Generalized Contagion

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-No. rcial-ShareAlike 3.0 License

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Generalized contagion model

Basic questions about contagion

- ▶ How many types of contagion are there?
- ▶ How can we categorize real-world contagions?
- ► Can we connect models of disease-like and social contagion?
- Focus: mean field models.

Generalized Contagion

Introduction

Interaction models

Generalized Model

UNIVERSITY VERMONT

少 Q (~ 1 of 63

Generalized Contagion

Introduction

Interdependent interaction models

Generalized Model

UNIVERSITY VERMONT 少 Q (~ 2 of 63

Generalized

Contagion

Introduction

Independent Interaction models

Generalized Model

Appendix

References

Appendix

Appendix References

Mathematical Epidemiology (recap)

The standard SIR model [10]

- = basic model of disease contagion
- ► Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory
- ightharpoonup S(t) + I(t) + R(t) = 1
- Presumes random interactions (mass-action
- Interactions are independent (no memory)
- Discrete and continuous time versions

Generalized Contagion

Introduction

Appendix

References

Generalized Model

Independent Interaction models

少 Q (~ 4 of 63

Generalized Contagion

Introduction

Independent Interaction models

Generalized Model

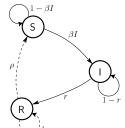
Appendix

References

r for recovery

Discrete time automata example:

Independent Interaction Models



Transition Probabilities:

 β for being infected given contact with infected

 ρ for loss of immunity

Generalized Contagion

Introduction

Independent Interaction models

Generalized Mode

Appendix

References

少 Q (~ 3 of 63

Original models attributed to

Independent Interaction Models

- ▶ 1920's: Reed and Frost
- ▶ 1920's/1930's: Kermack and McKendrick [7, 9, 8]
- ► Coupled differential equations with a mass-action principle

少 Q (~ 6 of 63

Independent Interaction models

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta IS + \rho R$$

$$\frac{\mathrm{d}}{\mathrm{d}t}I = \beta IS - rI$$

$$\frac{\mathrm{d}}{\mathrm{d}t}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

- $ightharpoonup R_0$ = expected number of infected individuals resulting from a single initial infective
- ▶ Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Reproduction Number R_0

Discrete version:

- ▶ Set up: One Infective in a randomly mixing population of Susceptibles
- ightharpoonup At time t=0, single infective random bumps into a Susceptible
- ▶ Probability of transmission = β
- ightharpoonup At time t = 1, single Infective remains infected with probability 1 - r
- ightharpoonup At time t = k, single Infective remains infected with probability $(1 - r)^k$

Reproduction Number R₀

Discrete version:

▶ Expected number infected by original Infective:

$$R_0 = \beta + (1 - r)\beta + (1 - r)^2\beta + (1 - r)^3\beta + \dots$$

$$= \beta \left(1 + (1 - r) + (1 - r)^2 + (1 - r)^3 + \dots \right)$$

$$= \beta \frac{1}{1 - (1 - r)} = \beta/r$$

Similar story for continuous model.

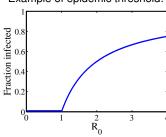
Generalized Contagion

Introduction

Independent Interaction models

Generalized Model

Appendix References Example of epidemic threshold:



- Continuous phase transition.
- Fine idea from a simple model.

Independent Interaction models

Generalized Contagion Introduction

Simple disease spreading models

Independent Interaction models

Interdependent interaction models

Generalized Model

UNIVERSITY OF 少 Q ← 8 of 63

Generalized

Contagion

Introduction

Interdependent interaction models

Generalized Model

References

Independent Interaction models

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964) [6]
- ► Spread of rumors (Daley & Kendall, 1964, 1965) [2, 3]
- ▶ Diffusion of innovations (Bass, 1969) [1]

Granovetter's model (recap of recap)

Action based on perceived behavior of others.

Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Generalized Contagion

Introduction

Appendix

References

UNIVERSITY OF

夕 Q № 10 of 63

Generalized Contagion

Introduction

Appendix

Generalized Mode

Independent Interaction models

Generalized Mode

Independent Interaction models

Contagion Introduction

Independent Interaction models

Interdependent interaction mod Generalized Model

Appendix

References

► This is a Critical mass model. Interdependent interaction model.

Recovery now possible (SIS).

 ϕ = fraction of contacts 'on' (e.g., rioting). Discrete time, synchronous update.

