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Narrative hierarchy

Presenting at many scales:

I 1 to 3 word encapsulation, a sound bite,
I a sentence/title,
I a few sentences,
I a paragraph,
I a short paper,
I a long paper,
I . . .
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I Develop and elaborate an online experiment to study
some aspect of social networks

I e.g., collective search, cooperation, cheating,
influence, creation, decision-making, etc.

I Part of the PLAY project.
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Explore and critique Fowler and Christakis et al.
work on social contagion of:

images in Figure 1 generates a matrix of shortest network path
distances from each node to all other nodes in the network and
repositions nodes so as to reduce the sum of the difference between
the plotted distances and the network distances (Kamada & Kawai,
1989). The fundamental pattern of ties in a social network (known
as the “topology”) is fixed, but how this pattern is visually ren-
dered depends on the analyst’s objectives.

Results

In Figure 1, we show a portion of the social network, which
demonstrates a clustering of moderately lonely (green nodes) and
very lonely (blue nodes) people, especially at the periphery of the
network. In the statistical models, the relationships between lone-
liness and number of social contacts proved to be negative and
monotonic, as illustrated in Figure 1 and documented in Table 3.

To determine whether the clustering of lonely people shown in
Figure 1 could be explained by chance, we implemented the
following permutation test: We compared the observed network
with 1,000 randomly generated networks in which we preserved
the network topology and the overall prevalence of loneliness but

in which we randomly shuffled the assignment of the loneliness
value to each node (Szabo & Barabasi, 2007). For this test, we
dichotomized loneliness to be zero if the respondent said they were
lonely 0–1 days the previous week, and one otherwise. If cluster-
ing in the social network is occurring, then the probability that an
LP is lonely, given that an FP is lonely, should be higher in the
observed network than in the random networks. This procedure
also allows us to generate confidence intervals and measure how
far, in terms of social distance, the correlation in loneliness be-

Figure 1. Loneliness clusters in the Framingham Social Network. This graph shows the largest component of
friends, spouses, and siblings at Exam 7 (centered on the year 2000). There are 1,019 individuals shown. Each
node represents a participant, and its shape denotes gender (circles are female, squares are male). Lines between
nodes indicate relationship (red for siblings, black for friends and spouses). Node color denotes the mean number
of days the focal participant and all directly connected (Distance 1) linked participants felt lonely in the past
week, with yellow being 0–1 days, green being 2 days, and blue being greater than 3 days or more. The graph
suggests clustering in loneliness and a relationship between being peripheral and feeling lonely, both of which
are confirmed by statistical models discussed in the main text.

Table 3
Mean Total Number of Social Contacts for People in Each of
the Four Loneliness Categories

Variable
M no. of social contacts

(friends and family combined) SE

Felt lonely 0–1 days last week 4.03 0.05
Felt lonely 1–2 days last week 3.88 0.11
Felt lonely 3–4 days last week 3.76 0.21
Felt lonely 5–7 days last week 3.42 0.28

981STRUCTURE AND SPREAD OF LONELINESS

I Obesity [6]

I Smoking
cessation [7]

I

Happiness [10]

I

Loneliness [4]

One question: how does the (very) sparse sampling of a
real social network affect their findings?
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I Explore “self-similarity of complex networks” [21, 22]

First work by Song et al., Nature, 2005.
I See accompanying comment by Strogatz [23]

..............................................................

Self-similarity of complex networks
Chaoming Song1, Shlomo Havlin2 & Hernán A. Makse1

1Levich Institute and Physics Department, City College of New York, New York,
New York 10031, USA
2Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan
52900, Israel
.............................................................................................................................................................................

Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.

letters to nature
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©!!""#!Nature Publishing Group!
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I Study Hidalgo et
al.’s “The Product
Space Conditions
the Development
of Nations” [13]

I How do products
depend on each
other, and how
does this network
evolve?
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with r0g~5:8 km, br5 1.656 0.15 and k5 350km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t), t3/(21 b)

(ref. 21), whereas, for an RW, rg(t), t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T)# 3 km),
medium (20, rg(T)# 30 km) or large (rg(T). 100 km) at the end
of our observation period (T5 6months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T5 6months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg

!!" #
*r{a

g F Dr
$
rg

" #
, where a< 1.26 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x), x2a for x, 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that themeasured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to amobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.

LETTERS NATURE |Vol 453 |5 June 2008

780
Nature   Publishing Group©2008

©!2006!Nature Publishing Group!
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).

NATURE|Vol 439|26 January 2006 LETTERS

463

I Study movement and
interactions of people.

I Brockmann et al. [2] “Where’s
George” study.

I Barabasi’s group: tracking
movement via cell phones [11].
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topics:

Explore “Catastrophic cascade of failures in
interdependent networks” Buldyrev et al., Nature 2010 [3].

continue this process until no further splitting and link removal can
occur (Fig. 2d). We find that this process leads to a percolation phase
transition for the two interdependent networks at a critical threshold,
p5 pc, which is significantly larger than the equivalent threshold for a
single network. As in classical network theory21–25, we define the giant
mutually connected component to be themutually connected cluster
spanning the entire network. Below pc there is no giant mutually
connected component, whereas above pc a giant mutually connected
cluster exists.

Our insight based on percolation theory is that when the network
is fragmented, the nodes belonging to the giant component connect-
ing a finite fraction of the network are still functional, whereas the
nodes that are part of the remaining small clusters become non-
functional. Therefore, for interdependent networks only the giant

mutually connected cluster is of interest. The probability that two
neighbouring A-nodes are connected by A«B links to two neigh-
bouring B-nodes scales as 1/N (Supplementary Information). Hence,
at the end of the cascade process of failures, above pc only very small
mutually connected clusters and one giant mutually connected clus-
ter exist, in contrast to traditional percolation, wherein the cluster
size distribution obeys a power law. When the giant component
exists, the interdependent networks preserve their functionality; if
it does not exist, the networks split into small fragments that cannot
function on their own.

We apply our model first to the case of two Erdo0 s–Rényi net-
works21–23 with average degrees ÆkAæ and ÆkBæ. We remove a random
fraction, 12 p, of the nodes in network A and follow the iterative
process of forming a1-, b2-, a3-, …, b2k- and a2k11-clusters as
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a b c d

Figure 2 | Modelling an iterative process of a cascade of failures. Each
node in network A depends on one and only one node in network B, and vice
versa. Links between the networks are shown as horizontal straight lines, and
A-links and B-links are shown as arcs. a, One node from network A is
removed (‘attack’). b, Stage 1: a dependent node in network B is also
eliminated and network A breaks into three a1-clusters, namely a11, a12 and
a13. c, Stage 2: B-links that link sets of B-nodes connected to separate a1-
clusters are eliminated and network B breaks into four b2-clusters, namely

b21, b22, b23 and b24. d, Stage 3: A-links that link sets of A-nodes connected to
separate b2-clusters are eliminated and network A breaks into four a3-
clusters, namely a31, a32, a33 and a34. These coincidewith the clusters b21, b22,
b23 and b24, and no further link elimination and network breaking occurs.
Therefore, each connected b2-cluster/a3-cluster pair is a mutually connected
cluster and the clusters b24 and a34, which are the largest among them,
constitute the giant mutually connected component.

a b c

Figure 1 | Modelling a blackout in Italy. Illustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
200320. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
network and as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)

at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. c, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).
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Solving equations analytically in 
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Supplementary Figure 2: The simplest possible incarnation of our model, discussed in the main paper in connection with
Figure 1. It reproduces [32] the observation of a power-law with exponent value of approximately 2.5. For illustration
purposes in this figure, we show νfrag = ν and νcoal = (1 − ν), but we note that νfrag and νcoal do not have to satisfy
such a relationship for the 2.5 value result to emerge. Indeed, the 2.5 analytic result [32] is remarkably robust to additional
generalizations (e.g. multiple groups coalescing, fluctuating N , and even the addition of an internal character (i.e. hidden
variable) in the model: see B. Ruszczycki et al. physics/0808.0032 at LANL arXiv which is referenced in the main paper).
The inset shows the master equations for the model, which yield analytically the 2.5 result[32]. Note that the term ‘group’
is equivalent to a ‘cluster’. Clusters (and cluster master equations) are terms which are likely to be more familiar to readers
from the physical or chemical sciences.

