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Random walks on networks—basics: gt

Random walks on

» Imagine a single random walker moving around on a
network.
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Random walks on networks—basics: gt

Random walks on

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.
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Random walks on networks—basics: gt

Random walks on

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What'’s the long term probability distribution for
where the walker will be?
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Diffusion

Random walks on networks—basics: SR

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What's the long term probability distribution for
where the walker will be?

» Define p;(t) as the probability that at time step t, our
walker is at node i.
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Random walks on networks—basics:

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What'’s the long term probability distribution for
where the walker will be?

» Define p;(t) as the probability that at time step t, our
walker is at node /.

» We want to characterize the evolution of p(t).
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Random walks on networks—basics:

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What'’s the long term probability distribution for
where the walker will be?

» Define p;(t) as the probability that at time step t, our
walker is at node /.

» We want to characterize the evolution of p(t).
» First task: connect p(t + 1) to p(t).
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Random walks on networks—basics:

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What'’s the long term probability distribution for
where the walker will be?

» Define p;(t) as the probability that at time step t, our
walker is at node /.

» We want to characterize the evolution of p(t).
» First task: connect p(t + 1) to p(t).
» Let’s call our walker Barry.
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Random walks on networks—basics: gt

Random walks on

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What's the long term probability distribution for
where the walker will be?

» Define p;(t) as the probability that at time step t, our
walker is at node /.

We want to characterize the evolution of p(t).
First task: connect p(t + 1) to p(t).
Let’s call our walker Barry.

Vi VBN -V

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.
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Random walks on networks—basics:

» Imagine a single random walker moving around on a
network.

» At t = 0, start walker at node j and take time to be
discrete.

» Q: What's the long term probability distribution for
where the walker will be?

v

Define p;(t) as the probability that at time step t, our
walker is at node /.

We want to characterize the evolution of p(t).
First task: connect p(t + 1) to p(t).
Let’s call our walker Barry.

Unfortunately for Barry, he lives on a high
dimensional graph and is far from home.

» Worse still: Barry is hopelessly drunk.

Vi VBN -V
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Where is Barry?

» Consider simple undirected, ergodic (strongly
connected) networks.
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Where is Barry?

» Consider simple undirected, ergodic (strongly

connected) networks.

» As usual, represent network by adjacency matrix A

where

a; = 1if i has an edge leading to /,
aj = 0 otherwise.
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Where is Barry?
» Consider simple undirected, ergodic (strongly
connected) networks.
» As usual, represent network by adjacency matrix A
where
a; = 1if i has an edge leading to /,
aj = 0 otherwise.

» Barry is at node j at time t with probability p;(t).
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Where IS Barry? Diffusion

Random walks on

» Consider simple undirected, ergodic (strongly ~ ——
connected) networks.
» As usual, represent network by adjacency matrix A
where
a; = 1if i has an edge leading to /,
aj = 0 otherwise.

» Barry is at node j at time t with probability p;(t).
» In the next time step, he randomly lurches toward
one of j’s neighbors.
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Where is Barry? Diffusion

Random walks on

» Consider simple undirected, ergodic (strongly ~ ——
connected) networks.
» As usual, represent network by adjacency matrix A
where
a; = 1if i has an edge leading to /,
aj = 0 otherwise.

» Barry is at node j at time t with probability p;(t).

» In the next time step, he randomly lurches toward
one of j’s neighbors.

» Barry arrives at node i from node j with probability %

if an edge connects j to /.
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Where is Barry? Difusion

Random walks on

» Consider simple undirected, ergodic (strongly ~ ——
connected) networks.
» As usual, represent network by adjacency matrix A
where
a; = 1if i has an edge leading to /,
aj = 0 otherwise.

» Barry is at node j at time t with probability p;(t).

» In the next time step, he randomly lurches toward
one of j’s neighbors.

» Barry arrives at node i from node j with probability %
if an edge connects j to /.

» Equation-wise:

pi(t+1) Zka,,p,

where K; is j's degree.
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Where is Barry?

>

>

Consider simple undirected, ergodic (strongly
connected) networks.
As usual, represent network by adjacency matrix A
where

a; = 1if i has an edge leading to /,

aj = 0 otherwise.

Barry is at node j at time t with probability p;(t).
In the next time step, he randomly lurches toward
one of j’s neighbors.

Barry arrives at node i from node j with probability %

if an edge connects j to /.
Equation-wise:

pi(t+1) Zka,,p,

where K; is j's degree. Note: kj = Zj:1 aj.
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Diffusion

Inebriation and diffusion: a1

» Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.
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Diffusion

Inebriation and diffusion: a1

» Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

» x;(t) = amount of stuff at node / at time ¢.
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Inebriation and diffusion:

» Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

x;j(t) = amount of stuff at node / at time ¢.

>

>

xi(t+1)

Z k a!’XJ
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Inebriation and diffusion:

» Excellent observation: The same equation applies
for stuff moving around a network, such that at each
time step all material at node i is sent to its
neighbors.

» x;(t) = amount of stuff at node / at time ¢.

>
Xi(t+1) Zka,,x,

» Random walking is equivalent to
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Where is Barry? Diffusion
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» Linear algebra-based excitement:
feriffat ) — Z}; aj,%jpj(t) is more usefully viewed as

B(t+1) = ATK~'B(1)

where [Kj| = [§;ik] has node degrees on the main
diagonal and zeros everywhere else.
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Where IS Barry? Diffusion

Random walks on

» Linear algebra-based excitement:
feriffat ) — Z}; aj,-%jpj(t) is more usefully viewed as

B(t+1) = ATK~'B(1)

where [Kj| = [§;ik] has node degrees on the main
diagonal and zeros everywhere else.