Two states: S and I.

夕 Q № 12 of 63

ൗ q (~ 9 of 63

Some (of many) issues

- Disease models assume independence of infectious events.
- ► Threshold models only involve proportions: $3/10 \equiv 30/100$.
- ► Threshold models ignore exact sequence of influences
- ▶ Threshold models assume immediate polling.
- ► Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

Generalized Contagion

Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version Appendix

References

When $D_{t,i} < d_i^*$,

individual *i* recovers to state R with probability *r*.

Generalized model—ingredients

Once in state R, individuals become susceptible again with probability ρ .

Generalized Contagion

Introduction
Independent
Interaction models

Generalized Model

References

Generalized model

Basic ingredients:

- ▶ Incorporate memory of a contagious element [4, 5]
- ▶ Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- ▶ With probability *p*, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

Generalized Contagion Introduction

Independent Interaction mode

UNIVERSITY OF 63

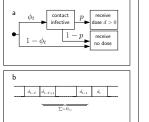
Interdependent interaction models

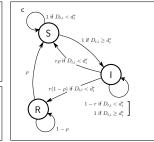
Generalized Model
Homogeneous version

Heterogeneous version
Appendix

Deferences

A visual explanation





Generalized Contagion

Contagion Introduction

Independent

Interaction model

interaction mode

Generalized Model
Homogeneous version

Heterogeneous versio

Appendix

References

Generalized

Contagion

Introduction

Independent Interaction models

Generalized Mode

Appendix

Generalized model—ingredients

▶ Individuals 'remember' last *T* contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

► Threshold d_i^* drawn from arbitrary distribution g at t = 0.

Generalized mean-field model

Introduction

UNIVERSITY OF A C 14 of 63

Independent Interaction models

nterdependent

Generalized Model

Heterogeneous vers

Appendix

References

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

$$r = \rho = 1$$
.

- ► Look for steady-state behavior as a function of exposure probability *p*.
- ▶ Denote fixed points by ϕ^* .

ჟqॡ 15 of 63

Homogeneous version:

- ► All individuals have threshold d*
- ► All dose sizes are equal: *d* = 1

少∢~ 18 of 63

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

- ▶ r < 1 means recovery is probabilistic.
- ightharpoonup T = 1 means individuals forget past interactions.
- $ightharpoonup d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathbf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathbf{b}} \underbrace{(1-r)}_{\mathbf{C}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

Generalized Contagion

Introduction

Interaction models

Generalized Model Homogeneous version

Appendix

References

Homogeneous, one hit models:

Fixed points for r = 1, $d^* = 1$, and T > 1

▶ Closed form expression for ϕ^* :

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- ► Look for critical infection probability p_c.
- ▶ As $\phi^* \rightarrow 0$, we see

$$\phi^* \simeq pT\phi^* \Rightarrow p_c = 1/T$$
.

- Again find continuous phase transition...
- Note: we can solve for *p* but not φ*:

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Generalized Contagion

Introduction

Independent Interaction models

Generalized Mode

Homogeneous version

References

少 Q (~ 23 of 63

Generalized Contagion

Introduction

Interdependent interaction model

Generalized Mode

Homogeneous version

Appendix

References

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

▶ Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$$

- ▶ Critical point at $p = p_c = r$.
- ▶ Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- ▶ Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Generalized Contagion

UNIVERSITY VERMONT

少 Q (~ 20 of 63

Introduction

Interdependent interaction models Generalized Model Homogeneous version

Appendix

References

◆9 Q № 21 of 63

Generalized Contagion

Independent Interaction models

Homogeneous version

Appendix

References

Introduction

Generalized Model

Fixed points for r < 1, $d^* = 1$, and T > 1

Homogeneous, one hit models:

▶ Start with r = 1, $d^* = 1$, and T > 1 case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T$$
.

- For r < 1, add to right hand side fraction who:
 - 1. Did not receive any infections in last T time steps,
 - 2. And did not recover from a previous infection.
- ▶ Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},$$

▶ With history H₁, probability of being infected (not recovering in one time step) is 1 - r.

