Random walks and diffusion on networks

Complex Networks
CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics \& Statistics

Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Outline

Diffusion
Random walks on networks

Random walks on networks

Random walks on networks-basics:

- Imagine a single random walker moving around on a network.
- At $t=0$, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Define $p_{i}(t)$ as the probability that at time step t, our walker is at node i.
- We want to characterize the evolution of $\vec{p}(t)$.
- First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is hopelessly drunk.

Where is Barry?

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

$$
\begin{aligned}
& a_{i j}=1 \text { if } i \text { has an edge leading to } j, \\
& a_{i j}=0 \text { otherwise. }
\end{aligned}
$$

- Barry is at node j at time t with probability $p_{j}(t)$.
- In the next time step, he randomly lurches toward one of j's neighbors.
- Barry arrives at node i from node j with probability $\frac{1}{k_{j}}$ if an edge connects j to i.
- Equation-wise:

$$
p_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} p_{j}(t)
$$

where k_{j} is j 's degree. Note: $k_{i}=\sum_{j=1}^{n} a_{i j}$.

Inebriation and diffusion:

- Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.
- $x_{i}(t)=$ amount of stuff at node i at time t.

$$
x_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} x_{j}(t)
$$

- Random walking is equivalent to diffusion (\boxplus).

Where is Barry?

- Linear algebra-based excitement:
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed as

$$
\vec{p}(t+1)=A^{\mathrm{T}} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of $A^{\mathrm{T}} K^{-1}$.
- Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

Where is Barry?

- By inspection, we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\mathrm{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1 .

- We will find Barry at node i with probability proportional to its degree k_{i}.
- Nice implication: probability of finding Barry travelling along any edge is uniform.
- Diffusion in real space smooths things out.
- On networks, uniformity occurs on edges.
- So in fact, diffusion in real space is about the edges too but we just don't see that.

Other pieces:

- Goodness: $A^{\mathrm{T}} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\mathrm{T}}$.
- Consider the transformation $M=K^{-1 / 2}$:

$$
K^{-1 / 2} A^{\mathrm{T}} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\mathrm{T}} K^{-1 / 2}
$$

- Since $A^{\mathrm{T}}=A$, we have

$$
\left(K^{-1 / 2} A K^{-1 / 2}\right)^{\mathrm{T}}=K^{-1 / 2} A K^{-1 / 2}
$$

- Upshot: $A^{\mathrm{T}} K^{-1}=A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.