doi: 10.1038/nature08631 SUPPLEMENTARY INFORMATION
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Study work that started
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“Variation of the
frequency of fatal
quarrels with
magnitude” in 1949.

I Specifically explore
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work [8, 14, 1] on terrorist
attacks and civil wars
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Culturomics—explore ‘book networks’

“Quantitative analysis of culture using millions of digitized
books” by Michel et al., Science, 2011 [18]

enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention
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Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.
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to widespread impact (frequency >25% of peak).
Since then, the cultural adoption of technology has
become more rapid. The 1840–1880 invention
cohort was widely adopted within 50 years; the
1880–1920 cohort within 27 (Fig. 3B and fig. S7).

“In the future, everyone will be famous for
7.5minutes” –Whatshisname. People, too, rise to
prominence, only to be forgotten (22). Fame can be
tracked by measuring the frequency of a person’s
name (Fig. 3C). We compared the rise to fame of
the most famous people of different eras. We took
all 740,000 people with entries in Wikipedia,
removed cases where several famous individuals
share a name, and sorted the rest by birth date and
frequency (23). For every year from 1800 to 1950,
we constructed a cohort consisting of the 50 most

famous people born in that year. For example, the
1882 cohort includes “Virginia Woolf” and “Felix
Frankfurter”; the 1946 cohort includes “Bill
Clinton” and “Steven Spielberg”. We plotted the
median frequency for the names in each cohort
over time (Fig. 3,D andE). The resulting trajectories
were all similar. Each cohort had a pre-celebrity
period (median frequency <10−9), followed by a
rapid rise to prominence, a peak, and a slow de-
cline.We therefore characterized each cohort using
four parameters: (i) the age of initial celebrity, (ii)
the doubling time of the initial rise, (iii) the age of
peak celebrity, and (iv) the half-life of the decline
(Fig. 3E). The age of peak celebrity has been con-
sistent over time: about 75 years after birth. But
the other parameters have been changing (fig. S8).

Fame comes sooner and rises faster. Between the
early 19th century and the mid-20th century, the
age of initial celebrity declined from 43 to 29
years, and the doubling time fell from 8.1 to 3.3
years. As a result, the most famous people alive
today are more famous—in books—than their
predecessors. Yet this fame is increasingly short-
lived: The post-peak half-life dropped from 120
to 71 years during the 19th century.

We repeated this analysis with all 42,358
people in the databases of the Encyclopaedia
Britannica (24), which reflect a process of expert
curation that began in 1768. The results were
similar (7) (fig. S9). Thus, people are getting more
famous than ever before but are being forgotten
more rapidly than ever.

Fig. 4. Culturomics can be used to
detect censorship. (A) Usage frequen-
cy of “Marc Chagall” in German (red)
as compared to English (blue). (B)
Suppression of Leon Trotsky (blue),
Grigory Zinoviev (green), and Lev
Kamenev (red) in Russian texts,
with noteworthy events indicated:
Trotsky’s assassination (blue arrow),
Zinoviev and Kamenev executed
(red arrow), the Great Purge (red
highlight), and perestroika (gray ar-
row). (C) The 1976 and 1989 Tianan-
men Square incidents both led to
elevated discussion in English texts
(scale shown on the right). Response
to the 1989 incident is largely ab-
sent inChinese texts (blue, scale shown
on the left), suggesting government
censorship. (D) While the Holly-
wood Ten were blacklisted (red
highlight) from U.S. movie studios,
their fame declined (median: thick
gray line). None of them were cred-
ited in a film until 1960’s (aptly
named) Exodus. (E) Artists and writ-
ers in various disciplines were sup-
pressed by the Nazi regime (red
highlight). In contrast, theNazis them-
selves (thick red line) exhibited a
strong fame peak during the war
years. (F) Distribution of suppres-
sion indices for both English (blue)
andGerman (red) for the period from
1933–1945. Three victims of Nazi
suppression are highlighted at left
(red arrows). Inset: Calculation of
the suppression index for “Henri
Matisse”.
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http://www.culturomics.org/ (�)
Google Books ngram viewer (�)
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Study networks and creativity:

