

Random networks
A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\langle k\rangle=\frac{2\langle m\rangle}{N}
$$

$$
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} A(N-1)=p(N-1) .
$$

－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as $N \rightarrow \infty$ ．

Random networks：examples for $N=500$

$\begin{aligned} & m=100 \\ & \langle k\rangle=0.4 \end{aligned}$	$\begin{aligned} & m=200 \\ & \langle k\rangle=0.8 \end{aligned}$	$\begin{aligned} & m=230 \\ & \langle k\rangle=0.92 \end{aligned}$	$\begin{aligned} & m=240 \\ & \langle k\rangle=0.96 \end{aligned}$	$\begin{aligned} & m=250 \\ & \langle k\rangle=1 \end{aligned}$
$\begin{aligned} & m=260 \\ & \langle k\rangle=1.04 \end{aligned}$	$\begin{aligned} & m=280 \\ & \langle k\rangle=1.12 \end{aligned}$	$\begin{aligned} & m=300 \\ & \langle k\rangle=1.2 \end{aligned}$	$\begin{aligned} & m=500 \\ & \langle k\rangle=2 \end{aligned}$	$\begin{aligned} & m=1000 \\ & \langle k\rangle=4 \end{aligned}$

Random networks：largest components

Ansum

15man
๑ดく 22 of 65

Random networks：examples for $N=500$

義
๑ac 9 of 65
$m=250$
$\langle k\rangle=1$
$m=250$
$\langle k\rangle=1$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

Random Networks
Basics
Basics
Definilions
How o ould
Somevisual examples
Structure

Cltuscturing

Degserine distributions
Configuration model
Conifiguration model
Random triends are strang
Largest component
Sinple
physicalyly－molvaled
References

๑ดく 24 of 65

Random Networks
Basics
Definitions
How lo build
Somen visual exampoles
Structure
Structure
Clustering
\qquad
Random triends ares strange
Largest component
Simple，
physliclly－motivaled
analysis
References

๑ดく 25 of 65

Clustering in random networks：
－For method 1 ，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient：${ }^{[1]}$

$$
C_{2}=\frac{3 \times \text { \#triangles }}{\# \text { triples }}
$$

Random Networks
Basics
Defintions
How to buld
Some visual examples
Structure
Clustering Clustering
Degere distributions
Conifuuation model
and
Random friends are strange
Largest component
Simple． Simplea，
phylisaly．molvated
analyssis References
－Recall：$C_{2}=$ probability that two friends of a node are also friends．
－Or：$C_{2}=$ probability that a triple is part of a triangle．
－For standard random networks，we have simply that

$$
C_{2}=p
$$

直

Other ways to compute clustering：
－Expected number of triples in entire network：

$$
\frac{1}{2} N(N-1)(N-2) p^{2}
$$

（Double counting dealt with by $\frac{1}{2}$ ．）
－Expected number of triangles in entire network：

$$
\frac{1}{6} N(N-1)(N-2) p^{3}
$$

（Over－counting dealt with by $\frac{1}{6}$ ．）
－

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}=\frac{3 \times \frac{1}{6} N(N-1)(N-2) p^{3}}{\frac{1}{2} N(N-1)(N-2) p^{2}}=p .
$$

Other ways to compute clustering：
－Or：take any three nodes，call them a, b ，and c ．
－Triple $a-b-c$ centered at b occurs with probability $p^{2} \times(1-p)+p^{2} \times p=p^{2}$ ．
－Triangle occurs with probability p^{3} ．
－Therefore，

$$
C_{2}=\frac{p^{3}}{p^{2}}=p
$$

Clustering in random networks：

Random Networks Basics
Dasillitions
How o oulld
Some visual examples．
Structure Clustering
Deoree distributions
Configuration model Random triends are strange Largest component
Simpe，
physically－moivated References
 つのく 28 of 65

Random Networks Basics Defintions
How lo buld Some visual examples Structure Clustering Decreene distributions
Configualon model Random triends are strang Largest component
Simpoe
physivaly
analysulvated References
 ๑ac 30 of 65

Random networks
Degree distribution：
－Recall $P_{k}=$ probability that a randomly selected node has degree k ．
－Consider method 1 for constructing random networks：each possible link is realized with probability p ．
－Now consider one node：there are＇$N-1$ choose k＇ ways the node can be connected to k of the other $N-1$ nodes．
－Each connection occurs with probability p ，each non－connection with probability $(1-p)$ ．
－Therefore have a binomial distribution：

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k} .
$$

Random networks

Limiting form of $P(k ; p, N)$ ：
－Our degree distribution：

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

－What happens as $N \rightarrow \infty$ ？
Random Networks
Basics
Defintions
How lo build
How to build
Some visual examples
Structure
Clustering
Cusereeng distributions
Randouration modeal
Largest triemponsenent
physically－molvated
analysis
References