» So... we need to find the dominant eigenvalue of
AR
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Where is Barry?

» Linear algebra-based excitement:
feriffat ) — Z}; aj,%jpj(t) is more usefully viewed as

B(t+1) = ATK~'B(1)

where [Kj| = [§;ik] has node degrees on the main
diagonal and zeros everywhere else.

» So... we need to find the dominant eigenvalue of
AR

» Expect this eigenvalue will be 1 (doesn’t make sense
for total probability to change).
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Where is Barry?

» Linear algebra-based excitement:
feriffat ) — Z}; aj,%jpj(t) is more usefully viewed as

p(t+1) = ATK'B(1)
where [Kj| = [§;ik] has node degrees on the main
diagonal and zeros everywhere else.
» So... we need to find the dominant eigenvalue of
AR
» Expect this eigenvalue will be 1 (doesn’t make sense
for total probability to change).

» The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).
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Where is Barry? Difusion
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» Linear algebra-based excitement:
feriffat ) — Z}; aj,%jpj(t) is more usefully viewed as

B(t+1) = ATK~'B(1)

where [Kj| = [§;ik] has node degrees on the main
diagonal and zeros everywhere else.

» So... we need to find the dominant eigenvalue of
AR

» Expect this eigenvalue will be 1 (doesn’t make sense
for total probability to change).

» The corresponding eigenvector will be the limiting
probability distribution (or invariant measure).

» Extra concerns: multiplicity of eigenvalue = 1, and
The (o]
network connectedness. ‘W“""“S""ﬁi 2l
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Where IS BaFFY? Diffusion
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» By inspection, we see that
T
=—+—Kk
pE

satisfies p(co) = ATK—1p(c0) with eigenvalue 1.

p(0)
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Where IS Barry? Diffusion

Random walks on

networks
» By inspection, we see that
Bloo) = <y K
o) = =
pE
satisfies p(co) = ATK—1p(c0) with eigenvalue 1.
» We will find Barry at node i with probability
proportional to its degree k;.
|}
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Where |S Barry? Random walks on

» By inspection, we see that

{histe
e

il ki
satisfies p(co) = ATK—1p(c0) with eigenvalue 1.

» We will find Barry at node i with probability
proportional to its degree k;.

p(0)

» Nice implication: probability of finding Barry travelling
along any edge is uniform.
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Where is Barry? Difusion

Random walks on

» By inspection, we see that

e
Lea g
il ki

satisfies p(co) = ATK—1p(c0) with eigenvalue 1.
» We will find Barry at node i with probability
proportional to its degree k;.

» Nice implication: probability of finding Barry travelling
along any edge is uniform.

p(0)

» Diffusion in real space smooths things out.
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Diffusion

Where IS Barry? Random walks on

» By inspection, we see that

{histe
e

il ki
satisfies p(co) = ATK—1p(c0) with eigenvalue 1.

» We will find Barry at node i with probability
proportional to its degree k;.

p(0)

» Nice implication: probability of finding Barry travelling
along any edge is uniform.

» Diffusion in real space smooths things out.
» On networks, uniformity occurs on edges.

1he (o]
é' UNIVERSITY |§|
¥ VERMONT 10!

v 70f8


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Where is Barry?

» By inspection, we see that

e
Lea g
il ki

satisfies p(co) = ATK—1p(c0) with eigenvalue 1.
» We will find Barry at node i with probability
proportional to its degree k;.

» Nice implication: probability of finding Barry travelling
along any edge is uniform.

» Diffusion in real space smooths things out.

p(0)

» On networks, uniformity occurs on edges.

» So in fact, diffusion in real space is about the edges
too but we just don’t see that.
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H . Diffusion
Other pleces- Random walks on

» Goodness: ATK~1 is similar to a real symmetric
matrix if A= AT.
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H . Diffusion
Other pleces- Random walks on

» Goodness: ATK~1 is similar to a real symmetric
matrix if A= AT.
» Consider the transformation M = K~ 1/2:

K71/2ATK71 K1/2 i K71/2ATK71/2.
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H . Diffusion
Other pleces- Random walks on

» Goodness: ATK~1 is similar to a real symmetric
matrix if A= AT.
» Consider the transformation M = K~ 1/2:

K71/2ATK71 K1/2 i K71/2ATK71/2.
» Since AT = A, we have

(Kf1/2AKf1/2)T i K71/2AK71/2'
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Other pieces:

» Goodness: ATK~1 is similar to a real symmetric
matrix if A= AT.
» Consider the transformation M = K—1/2:

K71/2ATK71 K1/2 i K71/2ATK71/2.
» Since AT = A, we have
(Kf1/2AKf1/2)T i K71/2AK71/2'

» Upshot: ATK—1 = AK— has real eigenvalues and a
complete set of orthogonal eigenvectors.
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Other pleCeS Diffusion

Random walks on

» Goodness: ATK~1 is similar to a real symmetric
matrix if A= AT.
» Consider the transformation M = K—1/2:

K71/2ATK71 K1/2 i K71/2ATK71/2.
» Since AT = A, we have
(Kf1/2AKf1/2)T i K71/2AK71/2'

» Upshot: ATK—1 = AK— has real eigenvalues and a
complete set of orthogonal eigenvectors.

» Can also show that maximum eigenvalue magnitude
is indeed 1.
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