Contagion Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Outline

Basic Contagion Models

Global spreading condition

Social Contagion Models
Network version
All-to-all networks
Theory

References

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
 - Next up We'll look at some fundamental kinds of spreading or generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- ► Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks
Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
 - Next up We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up. We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up We'll look at some fundamental kinds of spreading or generalized random networks.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion

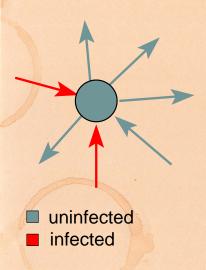
Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Spreading mechanisms



 General spreading mechanism:
 State of node *i* depends on history of *i* and *i*'s neighbors' states.

- Doses of entity may be stochastic and
- May have multiple interacting entities spreading at once.

Contagion

Basic Contagion Models

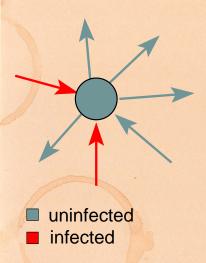
Global spreading condition

Social Contagion Models

Network versio

All-to-all netwo

Spreading mechanisms



- General spreading mechanism:
 State of node *i* depends on history of *i* and *i*'s neighbors' states.
- Doses of entity may be stochastic and history-dependent.
- May have multiple, interacting entities
 spreading at once.

Contagion

Basic Contagion Models

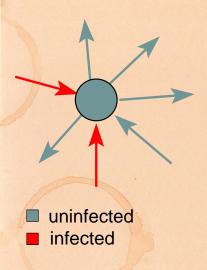
Global spreading condition

Social Contagion Models

Network version

All-to-all net Theory

Spreading mechanisms



- General spreading mechanism:
 State of node *i* depends on history of *i* and *i*'s neighbors' states.
- Doses of entity may be stochastic and history-dependent.
- May have multiple, interacting entities spreading at once.

Contagion

Basic Contagion Models

condition

Social Contagion Models

Network version

All-to-all netw Theory

- For random networks, we know local structure is pure branching.
- Successful spreading is a contingent on single edges infecting nodes.

- Focus on binary case with edges and nodes either infected or not:
- ► First big question: for a given network and contagio process, can global spreading from a single seed

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- For random networks, we know local structure is pure branching.
- Successful spreading is : contingent on single edges infecting nodes.

Focus on binary case with edges and nodes either infected or not:

 First big question: for a given network and contagion process, can global spreading from a single seed

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

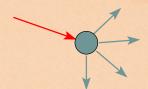
references

- For random networks, we know local structure is pure branching.
- Successful spreading is ∴ contingent on single edges infecting nodes.

Success

Failure:





- Focus on binary case with edges and nodes either infected or not.
- First big question: for a given network and contaging process, can global spreading from a single seed

Contagion

Basic Contagion Models

Global spreading condition

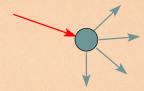
Social Contagion Models

Network version
All-to-all networks

Theory

- ► For random networks, we know local structure is pure branching.
- Successful spreading is : contingent on single edges infecting nodes.

Success



- Focus on binary case with edges and nodes either infected or not.
- First big question

process can alobal spreading from a single seed

Contagion

Basic Contagion Models

Global spreading condition

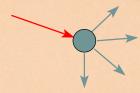
Social Contagion Models

All-to-all networks
Theory

- ► For random networks, we know local structure is pure branching.
- Successful spreading is ∴ contingent on single edges infecting nodes.

Success

Failure:



- Focus on binary case with edges and nodes either infected or not.
- First big question: for a given network and contagion process, can global spreading from a single seed occur?

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- ightharpoonup Define B_{k1} as the probability that a node of degree

 $(k-1) \bullet B_{k1}$

prob. of connecting to a degree *k* node

outaoina • (1 –

outgoing infected edges

no infection

Contagion

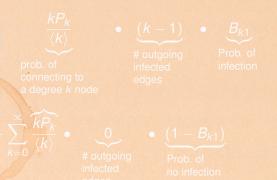
Basic Contagion Models

Global spreading co

Social Contagion Models

Network version
All-to-all networks

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.



Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version All-to-all networks

- ▶ We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle}$$
prob. of
connecting to
a degree k node

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

All-to-all netw Theory

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle}$$
prob. of connecting to a degree k node

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

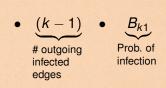
All-to-all netwo

► We need to find: [5]

R = the average # of infected edges that one random infected edge brings about.

- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle}$$
prob. of connecting to a degree k node



Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

All-to-all netwo

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

outgoing

infected

edges

infection

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle}$$
prob. of connecting to a degree k node

$$+\sum_{k=0}^{\infty} \frac{\widehat{kP_k}}{\langle k \rangle}$$

Contagion

Basic Contagion Models

Global spreading co

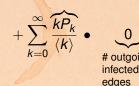
Models

Network version

All-to-all network

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle}$$
prob. of connecting to a degree k node



outgoing Prob. of infected infection edges ode

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

All-to-all network

- ► We need to find: [5]
 - **R** = the average # of infected edges that one random infected edge brings about.
- Call R the gain ratio.
- Define B_{k1} as the probability that a node of degree k is infected by a single infected edge.

$$\mathbf{R} = \sum_{k=0}^{\infty} \underbrace{\frac{kP_k}{\langle k \rangle}}_{\text{prob. of connecting to a degree } k \text{ node}}$$

outgoing infected edges

• $(1 - B_{k1})$ Prob. of no infection

infection

outgoing

infected

edges

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

All-to-all networ

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

▶ Case 1: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1$$

▶ Good: This is just our giant component condition again.

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

> letwork version Ill-to-all networks heory

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

► Case 1: If B_M = 1 then

 $R = \sum_{k=0}^{N-1} \frac{N(k-1)}{\langle k \rangle} > 1$

► Good: This is just our giant component condition again.

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

All-to-all network
Theory

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

► Case 1: If $B_{k1} = 1$

► Good: This is just our grant component condition

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version All-to-all networks Theory

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

▶ Case 1: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

 Good: This is just our grant component condition again.

Contagion

Basic Contagion Models

Global spreading co

Models Social Contagion

Network version All-to-all networks Theory

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

▶ Case 1: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

► Good: This is just our giant component condition again.

Contagion

Basic Contagion Models

Global spreading co

Models

All-to-all netw Theory

- A-W
- \blacktriangleright A fraction (1- ϕ) of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of \(\k \rangle \) is increased.
- ▶ Aka bond percolation (⊞)
- ► Resulting degree distribution P_k

Insert question from assignment $7 (\boxplus)$

▶ We can allow $F_{\mathbb{P}^r}(x) = F_{\mathbb{P}}(\beta x + 1 - \beta)$.

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version
All-to-all networks
Theory

▶ Case 2: If $B_{k1} = \beta < 1$

- 四一之一
- 10 V9
- ★ A fraction (1-β) of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of (k) is increased.
- ▶ Aka bond percolation (⊞)
- ▶ Resulting degree distribution P

- Insert question from assignment 7 (⊞)
- ▶ We can show $F_P(x) = F_P(\beta x + 1 \beta)$

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version All-to-all networks Theory

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- A fraction (1-β) of edges do not transmit infection
- Analogous phase transition to giant component case but critical value of (k) is increased.
- ▶ Aka bond percolation (⊞)
- Resulting degree distribution P_k

Insert question from assignment 7 (⊞)

▶ We can show $F_P(x) = F_P(\beta x + 1 - \beta)$.

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version
All-to-all networks

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \blacktriangleright A fraction (1- β) of edges do not transmit infection.
- Analogous phase transition to giant component case
 but critical value of (R) is increased
- ► Aka bond percolation (⊞)
- Resulting degree distribution P_k

Insert question from assignment 7 (H

▶ We can show $F_{P}(x) = F_{P}(\beta x + 1 - \beta)$

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version
All-to-all networks

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \blacktriangleright A fraction (1- β) of edges do not transmit infection.
- ▶ Analogous phase transition to giant component case but critical value of ⟨k⟩ is increased.
- ▶ Aka bond percolation (⊞)
- ▶ Resulting degree distribution P_k

Insert question from assignment 7 (⊞)

▶ We can allow $F_P(x) = F_P(\beta x + 1 - \beta)$.

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models Network version

Network version
All-to-all networks
Theory

neierence

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \blacktriangleright A fraction (1- β) of edges do not transmit infection.
- ▶ Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- ► Aka bond percolation (⊞).
- ► Resulting degree distribution P'_k:

Insert question from assignment 7 (⊞)

▶ We can show $F_{P'}(x) = F_{P}(\beta x + 1 - \beta)$

Contagion

Basic Contagion Models

Global spreading co

Social Contagion Models

Network version
All-to-all networks
Theory

neierence

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \blacktriangleright A fraction (1- β) of edges do not transmit infection.
- ▶ Analogous phase transition to giant component case but critical value of ⟨k⟩ is increased.
- ► Aka bond percolation (⊞).
- ▶ Resulting degree distribution P'_k :

$$P'_{k} = \beta^{k} \sum_{i=k}^{\infty} {i \choose k} (1-\beta)^{i-k} P_{i}.$$

Insert question from assignment 7 (⊞)

Contagion

Basic Contagion Models

Global spreading co

Models Network version

Network version
All-to-all networks
Theory

▶ Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- \blacktriangleright A fraction (1- β) of edges do not transmit infection.
- ▶ Analogous phase transition to giant component case but critical value of ⟨k⟩ is increased.
- ► Aka bond percolation (⊞).
- Resulting degree distribution P'_k:

$$P'_{k} = \beta^{k} \sum_{i=k}^{\infty} {i \choose k} (1-\beta)^{i-k} P_{i}.$$

Insert question from assignment 7 (⊞)

We can show $F_{P'}(x) = F_P(\beta x + 1 - \beta)$.