๑ดく 32 of 65

Random Networks
Basics
Defifilions
How to build
Some visul
Some visual examples
Structure
Clustering
Dogreo distributions
Coniguration modal
Random triends are strange
Largest component
Largest component
Simple．
physliclly－motivated
analysis
－We must end up with the normal distribution right？
－If p is fixed，then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$ ．
－But we want to keep $\langle k\rangle$ fixed．．．
－So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

Limiting form of $P(k ; p, N)$ ：

$$
\text { Substitute } p=\frac{\langle k\rangle}{N-1} \text { into } P(k ; p, N) \text { and hold } k \text { fixed: }
$$

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
& \simeq \frac{A^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{K}{N}\right)}{k!D^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

References

つดल 34 of 65

Limiting form of $P(k ; p, N)$ ：
－We are now here：

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

－Now use the excellent result：

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

（Use l＇Hôpital＇s rule to prove．）
－Identifying $n=N-1$ and $x=-\langle k\rangle$ ：

$$
P(k ;\langle k\rangle) \simeq \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}\left(1-\frac{\langle k\rangle}{N-1}\right)^{-k} \rightarrow \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

－This is a Poisson distribution（ \boxplus ）with mean $\langle k\rangle$ ．

Poisson basics：

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

－$\lambda>0$
－$k=0,1,2,3, \ldots$

－Classic use：probability that an event occurs k times in a given time period，given an average rate of occurrence．
－e．g．： phone calls／minute， horse－kick deaths．
－＇Law of small numbers＇

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

－Checking：

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle}=1 \checkmark
\end{gathered}
$$

Random Networks
Basics
Basics
Defintions
Deifintions
How o buld
Some visual examples
Structure Degaree distrtibutions Configuatistiontons
Largest component Simple，
physilaty－moivated
analvysis

References

美
๑のく 35 of 65

Random Networks
Basics
Defintions
How 10 build
Some visual examples
Structure
Clustering
Dissering distibutions
Cogniouration modol
Randoo triends are strang
Latrgst component
Simple
physicaly－molvated
References

のดく 36 of 65

metwor

Basics
Defintions
How obuld
How lo build
Structure
Clustaring
Dogeoe distribution Degree distributions
Random triends are strang
Largest component Largest component
Simple
physicaly
nomivivated
nolusis References

A のดく 37 of 65

Poisson basics：
－Mean degree：we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle) .
$$

－Checking：

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=\langle k\rangle \checkmark
\end{gathered}
$$

－Note：We＇ll get to a better and crazier way of doing this．．．

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model．${ }^{[1]}$
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$P($ link between i and $j) \propto w_{i} w_{j}$.

－But we＇ll be more interested in
1．Randomly wiring up（and rewiring）already existing nodes with fixed degrees．
2．Examining mechanisms that lead to networks with certain degree distributions．

Random Networks
Basics
Defintions
How lo build
Some visual examples
St
Structure
Clustering Pegereedistributions
Rangoratitrends made strany
Largest component
simpleal．
hysically－molvaled
References

Random networks：examples for $N=1000$

Random networks：largest components

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

$$
Q_{k} \propto k P_{k}
$$

－Normalized form：

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}=\frac{k P_{k}}{\langle k\rangle}
$$

⿹ロく 43 of 65

Random Networks
Basics
Defintions
How to build
Some visual Structure Structure
Clustering Decraere ilistributions
Configuation model Rancoos triends are strang
Largest component
Simple，
phrically－motvated
analysis References

صดc 44 of 65

Random Networks
Basics
Defintions
How obuld
Some visual examples
Structure
Clustoring
Degree distribulons Configuration model
Random triendsare strange $\underset{ }{\text { Random fitiends are stral }}$ Largest component
Simple
physically－mativaled
 References
 つดल 46 of 65

The edge－degree distribution：
－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．
－

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

$$
\begin{gathered}
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } j=k+1) \\
=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
\end{gathered}
$$

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．．．

Random Networks

Basics
Basics
Definilions
How o ould
Hown wo buid
Some visual examples
Structure
Structure
Clustering
Clustering
Degree distributions
Configuration model
Random friends are strange
Larases component
simple．
physicilly－molvain
analysis
References

๑のく 47 of 65

Random Networks
Basics
Definitions
How to build
Some visual examplos
Structure
Clustering
Degree distributions
Configuraton model
Random triends are stran
Random triends are strange
Carases component
Simple
physicaly－motivated
References

