> Identifying n =N — 1 and x = —(k):

k —k
P(k; (k)) ~ %e%“ (1 - 7N<’i>1 >
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Basics

Limiting form of P(k; p, N): Random Networks

Definitions

» We are now here:

P(k; p, N) ~ (k) (1 i >N1k

k! N —1

» Now use the excellent result:
: eV
Jm (1+7) =¢"

(Use I'Hépital’s rule to prove.)

> Identifying n =N — 1 and x = —(k):

(¥ - ki oy el &
P(ki (k) = e (k) (1 e N—1> e (k) ﬁQ&

» This is a Poisson distribution () with mean (k). '('1311V'13RS|'1'\' B
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Poisson basics:
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Classic use: probability
that an event occurs k
times in a given time
period, given an
average rate of
occurrence.

e.g.:

phone calls/minute,
horse-kick deaths.

‘Law of small numbers’
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Poisson basics:

» Normalization: we must have

> Pl (k) =1
k=0
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Poisson basics:

» Normalization: we must have

> Pk (k) =
k=0

» Checking:
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Poisson basics:

» Normalization: we must have
> Pl (k) =1
k=0

» Checking:

k=0 k=0
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Poisson basics:

» Normalization: we must have
> Pl (k) =1
k=0

» Checking:

k=0 k=0
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Poisson basics:

» Normalization: we must have
> Pl (k) =1
k=0

» Checking:
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Poisson basics:

» Mean degree: we must have

(k)= KkP(k; (K)).
k=0
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Poisson basics:

» Mean degree: we must have

(k)= KkP(k; (K)).
k=0
» Checking:
i kP(k; (k)) = i k<’;| e 0
k=0 =0
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Poisson basics:

» Mean degree: we must have

oo

(k) = kP(k; (k).
k=0
» Checking:
i kP(k; (k)) = i k<l;| e 0
k=0 k=0
SN
o m;(k—ﬂ!

Random Networks

Basics
Definitions

Structure

Clustering

£ g
; %
E i
/
) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Q> 38 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Poisson basics: Aegon i

Basics
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» Mean degree: we must have
(k) =Y kP(k; (k).
k=0

» Checking:
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Poisson basics:

» Mean degree: we must have

» Checking:
S kP(k; (k)) = S kﬂ g
> ke(ks )= ke
k=0 ;

k
—oron (k<>1)!

Random Networks

Basics

Definitions

NE

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Q> 38 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Poisson basics:

» Mean degree: we must have

» Checking:
S kP(k; (k)) = S kﬂ g
> ke(ks )= ke
k=0 ;

k=0
s
= m;(k—ﬂ!
& — (k) G
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Poisson basics:

» Mean degree: we must have

(k) = kP(k: (k)
k=0
» Checking:
i kP(k; (k)) = i k“;(‘lke'w
k=0 k=0 j
Sl
o m;(k—ﬂ!
N R
= (k)e <k>k§(ki1)I
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Poisson basics:

» Mean degree: we must have

(k)= kP(k: (k)
k=0
» Checking:
ikP(k; <k>):ik@ s
k=0 k=0
e R
;(kfﬂl
e 3 s <k>k—1
(k)e m;(kfnl

» Note: We'll get to a better and crazier way of doing this...
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Use calculation similar to one for finding (k) to find
the second moment:

(k%) = (K)? + (K).
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Use calculation similar to one for finding (k) to find
the second moment:

(K?) = (k)? + (k).
» Variance is then

o? = (K?) - {k)?
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Use calculation similar to one for finding (k) to find
the second moment:

(K?) = (k)? + (k).
» Variance is then

0? = (K?) — (k)2 = (K) + (K) — (K)?
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Poisson basics: Aegon i

Basics

» The variance of degree distributions for random
networks turns out to be very important.

Structure

» Use calculation similar to one for finding (k) to find
the second moment:

<k2> — <k>2 —l— <k> Re%f’ereﬂces
» Variance is then

0 = (K2) = (k)2 = (K% + (k) = ()2 = (k).
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Poisson basics:

» The variance of degree distributions for random
networks turns out to be very important.