Contagion

Basic Contagion Models

Global spreading co

Models

Network version
All-to-all networks
Theory

- ► Cases 3, 4, 5, ...: Now allow By to depend on k
- ► Asymmetry Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely
- Possibility: B_{k1} is not monotonic in k... unlikely
- Possibility: B_{k1} decreases with k... hmmm
- ► B_{k1} is a plausible representation of a simple kind of social contagion.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely
- Possibility: B_{k1} is not monotonic in k... unlikely
- Possibility: B_{k1} decreases with k... hmmm
- B_{n1} is a plausible representation of a simple kind of social suntanion
 - The story
 - More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory Reference

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely
- Possibility: B_{k1} is not monotonic in k... unlikely
- ▶ Possibility: B_{k1} decreases with k... hmmm
- \triangleright B_{k1} is a plausible representation of a simple kind
 - The story
 - More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- Possibility: B_{k1} is not monotonic in k... unlikely
- Possibility: B_{k1} decreases with k... hmmm
- \triangleright B_{k1} is a plausible representation of a simple kind
- The story

More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- Possibility: B_{k1} is not monotonic in k... unlikely
- ▶ Possibility: B_{k1} decreases with k... hmmm
- \triangleright B_{n_1} is a plausible representation of a simple kind
- The story
 - More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- Possibility: B_{k1} is not monotonic in k... unlikely.
- ▶ Possibility: B_{k1} decreases with k... hmmm
- $\triangleright B_{\sim}$ \(\simega \) is a plausible representation of a simple kind
- ► The story
 - More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- ▶ Possibility: B_{k1} is not monotonic in k... unlikely.
 - Possibility: B_{k1} decreases with k... hmmm
- \triangleright $B_{k+} \times$ is a plausible representation of a simple kind
 - The story
 - More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all network

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- ▶ Possibility: B_{k1} is not monotonic in k... unlikely.
- ▶ Possibility: B_{k1} decreases with k... hmmm.
- $ightharpoonup B_{\rm eff} imes$ is a plausible representation of a simple kind

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all network

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- ▶ Possibility: B_{k1} is not monotonic in k... unlikely.
- ▶ Possibility: B_{k1} decreases with k... hmmm.
- \triangleright B_{k1} is a plausible representation of a simple kind of social contagion.

The story

More well connected people are harder to influence

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networ

- ► Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- Possibility: B_{k1} increases with k... unlikely.
- ▶ Possibility: B_{k1} is not monotonic in k... unlikely.
- ▶ Possibility: B_{k1} decreases with k... hmmm.
- B_{k1} is a plausible representation of a simple kind of social contagion.
- The story: More well connected people are harder to influence.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networ

Example: $B_{k1} = 1/k$.

$$\mathbf{B} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k}$$

$$=\sum_{k=1}^{\infty}\frac{P_k}{\langle k\rangle}\bullet(k-1)=1-\frac{1-P_0}{\langle k\rangle}$$

Since R is always less than 1, no spreading can occur for this mechanism

- \triangleright Decay of B_{k1} is too fast
- Result is independent of degree distribution.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1}$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks
Theory

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k}$$

Contagion

Models

Social Contagion Models

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{kP_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1)$$

Contagion

Models

Social Contagion Models

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{kP_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle}$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

References

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{kP_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle}$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

References

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle}$$

Since **R** is always less than 1, no spreading can occur for this mechanism.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle}$$

- Since **R** is always less than 1, no spreading can occur for this mechanism.
- ▶ Decay of B_{k1} is too fast.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

▶ Example: $B_{k1} = 1/k$.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k}$$
$$= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle}$$

- Since **R** is always less than 1, no spreading can occur for this mechanism.
- ▶ Decay of B_{k1} is too fast.
- Result is independent of degree distribution.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\mathbb{H}).
- ► Infection only occurs for nodes with low degree
- Call these nodes vulnerables:
- they flip when only one of their friends flips

$$\mathbf{H} = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet \mathbf{H} \left(\frac{1}{k} - \phi \right)$$

$$=\sum_{k=0}^{\lfloor rac{1}{k}
floor} (k-1) ullet rac{k P_k}{\langle k
angle}$$
 where $\lfloor \cdot
floor$ means floor

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks
Theory

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\boxplus).
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables
- they flip when only one of their friends flips

$$\frac{kP_k}{(k-1)\bullet B_{k1}} = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet H \left(\frac{1}{k} - q\right)$$

$$=\sum_{k=0}^{\lfloor rac{1}{\phi}
floor} (k-1) ullet rac{k P_k}{\langle k
angle}$$
 where $\lfloor \cdot
floor$ means floor