5an
صのく 48 of 65

Random Networks
Basics
Definitions
How 10 buid
Some visual examplios
Structure
Clustering
Degree distributions
Configuration model
Largest component
Simplei．
phtysily．－molvated
analysls
References

のดく 49 of 65

Two reasons why this matters

Reason \＃1：

－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
－Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．
（e．g．，in the case of a power－law distribution）
3．Your friends really are different from you．．．

Two reasons why this matters

More on peculiarity \＃3：
－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Two reasons why this matters

（Big）Reason \＃2：

－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork is connected to it．
－Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component＝Cluster

かのく 50 of 65

Random Networks Basics
Defintions
How lo build
Some visual examples
Structure Clustering Degree elistributions
Configuration model Configuration modol
Random triends are stran Randoom friends are strange
LLargest componenent
Simole． Simple
phyylicly－molvated
analysis References
\qquad

 のดく 51 of 65

Random Networks
Basics
Defifitions
How to build
Deinitions
How to build
Some visual examples
Structure
Clustering
Degree distribuilons Conifiguration modol
Random triends are strano $\underset{\substack{\text { Random triends are strange } \\ \text { Largest component }}}{\text { ．}}$ Largestcomponent
Simple
phyilaly－molvaled
analisisis References

[^0] つのく 52 of 65

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
－Giant component condition（or percolation condition）：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

－Again，see that the second moment is an essential part of the story．
－Equivalent statement：$\left\langle k^{2}\right\rangle>2\langle k\rangle$

Giant component

Standard random networks：
－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．
－We say $\langle k\rangle=1$ marks the critical point of the system．

๑のく 54 of 65

Random Networks
Basics
Definitions
Definitions
How to build
Some visual examples
Structure
Structure
Clustering
Clustering
Degree distributio
Contiguration model
Random triends are strange
Random triends are stran
Latroest component
Simple
physically－molvat
analysls
References

๑ดc 55 of 65

Random Networks
Basics
Defintions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Random friends are stran
Largest componenent
Simple．
phylly．molvaled
analysisss
References

つのल 56 of 65

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$ ，then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．
－How about $P_{k}=\delta_{k k_{0}}$ ？

Giant component

And how big is the largest component？
－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．
－So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

－Substitute in Poisson distribution．．．

Giant component

－Carrying on：

$$
\begin{aligned}
& \delta= \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
&=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
&=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)} .
\end{aligned}
$$

－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

$$
S_{1}=1-e^{-\langle k\rangle S_{1}}
$$

Random Networks
Basics
Defintions
Deifintions
How to buld
Some visual examples
Structure
Clustering
Clustering
Degree distributions
Configuration model
Random triends are strang
$\underset{\substack{\text { Largest component } \\ \text { Simple }}}{\text { S．o．}}$
Simple，
physilly－moivaled
analyslss
References

のQく 57 of 65

Random Networks Basics

－Winvergity \mid og
つのく 58 of 65

Random Networks
Basics
Definions
How wo build
Some visual examples
Structure
Clustering
Degree elistribulions
Contiguration model

Random triends are strange Random friends are st $\stackrel{\text { Largost componen！}}{\text { Simple }}$ | Simple |
| :---: |
| $\substack{\text { phyyicaly } \\ \text { analisisis．}}$ |
| andivated | References

 のดく 59 of 65

Giant component
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, S_{1} \rightarrow 0$ ．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
－Only solvable for $S_{1}>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation．${ }^{[2]}$

Giant component

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that an edge leads to the giant（infinite）component．
－We can sort many things out with sensible probabilistic arguments．．．
－More detailed investigations will profit from a spot of Generatingfunctionology．${ }^{[3]}$

Random Networks
Basics
Definilions
How o ould
Hown loons buid
Some visual examples
Structure
Clustering
Custering
Degiestibutions
Configuration model
Random triends are stran
Largost component
Simple
physicaly－molvaled
References

صดc 60 of 65

Random Networks
Basics
Definitions
How to build
Some visual examplos
Structure
Clustering
Clusterng
Degree distributions
Contiguration model
Random triends are stranem
LLargest componell

References

صのく 61 of 65

Random Networks
Basics
Defintions
How to buld
Some visual examples
Structure
Structure
Clustering
Degree distribuitions
Contiguration model
Configuration model
Random friends are strange
Largest componenent

References

[^1]

つのく 64 of 65

Random Networks
Basics
Basics
Defintions
How lo build
How lo bula
Some visual examples
Structure
Clustering
Clustering
Dogere istribuitions
Configuration model
Pelt
Random triends are strang
Largest component
Sinple，
physically－motivated
References

つのल 65 of 65

[^0]: ｜Mnuma

[^1]: 1）
 のดく 62 of 65