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T > 1

▶ In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's}}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b} \underbrace{(1 - r)^{m+1}}_{c}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T + m time steps since)
- c: Pr(no recovery in m chances)

Generalized Contagion

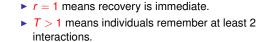
Introduction

Independent Interaction models

Generalized Mode Homogeneous version

Appendix References

•9 q (~ 25 of 63



Fixed points for r = 1, $d^* = 1$, and T > 1

Simple homogeneous examples

- $ightharpoonup d^* = 1$ means only one positive interaction in past T interactions will infect individual.
- ▶ Effect of individual interactions is independent from effect of others.
- ▶ Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - p\phi^*)^T$$
.

•9 q (~ 22 of 63

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T > 1

▶ Pr(recovery) = Pr(seeing no doses for at least *T* time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p\phi^*(1-p\phi^*)^T}{1-(1-p\phi^*)(1-r)}.$$

▶ Fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Generalized Contagion

Introduction

Interaction models

Generalized Model

少 Q (~ 26 of 63

Generalized Contagion

Introduction

Interdependent interaction models

Generalized Model

UNIVERSITY VERMONT

少 Q (→ 27 of 63

Generalized

Contagion

Introduction

Independent Interaction models

Generalized Model

Homogeneous version

UNIVERSITY VERMONT

少 Q (~ 28 of 63

References

Homogeneous version

Appendix

Homogeneous, multi-hit models:

- ▶ All right: $d^* = 1$ models correspond to simple disease spreading models.
- ▶ What if we allow $d^* > 2$?
- Again first consider SIS with immediate recovery (r = 1)
- ▶ Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d^* exposures in last T time steps.
- ► Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

▶ As always, $\phi^* = 0$ works too.

Generalized Contagion

Introduction

Independent Interaction models

Generalized Mode

References

UNIVERSITY OF

ഗ വ № 29 of 63

Generalized Contagion

Introduction

Generalized Mode

Homogeneous version

Appendix

Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

► Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

▶ Find critical exposure probability by examining above as $\phi^* \rightarrow 0$.

 $\Rightarrow \quad \mathbf{p_c} = \frac{1}{T + 1/r - 1} = \frac{1}{T + \tau}.$

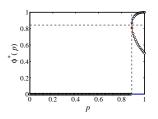
where τ = mean recovery time for simple relaxation

Decreasing r keeps individuals infected for longer and decreases p_c .

Homogeneous, multi-hit models:

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

- ► Exactly solvable for small T.
- e.g., for $d^* = 2$, T = 3:



- Fixed point equation: $3p^2\phi^{*2}(1-p\phi^*)+p^3\phi^{*3}$
- ► See new structure: see a saddle node bifurcation [11] appear as p increases.
- $(p_b, \phi^*) = (8/9, 27/32).$

See behavior akin to output of Granovetter's threshold model.

少 Q ← 30 of 63

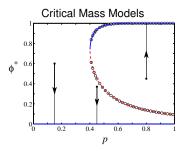
Epidemic threshold:

Fixed points for $d^* = 1$, $r \le 1$, and $T \ge 1$

- ▶ Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$.
- ▶ Blue = stable, red = unstable, fixed points.
- au = 1/r 1 = characteristic recovery time = 1.
- ▶ $T + \tau \simeq$ average memory in system = 3.
- Phase transition can be seen as a transcritical bifurcation. [11]

Homogeneous, multi-hit models:

► Another example:



 $r = 1, d^* = 3, T = 12$

Saddle-node bifurcation.

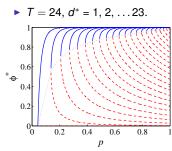
Generalized Contagion

Independent Interaction models

Generalized Mode Homogeneous version

References

Fixed points for r = 1, $d^* > 1$, and T > 1



- ▶ $d^* = 1 \rightarrow d^* > 1$: jump between continuous phase transition and pure critical mass model.
- Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$.
- bifurcation, nothing in between.

Generalized Contagion

Introduction

Interaction models

Generalized Model

Appendix References

夕 Q № 32 of 63

Generalized Contagion

Introduction

Interdependent interaction models

Generalized Model

Homogeneous version

Appendix

References

Fixed points for r < 1, $d^* > 1$, and T > 1

- ▶ Define γ_m as fraction of individuals for whom D(t)last equaled, and his since been below, their threshold *m* time steps ago.
- Fraction of individuals below threshold but not recovered:

$$\Gamma(\boldsymbol{p},\phi^*;\boldsymbol{r}) = \sum_{m=1}^{\infty} (1-\boldsymbol{r})^m \gamma_m(\boldsymbol{p},\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=0}^{T} {T \choose i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