» Use calculation similar to one for finding (k) to find
the second moment:

(K?) = (k)? + (k).
» Variance is then

0® = (K%) — (k)? = (K)® + (k) — (k)® = (k).

» So standard deviation o is equal to \/ (k).
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Poisson basics: el

Basics
» The variance of degree distributions for random - A
networks turns out to be very important. i
» Use calculation similar to one for finding (k) to find #

the second moment:
<k2> o <k>2 2l <k> Re%eremces
» Variance is then

0® = (K%) — (k)? = (K)® + (k) — (k)® = (k).

» So standard deviation o is equal to /(k). ﬁstﬂ/f’)
» Note: This is a special property of Poisson ¥
distribution and can trip us up... -0
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk.
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk.
» Also known as the configuration model. ")

Random Networks

Basics

Definitions

Some visual examples

Structure

ng

References

) B O]
UNIVERSITY |§|
¥-¥ vervont 18]

A 410f65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk.
» Also known as the configuration model. ")

» Can generalize construction method from ER
random networks.
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk.
» Also known as the configuration model.

» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some distribution
Py and form links with probability

P(link between i and j) oc w;w;.
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General random networks

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk.
» Also known as the configuration model.

» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some distribution
Py and form links with probability

P(link between i and j) oc w;w;.

» But we’ll be more interested in
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General random networks Raridor Nt 38

» So... standard random networks have a Poisson
degree distribution

» Generalize to arbitrary degree distribution Pk. i e
» Also known as the configuration model.

» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some distribution
Py and form links with probability

P(link between i and j) oc w;w;.

» But we’ll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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General random networks Raridor Nt 38

» So... standard random networks have a Poisson
degree distribution
» Generalize to arbitrary degree distribution Pk. i e
» Also known as the configuration model.
» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some distribution
Py and form links with probability

P(link between i and j) oc w;w;.

» But we’'ll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
2. Examining mechanisms that lead to networks with %
certain degree distributions. %‘ﬁl’»‘iﬁ!&‘l}i i
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Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

» N =1000.
> Pyox k7 fork > 1.
» Set Py = 0 (no isolated nodes).
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Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

» N =1000.

> Pyox k7 fork > 1.

» Set Py = 0 (no isolated nodes).

» Vary exponent v between 2.10 and 2.91.
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RandOm networks_ examples Random Networks

Basics
Definitions
How to builc

Structure
Coming up:
Example realizations of random networks with power law
degree distributions:
N = 1000.
Py oc k=7 for k > 1.
Set Py = 0 (no isolated nodes).
Vary exponent ~ between 2.10 and 2.91.
Again, look at full network plus the largest

component. ﬁ\
Nl
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Random networks: examples

Coming up:

Example realizations of random networks with power law
degree distributions:

\4

V. = V= VoV

» Apart from degree distribution, wiring is random.

N = 1000.

Py oc k=7 for k > 1.

Set Py = 0 (no isolated nodes).

Vary exponent ~ between 2.10 and 2.91.
Again, look at full network plus the largest

component.
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Random networks: examples for N=1000 Random e
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Outline

Structure

Random friends are strange
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The edge-degree distribution:

» The degree distribution Py is fundamental for our
description of many complex networks
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The edge-degree distribution:

» The degree distribution Py is fundamental for our
description of many complex networks

» Again: Py is the degree of randomly chosen node.
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The edge-degree distribution:

» The degree distribution Py is fundamental for our
description of many complex networks

» Again: Py is the degree of randomly chosen node.
» A second very important distribution arises from

choosing randomly on edges rather than on nodes.
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The edge-degree distribution:

» The degree distribution Py is fundamental for our
description of many complex networks

» Again: Py is the degree of randomly chosen node.

» A second very important distribution arises from
choosing randomly on edges rather than on nodes.

» Define Qi to be the probability the node at a random
end of a randomly chosen edge has degree k.
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The edge-degree distribution:

>

The degree distribution Py is fundamental for our
description of many complex networks

» Again: Py is the degree of randomly chosen node.