Lastly, agents that remain inactive for
longer than t time steps are removed from the
network. This rule is motivated by the obser-
vation that agents do not remain in the network
forever: agents age and retire, change careers,
and so on. The removal process enables the
network to reach a steady state after a transient
time. Our results do not depend in the specific
value of t (Materials and Methods).

Through participation in a team, agents
become part of a large network (30). This fact
prompted us to examine the topology of the
network of collaborations among the practi-
tioners of a given field. More specifically,
we asked, BIs there a large connected cluster
comprising most of the agents or is the net-
work composed of numerous smaller clus-
ters?[ A large connected cluster would be
supporting evidence for the so-called invisible
college, the web of social and professional
contacts linking scientists across universities
proposed by de Solla Price (31) and Merton
(32). A large number of small clusters would
be indicative of a field made up of isolated
schools of thought. For all five fields con-
sidered here, we find that the network con-
tains a large connected cluster.

As is typically done in the study of per-
colation phase transitions (33), we use the
fraction S of agents that belong to the largest
cluster of the network to quantify the tran-
sition between these two regimes: invisible
college or isolated schools. We explore sys-
tematically the (p,q) parameter space of the
model. We find that the system undergoes
a percolation transition (33) at a critical line,
pc(m,q). That is, the system experiences a
sharp transition from a multitude of small
clusters to a situation in which one large clus-
ter, comprising a substantial fraction S of the
individuals, emerges: the so-called giant com-
ponent (Fig. 3). The transition line pc(m,q)
therefore determines the tipping point for the
emergence of the invisible college (34). Our
analysis shows that the existence of this
transition is independent of the average number
of agents bmÀ in a collaboration, although the
precise value of pc(m,q) does depend on m.

The proximity to the transition line, which
depends on the distribution of the different
types of links, determines the structure of the
largest cluster (Fig. 3A). In the vicinity of the
transition, the largest cluster has an almost
linear or branched structure (Fig. 3A) ( p 0
0.30). As one moves toward larger p, the
largest cluster starts to have more and more
loops (Fig. 3A) (p 0 0.35), and, eventually, it
becomes a densely connected network (Fig.
3A) ( p 0 0.60).

Networks with the same fraction, S, of
nodes in the largest cluster do not necessarily
correspond to networks with identical prop-
erties. Each point in the (p,q) parameter space
is characterized by both S and the fraction,
fR, of repeat incumbent-incumbent links. For

example, in Fig. 3C, the line fR 0 0.32 cor-
responds to those values of p and q for which
32% of all links in new teams are between
repeat collaborators (35). The fR has a nota-
ble impact on the dynamics of the network.
When fR is large, collaborations are firmly
established, and therefore the structure of the
network changes very slowly. In contrast, low
values of fR correspond to enterprises with
high turnover and very fast dynamics. Inter-
mediate values of fR are related to situations
in which collaboration patterns with peers are
fluid (Materials and Methods).

For each of the five fields for which we
have empirical data, we measure the relative
size of the giant component S (Materials and
Methods). For all fields considered, S is
larger than 50% (Table 1). This result pro-
vides quantitative evidence for the existence
of an invisible college in all the fields. In-
triguingly, the relative sizes of the giant com-

ponent is similar for three of the four fields
considered: S 0 0.70, S 0 0.68, and S 0 0.75
for BMI, social psychology, and ecology,
respectively. However, for astronomy S was
significantly larger (0.92), whereas for eco-
nomics it was significantly smaller (0.54).