Generalized Contagion

Introduction Independent Interaction models

Generalized Mode Homogeneous version

References

ഗ വ ഢ 36 of 63

Generalized Contagion Introduction

Interdependent interaction model

Generalized Mode

Homogeneous version

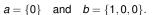
Appendix References

Fixed points for r < 1, $d^* > 1$, and T > 1Example: $T = 3, d^* = 2$

Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- ► Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$
- ▶ Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.
- ► To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:



Contagion Introduction

Independent Interaction models

Generalized Mode Homogeneous version

References

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- ▶ Determine number of sequences of length *m* that keep dose load below $d^* = 2$.
- ▶ N_a = number of $a = \{0\}$ subsequences.
- ▶ N_b = number of $b = \{1,0,0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0,1,2,\ldots,\left\lfloor \frac{m}{3} \right\rfloor$$
.

where | | means floor.

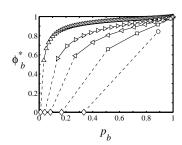
Corresponding possible values for N_a:

$$m, m-3, m-6, \ldots, m-3 \left| \frac{m}{3} \right|$$

- ► See either simple phase transition or saddle-node

Fixed points for r = 1, $d^* > 1$, and T > 1

▶ Bifurcation points for example fixed *T*, varying *d**:



- $T = 96 \ (\triangle).$
- $T = 24 \ (\triangleright),$
- T = 12 (4),
- $T=6 \; (\Box),$
- $T = 3 \ (\bigcirc),$

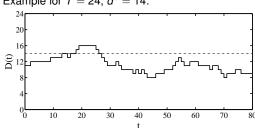
少 Q № 33 of 63

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- ightharpoonup For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- ▶ Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

▶ Example for T = 24, $d^* = 14$:



Generalized Contagion Introduction

Interaction models

Generalized Model Homogeneous version

Appendix

少 Q (~ 38 of 63

Fixed points for r < 1, $d^* > 1$, and T > 1

- ▶ How many ways to arrange N_a a's and N_b b's?
- ▶ Think of overall sequence in terms of subsequences:

$$\{Z_1, Z_2, \dots, Z_{N_a+N_b}\}$$

- $ightharpoonup N_a + N_b$ slots for subsequences.
- ► Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a}=\binom{N_a+N_b}{N_b}.$$

Generalized Contagion

Introduction

Interaction models

Generalized Model

Appendix References

Fixed points for r < 1, $d^* = 2$, and T = 3

F.P. Eq:
$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}$$
.

where $\Gamma(p, \phi^*; r) =$

$$(1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times$$

$$\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$$

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1,0,1,0\}$ sequence.

少 Q (~ 42 of 63

Fixed points for r < 1, $d^* > 1$, and T > 1

▶ Total number of allowable sequences of length *m*:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*)$ and $P(b) = p\phi^*(1 p\phi^*)^2$
- ▶ Total probability of allowable sequences of length *m*:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

▶ Notation: Write a randomly chosen sequence of a's and b's of length m as $D_m^{a,b}$

Generalized Contagion

UNIVERSITY VERMONT

少 Q (~ 39 of 63

Introduction

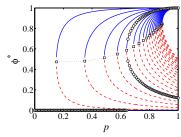
Interdependent

Generalized Model Homogeneous version

Appendix References

Fixed points for r < 1, $d^* > 1$, and T > 1

$$T = 3, d^* = 2$$



 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- ▶ Nearly there... must account for details of sequence endings.
- ▶ Three endings ⇒ Six possible sequences:

$$D_1 = \{1, 1, 0, 0, D_{m-1}^{a,b}\}$$

$$P_1 = (p\phi)^2 (1 - p\phi)^2 \chi_{m-1}(p, \phi)$$

$$D_2 = \{1, 1, 0, 0, D_{m-2}^{a,b}, 1\}$$

$$D_3 = \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\}$$

$$P_2 = (p\phi)^3 (1 - p\phi)^2 \chi_{m-2}(p, \phi)$$
$$P_3 = (p\phi)^3 (1 - p\phi)^3 \chi_{m-3}(p, \phi)$$

$$\textit{D}_{4} = \{1, 0, 1, 0, 0, \textit{D}_{m-2}^{\textit{a},\textit{b}}\}$$

$$P_4 = (p\phi)^2 (1 - p\phi)^3 \chi_{m-2}(p,\phi)$$

$$\textit{D}_{5} = \{1, 0, 1, 0, 0, \textit{D}^{\textit{a},\textit{b}}_{\textit{m}-3}, 1\}$$