» A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define Q to be the probability the node at a random
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e.,

size):
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The edge-degree distribution:

» The degree distribution Py is fundamental for our
description of many complex networks

» Again: Py is the degree of randomly chosen node.

» A second very important distribution arises from
choosing randomly on edges rather than on nodes.

» Define Qi to be the probability the node at a random
end of a randomly chosen edge has degree k.

» Now choosing nodes based on their degree (i.e.,
size):

KPy
Zk’ k/ Pk/

» Normalized form:

Qx =
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The edge-degree distribution: Random Networks

Basics
» The degree distribution Py is fundamental for our - f
description of many complex networks el
» Again: Py is the degree of randomly chosen node.

» A second very important distribution arises from
choosing randomly on edges rather than on nodes.

» Define Qi to be the probability the node at a random elorances
end of a randomly chosen edge has degree k.

» Now choosing nodes based on their degree (i.e.,
size):

KPe P
Sw—okPu (k)

» Normalized form:

Qx =

) B (o]
UNIVERSITY |§|
¥-¥ vervont 18]

Q> 46 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

The edge-degree distribution: Random Networks

Basics

Definitions

» For random networks, Q is also the probability that
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The edge-degree distribution:

» For random networks, Q is also the probability that
a friend (neighbor) of a random node has k friends.

» Useful variant on Qj:

Ry = probability that a friend of a random node has
k other friends.

Random Networks

Basics

References

) B O]
UNIVERSITY |§|
¥-¥ vervont 18]

Q> 47 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

The edge-degree distribution:

» For random networks, Q is also the probability that
a friend (neighbor) of a random node has k friends.

» Useful variant on Qj:

Ry = probability that a friend of a random node has
k other friends.

(K +1)Pyyq

R, =
« 2 ol ol PR
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The edge-degree distribution:
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» For random networks, Q is also the probability that
a friend (neighbor) of a random node has k friends.

» Useful variant on Qj:

Ry = probability that a friend of a random node has
k other friends.
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The edge-degree distribution:

» For random networks, Q is also the probability that
a friend (neighbor) of a random node has k friends.

» Useful variant on Qj:

Ry = probability that a friend of a random node has
k other friends.

(k +1)Pgyq SOl ey

S P R T

R

» Equivalent to friend having degree k + 1.
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The edge-degree distribution:

» For random networks, Q is also the probability that
a friend (neighbor) of a random node has k friends.

» Useful variant on Qj:

Ry = probability that a friend of a random node has

k other friends.

(K +1)Pyyq

(K +1)Pryq

R

¥ > wolK + 1)Prryq

(k)

» Equivalent to friend having degree k + 1.

» Natural question: what’s the expected number of

other friends that one friend has?
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The edge-degree distribution:

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

IS

(k)g = _ KRk
k=0
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The edge-degree distribution: R ool

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

is
:kijo ikk+1)Pk+1

k=0
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The edge-degree distribution:

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

is
i ik k+1)Pk+1

k=0

3

]
= W;k(lﬂr 1) Pry1
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The edge-degree distribution:

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

is
i ik k+1)Pk+1

k=0

3

1
" > k(K +1)Pry
k=1
1 o0

=®Z((k+1)2

k=1
(where we have sneakily matched up indices)

—(k+1))Pk+1

Random Networks

Basics
Defir S
How

Structure

References

) B O]
UNIVERSITY |§|
¥-¥ vervont 18]

Q> 48 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

The edge-degree distribution:

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

is
i ik k+1)Pk+1

k=0

3

1
" > k(K +1)Pry
k=1
1 o0

=®Z((k+1)2

k=1
(where we have sneakily matched up indices)

1 o0
== > (F - )P,
i 2V =P

—(k+1))Pk+1

(using j = k+1)
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The edge-degree distribution:

» Given Ry is the probability that a friend has k other
friends, then the average number of friends’ other friends

is
i ik k+1)Pk+1

k=0

3

1
= > k(K +1)Pry
k=1
1 oo
= (Genl
o=
(where we have sneakily matched up indices)

1 o0
== > (F - )P,
i 2V =P

—(k+1))Pk+1

(using j = k+1)

o G
—<>(<k> (k))
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Random Networks

The edge-degree distribution:
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> Note: our result, (k)g = 7 ((K?) — (k)), is true for
all random networks, independent of degree
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The edge-degree distribution:

» Note: our result, (k)p ( > ((k?) — (k)), is true for

all random networks, independent of degree
distribution.