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\mathbb{H}).
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

$$\mathbf{D} \bullet \mathbf{S}_{k1} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet H \left(\frac{1}{k} - \phi \right)$$

$$=\sum_{k=0}^{\lfloor rac{1}{k}
floor} (k-1) ullet rac{kP_k}{\langle k
angle}$$
 where $\lfloor \cdot
floor$ means floor

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\boxplus).
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

 $\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1}$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\boxplus).
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet H \left(\frac{1}{k} - \phi \right)$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

- ► Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\boxplus).
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

$$\mathbf{R} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet H \left(\frac{1}{k} - \phi \right)$$

$$=\sum_{k=1}^{\lfloor\frac{1}{\phi}\rfloor}(k-1)\bullet\frac{kP_k}{\langle k\rangle}\quad\text{where }\lfloor\cdot\rfloor\text{ means floor.}$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks
Theory

The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{kP_k}{\langle k \rangle} > 1.$$

- ightharpoonup As $\phi
 ightharpoonup$ 1, all nodes become resilient and t
- ightharpoonup As $\phi
 ightharpoonup$ 0, all nodes become vulnerable and the
 - contagion condition matches up with the giant
 - component condition.
 - Key. If we (k) and then vary (k), we may see two
- we will see a cut off in spreading as nodes become

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{kP_k}{\langle k \rangle} > 1.$$

▶ As $\phi \to 1$, all nodes become resilient and $r \to 0$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Theory References

The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{kP_k}{\langle k \rangle} > 1.$$

- ▶ As $\phi \to 1$, all nodes become resilient and $r \to 0$.
- As $\phi \to 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.

Key. If we $\{x \neq and then vary (k), we may see two$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks

The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{k P_k}{\langle k \rangle} > 1.$$

- ▶ As $\phi \to 1$, all nodes become resilient and $r \to 0$.
- As $\phi \to 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- Key: If we fix ϕ and then vary $\langle k \rangle$, we may see two phase transitions.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{kP_k}{\langle k \rangle} > 1.$$

- ▶ As $\phi \to 1$, all nodes become resilient and $r \to 0$.
- As $\phi \to 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- Key: If we fix ϕ and then vary $\langle k \rangle$, we may see two phase transitions.
- Added to our standard giant component transition, we will see a cut off in spreading as nodes become more connected.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

Outline

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version

All-to-all networks

Theory

References

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
 - Idea of thresholds
- ▶ Threshold models—Granovetter (1978) [8]
- ► Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
- ▶ Threshold models—Granovetter (1978) [8
- ► Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
 - Idea of thresholds.
- ▶ Threshold models—Granovetter (1978) [8]
- ► Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978) [8]
- ▶ Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978) [8]
- ► Herding models—Bikhchandani et al. (1992) [1, 2]

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [9, 10, 11]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978) [8]
- ► Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Original work:

"A simple model of global cascades on random networks" D. J. Watts, Proc. Natl. Acad. Sci., 2002 [13]

Contagion

Models

Social Contagion Network version

Original work:

"A simple model of global cascades on random networks"

D. J. Watts. Proc. Natl. Acad. Sci., 2002 [13]

- ▶ Mean field Granovetter model → network model
- > Individuals now have a limited view of the world

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Theory

Original work:

"A simple model of global cascades on random networks"

D. J. Watts. Proc. Natl. Acad. Sci., 2002 [13]

- ▶ Mean field Granovetter model → network model
- Individuals now have a limited view of the world

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Theory

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has k, contacts
- Influence on each link is reciprocal and of unit weight
- Each individual / has a fixed threshold.
- Individuals repeatedly poll contacts on network
- Syndhrenous: discrete time updating
- Individual Abecomes active when
- number of active contacts $a_i \ge \phi_i k_i$
- Activation is permanent (SI)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has k, contactt
- Influence on each link is reciprocal and of unit weight
- Each individual i has a fixed threshold.
- Individuals repeatedly poll contacts on network
- Synthesious: discrete time updating
- Individual i becomes active when
- number of active contacts $a_i \ge \phi_i k$
- Activation is permanent (SI)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weigh
- ► Each individual i has a fixed threshold of
- Individuals repeatedly poll contacts on network
- Synchrenous: discrete time updating
 - Individual Abecomes active when
 - number of active contacts $a_i \geq \phi_i k_i$
- Activation is permanent (SI)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight

Contagion

Basic Contagion Models

Social Contagion

Network version

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight
- \triangleright Each individual *i* has a fixed threshold ϕ_i

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Deference

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- Individual *i* becomes active when number of active contacts $a_i \ge \phi_i k_i$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

- Interactions between individuals now represented by a network
- Network is sparse
- Individual i has ki contacts
- Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- Individual *i* becomes active when number of active contacts $a_i \ge \phi_i k_i$
- Activation is permanent (SI)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all network

All nodes have threshold $\phi = 0.2$.