$$P_5 = (p\phi)^3 (1 - p\phi)^3 \chi_{m-3}(p,\phi)$$

$$D_6 = \{1, 0, 1, 0, 0, D_{m-4}^{a,b}, 1, 0\}$$

$$P_6 = (p\phi)^3 (1 - p\phi)^4 \chi_{m-4}(p, \phi)$$

Generalized Contagion

Introduction

Independent Interaction models

UNIVERSITY OF VERMONT

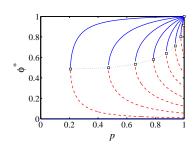
少 Q ← 40 of 63

Generalized Model Homogeneous version

ഹ ര. ~ 41 of 63

Fixed points for r < 1, $d^* > 1$, and T > 1

$$T = 2, d^* = 2$$



- $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$
- ▶ No spreading for $r \gtrsim 0.382$.

Generalized Contagion

Introduction

Interaction models

Generalized Mode

References

Generalized Contagion

Introduction

Generalized Mode Homogeneous version

Appendix

少 Q (~ 43 of 63

Generalized Contagion

Independent Interaction models

Generalized Mode

Homogeneous version

References

UNIVERSITY CONT

少 q (~ 44 of 63

What we have now:

- ► Two kinds of contagion processes:
 - 1. Continuous phase transition: SIR-like.
 - 2. Saddle-node bifurcation: threshold model-like.
- $ightharpoonup d^* = 1$: spreading from small seeds possible.
- \rightarrow $d^* > 1$: critical mass model.
- ► Are other behaviors possible?

Generalized Contagion

Introduction

Interaction models

Generalized Model

Appendix References

Heterogeneous case

- ▶ Next: Determine slope of fixed point curve at critical point p_c .
- ▶ Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- ▶ Find slope depends on $(P_1 P_2/2)^{[5]}$ (see appendix).
- Behavior near fixed point depends on whether this
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- ▶ Now find three basic universal classes of contagion models...

Generalized Contagion

Introduction Independent Interaction models

Generalized Mode

Appendix

References

少 Q (~ 45 of 63

Generalized model

- ▶ Now allow for dose distributions (f) and threshold distributions (g) with width.
- ► Key quantities:

$$P_k = \int_0^\infty \mathrm{d}d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*
ight) \, ext{where 1} \leq k \leq T. \, ext{Appendix}$$

- \triangleright P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.
- ► e.g.,
 - P_1 = Probability that one dose will exceed the threshold of a random individual
 - = Fraction of most vulnerable individuals.

Generalized Contagion

Introduction

Interdependent

Generalized Model Heterogeneous version

少 Q (~ 47 of 63

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- ▶ Memory span: *T* = 10.
- ► Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Generalized Contagion Introduction

Interdependent interaction model

Generalized Mode

Heterogeneous version Appendix

Generalized

Contagion

Introduction

Independent Interaction models

Generalized Mode

References

Generalized model—heterogeneity, r = 1

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

• Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \geq 1$$

$$\Rightarrow p_c = 1/(TP_1)$$

- Very good:
 - 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
 - 2. pP_1T is : the expected number of successful infections (equivalent to R_0).
- ▶ Observe: p_c may exceed 1 meaning no spreading from a small seed.

Generalized Contagion

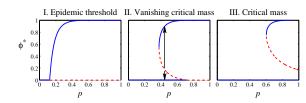
Introduction

Generalized Model

References

少 Q (~ 48 of 63

Three universal classes



► Epidemic threshold: $P_1 > P_2/2, \, p_c = 1/(TP_1) < 1$

Vanishing critical mass: $P_1 < P_2/2, p_c = 1/(TP_1) < 1$ Pure critical mass: $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

少 Q (~ 51 of 63

Heterogeneous case

Now allow r < 1:

- ▶ II-III transition generalizes: $p_c = 1/[P_1(T + \tau)]$ where $\tau = 1/r - 1 =$ expected recovery time
- ► I-II transition less pleasant analytically.

Generalized Contagion

Introduction

Interaction models

Generalized Model

Appendix References

Discussion

- ▶ Memory is a natural ingredient.
- ▶ Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- ▶ To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ , P_1 , and/or
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0).