» For standard random networks, recall

(K?) = (k)2 + (K).
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The edge-degree distribution:

|_.

» Note: our result, (k)g =

all random networks, ind
distribution.

» For standard random networks, recall

((k?) — (k)), is true for
endent of degree

k

—
23

(¢}
©

(K?) = (k)2 + (K).

» Therefore:
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The edge-degree distribution: Random Networks

Basics
De

|_.

» Note: our result, (k)g =

all random networks, ind
distribution.

» For standard random networks, recall

((k?) — (k)), is true for
endent of degree

k

—
23

Structure

(¢}
©

(k%) = (k)? + (k).
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The edge-degree distribution:

Basics
Definitio

> Note: our result, (k)g = 7 ((K?) — (k)), is true for
all random networks, independent of degree
distribution.

» For standard random networks, recall

(K?) = (k)2 + (K).

References

» Therefore:
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» Again, neatness of results is a special property of the
Poisson distribution.
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The edge-degree distribution:

> Note: our result, (k)g = 7 ((K?) — (k)), is true for
all random networks, independent of degree
distribution.

» For standard random networks, recall
(k2) = (k)% + (k).

» Therefore:

» Again, neatness of results is a special property of the

Poisson distribution.

» So friends on average have (k) other friends, and
(k) + 1 total friends...
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Two reasons why this matters

Reason #1:
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Two reasons why this matters
Reason #1:

» Average # friends of friends per node is

(ka) = (k) x (k)R
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TWO reasons Why th|S matters Random Networks
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Reason #1:

» Average # friends of friends per node is

(e} = (k) x (K} = <k><1—> ((K?) - (K)
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Two reasons why this matters

Reason #1:

» Average # friends of friends per node is

(ka) = (k) x (k)R = (k)

]
(

)

(k%) = (k) = (K?) = (k).
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Two reasons why this matters fera

Basics

Definitions

Reason #1:

» Average # friends of friends per node is

(e} = (k) x (K} = <k><1—> ((K2) — (K)) = (K) = (k).

analysis

References

» Key: Average depends on the 1st and 2nd moments of Pk
and not just the 1st moment.
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Reason #1:

» Average # friends of friends per node is

(ka) = (k) x (k)R = <k><1'> (k%) = (k) = (K?) = (k).

References

» Key: Average depends on the 1st and 2nd moments of Pk
and not just the 1st moment.

» Three peculiarities:
1. We might guess (ko) = (k)((k) — 1) but it's actually
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(ka) = (k) x (k)R = <k><1'> (k%) = (k) = (K?) = (k).

References

» Key: Average depends on the 1st and 2nd moments of Pk
and not just the 1st moment.

» Three peculiarities:
1. We might guess (ko) = (k)((k) — 1) but it's actually
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Two reasons why this matters

Reason #1:

» Average # friends of friends per node is

(ka) = (k) x (k)R = (k)

» Key: Average depends on the 1st and 2nd moments of Py
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)

and not just the 1st moment.

» Three peculiarities:
1. We might guess (ko) = (k)((k) — 1) but it's actually

2

(k(k —1)).

(k%) = (k) = (K?) = (k).

If Px has a large second moment,

then (ko) will be big.

(e.g., in the case of a power-law distribution)
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Two reasons why this matters

Reason #1:

» Average # friends of friends per node is

(ka) = (k) x (k)R = (k)

» Key: Average depends on the 1st and 2nd moments of Py

]
(
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and not just the 1st moment.

» Three peculiarities:
1. We might guess (ko) = (k)((k) — 1) but it's actually

2

(k(k —1)).

(k%) = (k) = (K?) = (k).