To gain further insight in the structure of
collaboration networks, we used our model
to estimate the values of p and q for each
field. Given the temporal sequence of teams
producing the network of collaborations, one
can calculate the fraction of incumbents and
the fraction of repeat incumbent-incumbent
links. These fractions and the model enable
us to then estimate the values of p and q that
are consistent with the data (36).

We estimated p and q for each field and
then simulated the model to predict the key
properties of the network of collaborations,
including the degree distribution of the
network and the fraction S of nodes in the

Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m 0 3 agents. Consider, at time zero, a collaboration network comprising five agents, all
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) available to participate in new teams. Each agent in a team has a probability p of being
drawn from the pool of incumbents and a probability 1 j p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents’ pool: (i) with probability
q, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the team; (ii) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In
this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
(rightmost box). In these boxes and in the following panels and figures, blue lines indicate newcomer-
newcomer collaborations, green lines indicate newcomer-incumbent collaborations, yellow lines indi-
cate new incumbent-incumbent collaborations, and red lines indicate repeat collaborations. (B) Time
evolution of the network of collaborations according to the model for p 0 0.5, q 0 0.5, and m 0 3.
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topics

I Study the human disease and disease gene
networks (Goh et al., 2007):

Asthma

Atheroscierosis

Blood
group
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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topics

I Study collective tagging (or folksonomy)
I e.g., del.icio.us, flickr
I See work by Bernardo Huberman et al. at HP labs.
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topics

I Study games (as in game theory) on networks.
I For cooperation: Review Martin Nowak’s recent

piece in Science: “Five rules for the evolution of
cooperation.” [19]

I Much work to explore: voter models, contagion-type
models, etc.
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topics

I Semantic networks: explore word-word connection
networks generated by linking semantically related
words.

I More general: Explore language evolution
I One paper to start with: “The small world of human

language” by Ferrer i Cancho and Solé [9]

I Related: Study spreading of neologisms.
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topics:

I Study social networks as revealed by email patterns,
Facebook connections, tweets, etc.

I “Empirical analysis of evolving social networks”
Kossinets and Watts, Science, Vol 311, 88-90,
2006. [17]

I “Inferring friendship network structure by using
mobile phone data” Eagle, et al., PNAS, 2009.

I “Community Structure in Online Collegiate Social
Networks”
Traud et al., 2008.
http://arxiv.org/abs/0809.0690 (�)
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topics

I Study Stuart Kauffman’s nk boolean networks which
model regulatory gene networks [15]
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topics

I Explore work by Doyle, Alderson, et al. as well as
Pastor-Satorras et al. on the structure of the
Internet(s).
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topics

I Review: Study work on massive multiplayer online
games. How do social networks form in these
games? [5]
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topics

I Study scientific collaboration networks.
I Mounds of data + good models.
I See seminal work by De Solla Price [20] plus modern

work by Redner, Newman, et al.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Semester projects

The Plan

Narrative hierarchy

Suggestions for
Projects

References

23 of 35

topics

I Study Kearns et al.’s experimental studies of people
solving classical graph theory problems [16]

I “An Experimental Study of the Coloring Problem on
Human Subject Networks”

I (Possibly) Run some of these experiments for our
class.
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topics

I Vague/Large:
Study amazon’s recommender networks.

I See work by Sornette et al., Huberman et al.
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topics

I Vague/Large:
Study network evolution of the Wikipedia’s content.
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topics

I Vague/Large: How is the media connected? Who
copies whom?

I Possibly use NY Times API.
I http://memetracker.org/

I Problem: Need to be able to measure interactions.
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topics

I Vague/Large:
Anything interesting to do with large-scale networks
in evolution, biology, ethics, religion, history,
influence, food, international relations, . . .

I Data is key.
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