Generalized Contagion

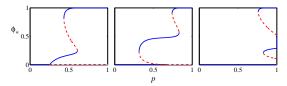
Introduction Independent Interaction models

Generalized Mode

References

少 Q (~ 55 of 63

More complicated models



- Due to heterogeneity in individual thresholds.
- ▶ Three classes based on behavior for small seeds.
- ▶ Same model classification holds: I, II, and III.

Generalized Contagion

UNIVERSITY OF

少 Q (~ 52 of 63

Introduction

Interdependent Generalized Model

Heterogeneous version

Appendix

References

少 Q (~ 53 of 63

Discussion

- ▶ Single seed infects others if $pP_1(T + \tau) \ge 1$.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- ▶ If p_c < 1 \Rightarrow contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- ▶ Details unimportant: Many threshold and dose distributions give same P_k .
- ► Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

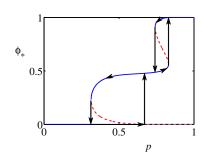
Generalized Contagion

Introduction

Generalized Mode

Heterogeneous version Appendix

Hysteresis in vanishing critical mass models



Generalized Contagion

Introduction

Generalized Model

References

Details for Class I-II transition:

$$\phi^* = \sum_{k=1}^{T} {T \choose k} P_k (p\phi^*)^k (1 - p\phi^*)^{T-k},$$

$$= \sum_{k=1}^{T} {T \choose k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} {T \choose j} (-p\phi^*)^j,$$

$$= \sum_{k=1}^{T} \sum_{j=0}^{T-k} {T \choose k} {T \choose j} P_k (-1)^j (p\phi^*)^{k+j},$$

$$= \sum_{m=1}^{T} \sum_{k=1}^{m} {T \choose k} {T \choose m-k} P_k (-1)^{m-k} (p\phi^*)^m,$$

$$= \sum_{m=1}^{T} C_m (p\phi^*)^m$$

Generalized Contagion

Independent Interaction models

Generalized Mode

Appendix

少 Q (~ 57 of 63

Details for Class I-II transition:

$$C_m = (-1)^m {T \choose m} \sum_{k=1}^m (-1)^k {m \choose k} P_k,$$

since

Generalized Contagion

Introduction

Interaction models

Generalized Model

Appendix

References

少 Q (~ 58 of 63

References II

[5] P. S. Dodds and D. J. Watts.

A generalized model of social and biological contagion.

J. Theor. Biol., 232:587-604, 2005. pdf (H)

W. Goffman and V. A. Newill.

Generalization of epidemic theory: An application to the transmission of ideas.

Nature, 204:225-228, 1964.

W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700-721, 1927. pdf (⊞)

References

Generalized Mode

Generalized Contagion

Introduction Independent Interaction models

Generalized Contagion

Introduction

Interdependent interaction models

Generalized Mode

Appendix

References

夕 Q № 61 of 63

Details for Class I-II transition:

▶ Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_0^2 \phi^{*2}$$
.

where $C_1 = TP_1(=1/p_c)$ and $C_2 = \binom{7}{2}(-2P_1 + P_2)$.

▶ Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq rac{C_1}{C_2
ho_c^2} (
ho -
ho_c) = rac{T^2 P_1^3}{(T-1)(P_1 - P_2/2)} (
ho -
ho_c).$$

▶ Sign of derivative governed by $P_1 - P_2/2$.

Generalized Contagion

Introduction

Interdependent interaction models

Generalized Model

Appendix

少 Q (~ 59 of 63

Generalized Contagion

Introduction

Independent Interaction models

Generalized Model

References

References III

References IV

[8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.

Proc. R. Soc. Lond. A, 141(843):94-122, 1927. pdf (⊞)

W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55-83, 1927. pdf (⊞)

[10] J. D. Murray. Mathematical Biology. Springer, New York, Third edition, 2002.

Generalized Contagion Introduction

Independent Interaction models

Generalized Model

Appendix

References

References I

[1] F. Bass.

A new product growth model for consumer durables. Manage. Sci., 15:215-227, 1969. pdf (⊞)

D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204:1118, 1964.

D. J. Daley and D. G. Kendall. Stochastic rumours. J. Inst. Math. Appl., 1:42-55, 1965.

[4] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion. Phys. Rev. Lett., 92:218701, 2004. pdf (⊞)

少 Q ← 60 of 63

[11] S. H. Strogatz.

Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

少 q (~ 63 of 63