If Px has a large second moment,

then (ko) will be big.

(e.g., in the case of a power-law distribution)
3. Your friends really are different from you...
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Two reasons why this matters

More on peculiarity #3:

» A node’s average # of friends: (k)
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Two reasons why this matters

More on peculiarity #3:

» A node’s average # of friends: (

» Friend’s average # of friends:

(k
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Two reasons why this matters

More on peculiarity #3:

» A node’s average # of friends: (k)
2

» Friend’s average # of friends: <—<%
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» Comparison:
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Two reasons why this matters

More on peculiarity #3:

» A node’s average # of friends: (k)

» Friend’s average # of friends: <—<k2—>

[~

» Comparison:
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Two reasons why this matters fera

Basics

More on peculiarity #3:

» A node’s average # of friends: (k)
2

» Friend’s average # of friends: %
» Comparison:
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Two reasons why this matters fera

Basics

More on peculiarity #3:

» A node’s average # of friends: (k)
2

» Friend’s average # of friends: <<"T>
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TWO reasons Why th|s matters Random Networks

Basics

More on peculiarity #3:

» A node’s average # of friends: (k)
(K?)

» Friend’s average # of friends: 0

» Comparison:

G nsle e ol i
7 = W = 00 = 0 (14 ) > 00

» So only if everyone has the same degree

(variance= o2 = 0) can a node be the same as its
friends.
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TWO reasons Why thls matters Random Networks

Basics
Definitions
How to buil

More on peculiarity #3:

Structure

» A node’s average # of friends: (k)
k

» Friend’s average # of friends: %

» Comparison:

(ke e e e it
T TP e <”<k>2> =

» So only if everyone has the same degree
(variance= o2 = 0) can a node be the same as its
friends.

» Intuition: for random networks, the more connected a
node, the more likely it is to be chosen as a friend.
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Two reasons why this matters

(Big) Reason #2:

» (k)p is key to understanding how well random
networks are connected together.
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Two reasons why this matters

(Big) Reason #2:

» (k)pg is key to understanding how well random
networks are connected together.

» e.9., we'd like to know what'’s the size of the largest
component within a network.
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Two reasons why this matters

(Big) Reason #2:

» (k)pg is key to understanding how well random
networks are connected together.

» e.9., we'd like to know what'’s the size of the largest
component within a network.

» As N — oo, does our network have a giant
component?
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Two reasons why this matters gy

(Big) Reason #2:

» (Kk)pg is key to understanding how well random
networks are connected together. calen vl e

» e.9., we'd like to know what'’s the size of the largest
component within a network.

» As N — oo, does our network have a giant
component?

» Defn: Component = connected subnetwork of nodes
such that 3 path between each pair of nodes in the
subnetwork, and no node outside of the subnetwork
is connected to it.
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Two reasons why this matters gy

(Big) Reason #2:

» (Kk)pg is key to understanding how well random
networks are connected together.

» e.9., we'd like to know what'’s the size of the largest
component within a network.

» As N — oo, does our network have a giant
component?

» Defn: Component = connected subnetwork of nodes
such that 3 path between each pair of nodes in the
subnetwork, and no node outside of the subnetwork
is connected to it.

» Defn: Giant component = component that comprises A EN/
a non-zero fraction of a network as N — oc.

Random friends are strange

1he (o]
ﬁ' UNIVERSITY |§|
¥ VERMONT 10!

Q> 52 of 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Two reasons why this matters gy

(Big) Reason #2:

» (Kk)pg is key to understanding how well random
networks are connected together.

» e.9., we'd like to know what'’s the size of the largest
component within a network.

» As N — oo, does our network have a giant
component?

Random friends are strange

» Defn: Component = connected subnetwork of nodes
such that 3 path between each pair of nodes in the
subnetwork, and no node outside of the subnetwork
is connected to it.

» Defn: Giant component = component that comprises \\E“/
a non-zero fraction of a network as N — oo.