Contagion

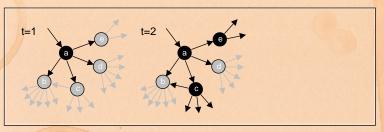
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks



All nodes have threshold $\phi = 0.2$.

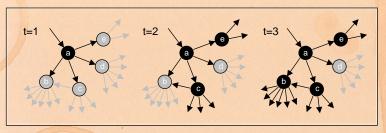
Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version



All nodes have threshold $\phi = 0.2$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all n

Vulnerables:

Contagion

Models

Social Contagion

Network version All-to-all networks

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- he vulnerability condition for node i
- Means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$.
- Key: For global spreading events (cascades) on random networks, must have a global component of vulnerables^[13]
- For a uniform threshold φ, our global spreading
 - $\mathbf{R} = \sum_{i=1}^{\lfloor k \rfloor} \frac{k P_k}{i k!} \bullet (k-1) > 1.$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks
Theory

Referenc

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ▶ The vulnerability condition for node *i*: $1/k_i \ge \phi_i$.

Contagion

Models

Social Contagion

Network version

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ► The vulnerability condition for node i: $1/k_i \ge \phi_i$.
- Means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$.
- Key: For global spreading events (cascades) on random networks, must have a global component of vulnerables [13]
- For a uniform threshold ϕ , our global spreading condition tells us when such a component exists:

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all network
Theory

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ► The vulnerability condition for node i: $1/k_i \ge \phi_i$.
- Means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$.
- Key: For global spreading events (cascades) on random networks, must have a global component of vulnerables^[13]

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all network

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ► The vulnerability condition for node i: $1/k_i \ge \phi_i$.
- Means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$.
- Key: For global spreading events (cascades) on random networks, must have a global component of vulnerables [13]
- For a uniform threshold ϕ , our global spreading condition tells us when such a component exists:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{k P_k}{\langle k \rangle} \bullet (k-1) > 1.$$

Contagion

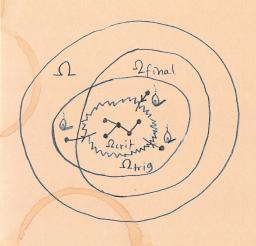
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all network

Example random network structure:



- Ω_{crit} = critical mass = global vulnerable component
- Ω_{trig} = triggering component
- Ω_{final} = potential extent of spread
- Ω = entire network

 $\Omega_{crit} \subset \Omega_{trig}$; $\Omega_{crit} \subset \Omega_{final}$; and Ω_{trig} , $\Omega_{final} \subset \Omega$.

Contagion

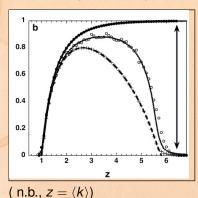
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks



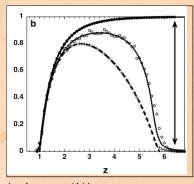
- ► Top curve: final fraction infected if successful.

Contagion

Basic Contagion Models

Social Contagion

Network version Theory



(n.b., $z = \langle k \rangle$)

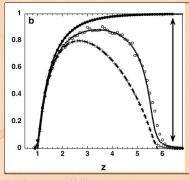
- ► Top curve: final fraction infected if successful.
- Bottom curve: fractional size of vulnerable subcomponent. [13]

Contagion

Models

Social Contagion

Network version Theory



(n.b., $z = \langle k \rangle$)

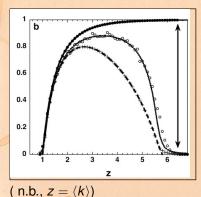
- ► Top curve: final fraction infected if successful.
- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [13]

Contagion

Models

Social Contagion

Network version



- Top curve: final fraction infected if successful.
- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [13]
- Global spreading events occur only if size of vulnerable subcomponent > 0.

➤ System is robust-yet-fragile just below upper

► "Ignorance" facilitates spreading.

Contagion

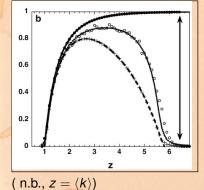
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory



- Top curve: final fraction infected if successful.
- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [13]
- Global spreading events occur only if size of vulnerable subcomponent > 0.
- System is robust-yet-fragile just below upper boundary [3, 4, 12]

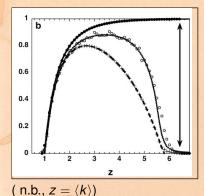
Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks



- Top curve: final fraction infected if successful.
- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [13]
- Global spreading events occur only if size of vulnerable subcomponent > 0.
- System is robust-yet-fragile just below upper boundary [3, 4, 12]
- 'Ignorance' facilitates spreading.

