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Random walks on networks—basics:

I Imagine a single random walker moving around on a
network.

I At t = 0, start walker at node j and take time to be
discrete.

I Q: What’s the long term probability distribution for
where the walker will be?

I Define pi(t) as the probability that at time step t , our
walker is at node i .

I We want to characterize the evolution of ~p(t).
I First task: connect ~p(t + 1) to ~p(t).

I Let’s call our walker Barry.
I Unfortunately for Barry, he lives on a high

dimensional graph and is far from home.
I Worse still: Barry is hopelessly drunk.
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Where is Barry?
I Consider simple undirected, ergodic (strongly

connected) networks.
I As usual, represent network by adjacency matrix A

where
aij = 1 if i has an edge leading to j ,
aij = 0 otherwise.

I Barry is at node j at time t with probability pj(t).
I In the next time step, he randomly lurches toward

one of j ’s neighbors.
I Barry arrives at node i from node j with probability 1

kj

if an edge connects j to i .
I Equation-wise:

pi(t + 1) =
n∑

j=1

1
kj

ajipj(t).

where kj is j ’s degree.

Note: ki =
∑n

j=1 aij .
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Inebriation and diffusion:

I Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

I xi(t) = amount of stuff at node i at time t .
I

xi(t + 1) =
n∑

j=1

1
kj

ajixj(t).

I Random walking is equivalent to diffusion (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Diffusion


Diffusion

Random walks on
networks

5 of 8

Inebriation and diffusion:

I Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

I xi(t) = amount of stuff at node i at time t .
I

xi(t + 1) =
n∑

j=1

1
kj

ajixj(t).

I Random walking is equivalent to diffusion (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Diffusion


Diffusion

Random walks on
networks

5 of 8

Inebriation and diffusion:

I Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

I xi(t) = amount of stuff at node i at time t .
I

xi(t + 1) =
n∑

j=1

1
kj

ajixj(t).

I Random walking is equivalent to diffusion (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Diffusion


Diffusion

Random walks on
networks

5 of 8

Inebriation and diffusion:

I Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

I xi(t) = amount of stuff at node i at time t .
I

xi(t + 1) =
n∑

j=1

1
kj

ajixj(t).

I Random walking is equivalent to diffusion (�).

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Diffusion


Diffusion

Random walks on
networks

6 of 8

Where is Barry?

I Linear algebra-based excitement:
pi(t + 1) =

∑n
j=1 aji

1
kj

pj(t) is more usefully viewed as

~p(t + 1) = ATK−1~p(t)

where [Kij ] = [δijki ] has node degrees on the main
diagonal and zeros everywhere else.

I So... we need to find the dominant eigenvalue of
ATK−1.

I Expect this eigenvalue will be 1 (doesn’t make sense
for total probability to change).

I The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

I Extra concerns: multiplicity of eigenvalue = 1, and
network connectedness.
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Where is Barry?

I By inspection, we see that

~p(∞) =
1∑n

i=1 ki

~k

satisfies ~p(∞) = ATK−1~p(∞) with eigenvalue 1.
I We will find Barry at node i with probability

proportional to its degree ki .
I Nice implication: probability of finding Barry travelling

along any edge is uniform.
I Diffusion in real space smooths things out.
I On networks, uniformity occurs on edges.
I So in fact, diffusion in real space is about the edges

too but we just don’t see that.
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Other pieces:

I Goodness: ATK−1 is similar to a real symmetric
matrix if A = AT.

I Consider the transformation M = K−1/2:

K−1/2ATK−1K 1/2 = K−1/2ATK−1/2.

I Since AT = A, we have

(K−1/2AK−1/2)T = K−1/2AK−1/2.

I Upshot: ATK−1 = AK−1 has real eigenvalues and a
complete set of orthogonal eigenvectors.

I Can also show that maximum eigenvalue magnitude
is indeed 1.
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