. A ek O

» Note: Component = Cluster ‘me 4
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Structure
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Structure Of random networks Random Networks

Basics
Defir
How

Giant component:

Structure

» A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.
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Structure Of random networks Random Networks
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Giant component:

Structure

» A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.

» Equivalently, expect exponential growth in node ;
number as we move out from a random node. el

) B (o]
UNIVERSITY |§|
¥-¥ vervont 18]

Q> 55 0f 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Structure of random networks

Giant component:

» A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.

» All of this is the same as requiring (k)g > 1.
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Structure of random networks

Giant component:

» A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.

» All of this is the same as requiring (k)g > 1.

» Giant component condition (or percolation condition):
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Structure Of random netWOrkS Random Networks

Basics
Definition:
How to buil

Giant component:
Structure

» A giant component exists if when we follow a random ==
edge, we are likely to hit a node with at least 1 other
outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node. el

» All of this is the same as requiring (k)g > 1.

» Giant component condition (or percolation condition):

» Again, see that the second moment is an essential
part of the story.
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Structure of random networks

Giant component:

» A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other

outgoing edge.

» Equivalently, expect exponential growth in node
number as we move out from a random node.

» All of this is the same as requiring (k)g > 1.
» Giant component condition (or percolation condition):

(K)r

» Again, see that the second moment is an essential

part of the story.

(k?) — (k)

(k)

» Equivalent statement: (k?) > 2(k)

> 1
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Giant component

Standard random networks:
» Recall (k2) = (k)2 + (k).
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Giant component

Standard random networks:
» Recall (k2) = (k)2 + (k).

» Condition for giant component:
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Glant Component Random Networks

Basics
Defin

Standard random networks:
» Recall (k?) = (k)2 + (k).
» Condition for giant component:

(k) = (k) _ {2+ () = (K)
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Glant Component Random Networks

Basics

Standard random networks:
» Recall (k%) = (k)2 + (k).
» Condition for giant component:

<k> g = ity e <k> References

» Therefore when (k) > 1, standard random networks
have a giant component.
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Giant component

Standard random networks:
» Recall (k%) = (k)2 + (k).
» Condition for giant component:

» Therefore when (k) > 1, standard random networks
have a giant component.

» When (k) < 1, all components are finite.
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Random Networks

Giant component

Basics

Standard random networks:
» Recall (k%) = (k)2 + (k).
» Condition for giant component:

<k>R 2 s e <k> References

» Therefore when (k) > 1, standard random networks
have a giant component.

» When (k) < 1, all components are finite.
» Fine example of a continuous phase transition (H).
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Giant component

Standard random networks:

v

v

v

v

v

v

Recall (k?) = (k)2 + (k).
Condition for giant component:

Therefore when (k) > 1, standard random networks
have a giant component.

When (k) < 1, all components are finite.
Fine example of a continuous phase transition (H).

We say (k) = 1 marks the critical point of the system.
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Giant component
Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

k=1
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Giant component

Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

o

(e.9]

=1

k=1

X2 Vdx
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Glant Component ::;cizm Networks
Random networks with skewed Px:

Definitions

Some visual examples

» e.g,if Pc =ck 7 with2 <~ < 3, k> 1, then Stcure

(0.0

o)l ST ke kgl

k=1

oo References
~ / x2~7dx
X—=il
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Some visual examples
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Giant component

Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

o

k=1
x> Vdx
—
=00 (i)
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Giant component
Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

k=1
o0
N/ X2 Vdx
=l
3— A
x X e (> (k)).
Si=

» So giant component always exists for these kinds of
networks.
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Giant component
Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

k=1
o0
N/ X%~ 7dx
=l
o
x x> =l (k).
N

» So giant component always exists for these kinds of

networks.

» Cutoff scaling is k—3: if v > 3 then we have to look

harder at (k)pg.
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Giant component
Random networks with skewed Pk:

» eq,if Pk=ck 7 with2 <~y <3, k>1,then

(k%) = ci k2k=Y

k=1
o0
N/ X%~ 7dx
=l
o
x x> =l (k).
N

» So giant component always exists for these kinds of

networks.