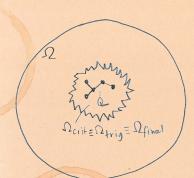
Contagion

Basic Contagion Models

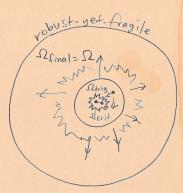
Global spreading condition

Social Contagion Models

Network version All-to-all network



Above lower phase transition



Just below upper phase transition

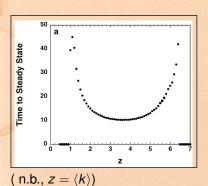
Contagion

Models

Global spreading

Social Contagion

Network version



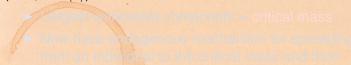
- Time taken for cascade to spread through network. [13]

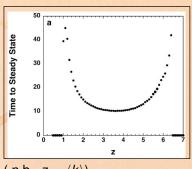
Contagion

Models

Social Contagion

Network version All-to-all networks





- Time taken for cascade to spread through network. [13]
- Two phase transitions.

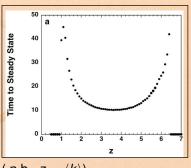
Contagion

Models

Social Contagion

Network version

$$(n.b., z = \langle k \rangle)$$



- Time taken for cascade to spread through network. [13]
- Two phase transitions.

(n.b.,
$$z = \langle k \rangle$$
)

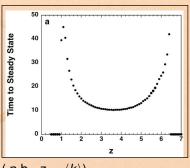
Largest vulnerable component = critical mass.

Contagion

Models

Social Contagion

Network version



- Time taken for cascade to spread through network. [13]
- ► Two phase transitions.

(n.b.,
$$z = \langle k \rangle$$
)

- Largest vulnerable component = critical mass.
- Now have endogenous mechanism for spreading from an individual to the critical mass and then beyond.

Contagion

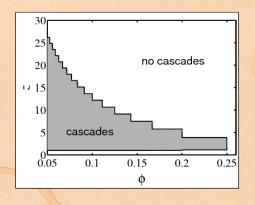
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Cascade window for random networks



(n.b.,
$$z = \langle k \rangle$$
)

Outline of cascade window for random networks.

Contagion

Basic Contagion Models

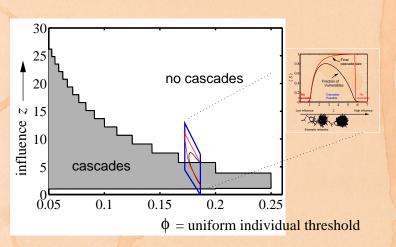
Global spreading condition

Social Contagion Models

Network version

All-to-all networks
Theory

Cascade window for random networks



Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory References

Outline

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theresay

References

Contagion

Basic Contagion Models

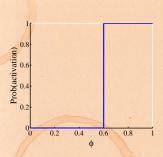
Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

Granovetter's Threshold model—recap



Assumes deterministic response functions

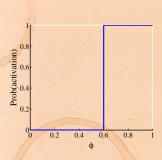
Contagion

Models

Social Contagion

All-to-all networks Theory

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- ϕ_* = threshold of an individual.
- I(φ_n) = distribution of thresholds in a popul
- F(φ_n) = cumulative distribution = Γ^{φ_n} ∘ f(φ)
- \$\overline{\sigma}_t\$ = fraction of people *rioting at time step t.

Contagion

Basic Contagion Models

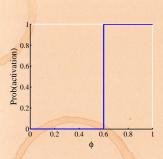
Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- ϕ_* = threshold of an individual.
- $f(\phi_*)$ = distribution of thresholds in a population.

• ϕ_t = fraction of people 'rioting

Contagion

Basic Contagion Models

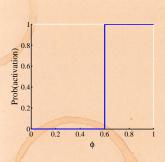
Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- ϕ_* = threshold of an individual.
- $f(\phi_*)$ = distribution of thresholds in a population.
- F(ϕ_*) = cumulative distribution = $\int_{\phi_*'=0}^{\phi_*} f(\phi_*') d\phi_*'$

Contagion

Basic Contagion Models

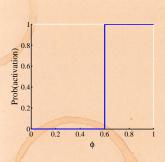
Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- ϕ_* = threshold of an individual.
- $f(\phi_*)$ = distribution of thresholds in a population.
- F(ϕ_*) = cumulative distribution = $\int_{\phi_*'=0}^{\phi_*} f(\phi_*') d\phi_*'$
- ϕ_t = fraction of people 'rioting' at time step t.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

At time t+1, fraction rioting = fraction with $\phi_* \leq \phi_t$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

At time t + 1, fraction rioting = fraction with $\phi_* \le \phi_t$.

$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

Social Contagion

Network version

All-to-all networks

Theory

Contagion

Models

At time t + 1, fraction rioting = fraction with $\phi_* \le \phi_t$.

$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

ightharpoonup \Rightarrow Iterative maps of the unit interval [0, 1].

