Random walks and diffusion on networks **Complex Networks**

CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

@080

Outline

Random walks on networks

UNIVERSITY

୬ ବ. ଜ 1 of 8

Diffusion

networks

Random walks on

Licensed under the Creative Commo cial-ShareAlike 3.0 Licens

> Diffusion Random walks on networks

Where is Barry?

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where
 - $a_{ii} = 1$ if *i* has an edge leading to *j*, $a_{ii} = 0$ otherwise.
- Barry is at node *j* at time *t* with probability $p_i(t)$.
- In the next time step, he randomly lurches toward one of *i*'s neighbors.
- **•** Barry arrives at node *i* from node *j* with probability $\frac{1}{k_i}$ if an edge connects *j* to *i*.
- Equation-wise:

$$p_i(t+1) = \sum_{i=1}^n \frac{1}{k_i} a_{ji} p_j(t).$$

where k_i is j's degree. Note: $k_i = \sum_{i=1}^n a_{ij}$.

NIVERSITY

Diffusion

Random walks on networks

Diffusion Random walks or networks

- Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node *i* is sent to its neighbors.
- $x_i(t)$ = amount of stuff at node *i* at time *t*.

$$x_i(t+1) = \sum_{i=1}^n \frac{1}{k_i} a_{ji} x_j(t)$$

► Random walking is equivalent to diffusion (⊞).

NIVERSITY

Diffusion Random walks on networks

୬ ଏ ୯ 2 of 8

Random walks on networks-basics:

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- ► Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is hopelessly drunk.

- Where is Barry?
 - Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{jj} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

$$\vec{p}(t+1) = A^{\mathrm{T}} K^{-1} \vec{p}(t)$$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of $A^{\mathrm{T}}K^{-1}$.
- Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

Diffusion Random walks on networks

Inebriation and diffusion:

Where is Barry?

Diffusion Random walks on networks

By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

satisfies $\vec{p}(\infty) = A^{T} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

- ► We will find Barry at node *i* with probability proportional to its degree *k_i*.
- Nice implication: probability of finding Barry travelling along any edge is uniform.
- Diffusion in real space smooths things out.
- On networks, uniformity occurs on edges.
- So in fact, diffusion in real space is about the edges too but we just don't see that.

SQC 7 of 8

Other pieces:

Diffusion Random walks on networks

- Goodness: $A^{T}K^{-1}$ is similar to a real symmetric matrix if $A = A^{T}$.
- Consider the transformation $M = K^{-1/2}$:

 $K^{-1/2} \mathbf{A}^{\mathrm{T}} K^{-1} K^{1/2} = K^{-1/2} \mathbf{A}^{\mathrm{T}} K^{-1/2}.$

• Since $A^{\mathrm{T}} = A$, we have

$$(K^{-1/2}AK^{-1/2})^{\mathrm{T}} = K^{-1/2}AK^{-1/2}$$

- ► Upshot: A^TK⁻¹ = AK⁻¹ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.