» Cutoff scaling is k—3: if v > 3 then we have to look

harder at (k)pg.
» How about Py = 6k, ?
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Giant component
And how big is the largest component?

» Define S; as the size of the largest component.
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Giant component
And how big is the largest component?

» Define S; as the size of the largest component.

» Consider an infinite ER random network with average

degree (k).

Random Networks

Basics

Definitions

Some visual examples

Structure

Clustering

References

e

) B O]
UNIVERSITY |g|
¥-¥ vervont 18]

Qv 58 0f 65


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Giant component
And how big is the largest component?

» Define S; as the size of the largest component.

» Consider an infinite ER random network with average
degree (k).

» Let’s find S; with a back-of-the-envelope argument.
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Random Networks

Giant component
And how big is the largest component? -

Basics

Structure

» Define S; as the size of the largest component.

» Consider an infinite ER random network with average
degree (k).

» Let’s find S; with a back-of-the-envelope argument.

» Define o as the probability that a randomly chosen node
does not belong to the largest component.
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Random Networks

Giant component
And how big is the largest component?

Basics

» Define S; as the size of the largest component. Clsterng

» Consider an infinite ER random network with average
degree (k).

» Let’s find S; with a back-of-the-envelope argument.
References

» Define o as the probability that a randomly chosen node
does not belong to the largest component.

» Simple connection: § =1 — S;.
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Giant component
And how big is the largest component?

>

>

Define S; as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let’s find S; with a back-of-the-envelope argument.

Define ¢ as the probability that a randomly chosen node
does not belong to the largest component.

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.
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Glant Component Random Networks

Basics

Definitions

And how big is the largest component? o

isual examples

Structure

» Define S; as the size of the largest component. Clsterng

» Consider an infinite ER random network with average
degree (k). g componen

» Let’s find S; with a back-of-the-envelope argument.

» Define o as the probability that a randomly chosen node
does not belong to the largest component.

» Simple connection: § =1 — S;.

» Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

» So

V= i Pis"
k=0
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Giant component
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Structure

N 2 Sl
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» Now substitute in § = 1 — S; and rearrange to obtain:
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» We can figure out some limits and details for
S irohs
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» We can figure out some limits and details for
81 =1— e—<k>31.
» First, we can write (k) in terms of S;:
1 1
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» We can figure out some limits and details for
S1=1- e kS,
» First, we can write (k) in terms of S;:

1 1
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» We can figure out some limits and details for
Si=1- e sy

» First, we can write (k) in terms of S;:

1 1

» As (k) - 0,S; — 0.
» As (k) — 00, S1 — 1.

» Notice that at (k) = 1, the critical point, S; = 0.
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» First, we can write (k) in terms of S;:
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» As (k) — 0, Sy — 0.
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» Notice that at (k) = 1, the critical point, S; = 0.
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VoV oA V-V

We can figure out some limits and details for

1

S1=1- e kS,
First, we can write (k) in terms of S;:
1
k)= =
V==

As (k) — 0, S; — 0.
As (k) — 00, Sy — 1.

Notice that at (k) = 1, the critical point, Sy = 0.

N
1-8,

Only solvable for Sy > 0 when (k) > 1.
Really a transcritical bifurcation.
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Giant component

Turns out we were lucky...

» Our dirty trick only works for ER random networks.
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Turns out we were lucky...

» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have the
same probability 4 of belonging to the largest
component.
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Turns out we were lucky...

» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have the
same probability 4 of belonging to the largest
component.

» But we know our friends are different from us...

» Works for ER random networks because (k) = (k)pg.
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» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have the
same probability 4 of belonging to the largest
component.

» But we know our friends are different from us...
» Works for ER random networks because (k) = (k)pg.

» We need a separate probability 4’ for the chance that
an edge leads to the giant (infinite) component.
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» Our dirty trick only works for ER random networks.

» The problem: We assumed that neighbors have the
same probability 4 of belonging to the largest
component.

» But we know our friends are different from us...
» Works for ER random networks because (k) = (k)pg.

» We need a separate probability 4’ for the chance that
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» We can sort many things out with sensible ﬂ\
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