Contagion

Basic Contagion Models

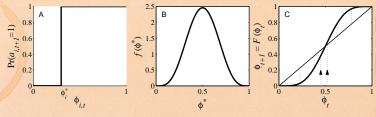
Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Action based on perceived behavior of others.



- ► Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong accumulation)
- This is a Critical mass model

Contagion

Basic Contagion Models

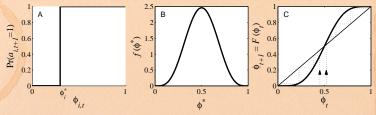
Global spreading condition

Social Contagion Models

All-to-all networks

Referen

Action based on perceived behavior of others.



- ► Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong assumption!)
- ► This is a Critical mass model

Contagion

Basic Contagion Models

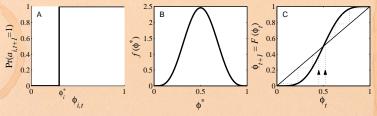
Global spreading condition

Social Contagion Models

All-to-all networks

Referer

Action based on perceived behavior of others.



- ► Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong assumption!)
- This is a Critical mass model

Contagion

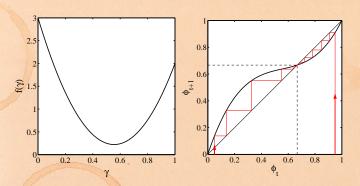
Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Referen



Example of single stable state model

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

Implications for collective action theory:

- Collective uniformity

 individual uniformity
- 2. Small individual changes \Rightarrow large global changes

Next

- Connect mean-field model to network model.
- Single seed for network model: 1/N → 0
- Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Implications for collective action theory:

- 2. Small individual changes large global changes

Next

- Connect mean-field model to network model.
- Single seed for network model: 1/N → 0
- Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks
Theory

Implications for collective action theory:

- 1. Collective uniformity ⇒ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next

- Connect mean-field model to network model.
- Single seed for network model: 1/N → 0
- Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Implications for collective action theory:

- 1. Collective uniformity ≠ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next:

- Connect mean-field model to network model.
- Comparison between network and mean-field model

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Implications for collective action theory:

- 1. Collective uniformity ≠ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next:

- Connect mean-field model to network model.
- Single seed for network model: 1/N → 0.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Implications for collective action theory:

- 1. Collective uniformity ≠ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next:

- Connect mean-field model to network model.
- Single seed for network model: 1/N → 0.
- Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion

Basic Contagion Models

Global spreading condition

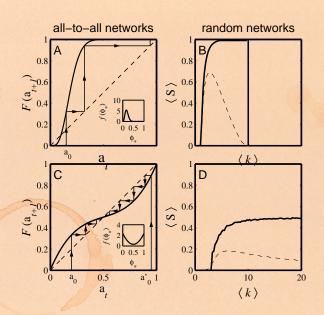
Social Contagion Models

Network version

All-to-all networks

Theory

All-to-all versus random networks



Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Outline

Social Contagion Models

Theory

Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version All-to-all networks

Theory

Three key pieces to describe analytically:

- The fractional size of the largest subcomponent of vulnerable nodes. S_{vuln}
- 2. The chance of starting a global spreading event, $P_{\text{trip}} = S_{\text{trip}}$
- The expected final size of any successful spread. S
 - ightharpoonup n.b., the distribution of S is almost always bimodal.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln} .
- 2. The chance of starting a global spreading event, $P_{\text{eff}} = S_{\text{eff}}$
- 3. The expected final size of any successful spread, S
 - \blacktriangleright n.b., the distribution of S is almost always bimodal.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln} .
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}$.
- The expected final size of any successful spread, S.
 - ightharpoonup n.b., the distribution of S is almost always bimodal.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln} .
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}$.
- 3. The expected final size of any successful spread, *S*.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln} .
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}$.
- 3. The expected final size of any successful spread, S.
 - n.b., the distribution of *S* is almost always bimodal.

Contagion

Basic Contagion Models

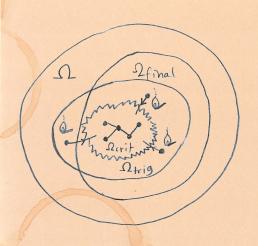
Global spreading condition

Social Contagion Models

Network version

Theor

Example random network structure:



- $\begin{array}{l} \quad \Omega_{crit} = \Omega_{vuln} = \\ \quad critical \; mass = \\ \quad global \\ \quad vulnerable \\ \quad component \end{array}$
- Ω_{trig} = triggering component
- Ω_{final} = potential extent of spread
- Ω = entire network

 $\Omega_{crit} \subset \Omega_{trig}$; $\Omega_{crit} \subset \Omega_{final}$; and Ω_{trig} , $\Omega_{final} \subset \Omega$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Referen

First goal: Find the largest component of vulnerable nodes.

Contagion

Models

Social Contagion

Theory

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

Contagion

Models

Social Contagion

Theory

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

We'll find a similar result for the subset of nodes that are vulnerable.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netwo

Theory

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- We'll find a similar result for the subset of nodes that are vulnerable.
- ▶ This is a node-based percolation problem.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

letwork version

Theory

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- We'll find a similar result for the subset of nodes that are vulnerable.
- This is a node-based percolation problem.
- For a general monotonic threshold distribution $f(\phi)$, a degree k node is vulnerable with probability

$$B_{k1} = \int_0^{1/k} f(\phi) \mathrm{d}\phi.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

 Everything now revolves around the modified generating function:

$$F_P^{(\text{vuln})}(x) = \sum_{k=0}^{\infty} B_{k1} P_k x^k.$$

Contagion

Models

Social Contagion

Theory

20 Q € 36 of 61

Everything now revolves around the modified generating function:

$$F_P^{(\text{vuln})}(x) = \sum_{k=0}^{\infty} B_{k1} P_k x^k.$$

Generating function for friends-of-friends distribution is related in same way as before:

$$F_R^{(\text{vuln})}(x) = \frac{\frac{d}{dx} F_P^{(\text{vuln})}(x)}{\frac{d}{dx} F_P^{(\text{vuln})}(x)|_{x=1}}.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

neierences

Functional relations for component size g.f.'s are almost the same...

Contagion

Models

Social Contagion

Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x)\right)$$

Contagion

Models

Social Contagion

Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x)\right)$$

$$F_{\rho}^{(\text{vuln})}(x) = xF_{R}^{(\text{vuln})}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory References

Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_{R}^{(\text{vuln})}(1)}_{\text{first node is not vulnerable}} + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Helefelices

Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_{R}^{(\text{vuln})}(1)}_{\text{first node is not vulnerable}} + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

► Can now solve as before to find $S_{\text{vuln}} = 1 - F_{\pi}^{(\text{vuln})}(1)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

releterice

- Second goal: Find probability of triggering largest vulnerable component.

Contagion

Models

Social Contagion

- Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.

Contagion

Models

Social Contagion

Theory

2 9 0 38 of 61

- Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.
- Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not:

$$F_{\pi}^{(\mathrm{trig})}(x) = x F_{P}\left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

$$F_{\rho}^{(\text{vuln})}(x) = 1 - F_{R}^{\nu)}(1) + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

 \triangleright Solve as before to find $P_{max} = S_{max} = 1 - F_{+}^{(trig)}(1)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netwo

- Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.
- Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not:

$$F_{\pi}^{(\mathrm{trig})}(x) = x F_{P} \left(F_{\rho}^{(\mathrm{vuln})}(x) \right)$$

$$F_{\rho}^{(\text{vuln})}(x) = 1 - F_{R}^{(\text{v})}(1) + xF_{R}^{(\text{vuln})}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$

Solve as before to find $P_{\text{trig}} = S_{\text{trig}} = 1 - F_{\pi}^{(\text{trig})}(1)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all network

Third goal: Find expected fractional size of spread.

Contagion

Models

Social Contagion

- Third goal: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- ▶ Difficulty is in figuring out if and when nodes that
- ► Problem solved for infinite seed case by Gleeson and
 - Seed size strongly affects cascades on random
- Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. By 1990 161

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Referenc

- Third goal: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- Difficulty is in figuring out if and when nodes that need > 2 hits switch on.
- Problem solved for infinite seed case by Gleeson and

ly affects cascades on rando

Phys.

Basic Con

Social Contagion

- Third goal: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- Difficulty is in figuring out if and when nodes that need > 2 hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane:
 - "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [7]

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all ne Theory

- Third goal: Find expected fractional size of spread.
- Not obvious even for uniform threshold problem.
- Difficulty is in figuring out if and when nodes that need > 2 hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane:
 - "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [7]
- Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008. [6]

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all net

Idea:

▶ Randomly turn on a fraction ϕ_0 of nodes at time t=0

- Now think about what must happen for a specific mode / to become active at time /:
- t = 0: I is one of the seeds (prob =
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is nov
- t=2: enough of its friends and friends-of-friends switched on at time t=0 so that its threshold is no exceeded.
- t = n: enough nodes within n hops of residence on

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion

Network version

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = 2: enough of i's friends and friends-of-friends switched on at time t = 0 so that i's threshold is now exceeded.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netwo

Theory

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = 2: enough of i's friends and friends-of-friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Contagion

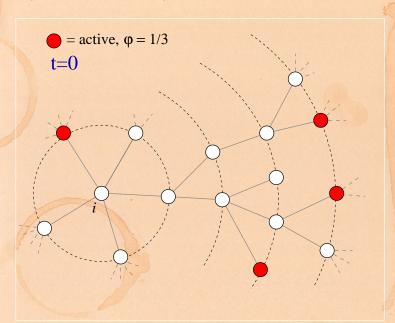
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory



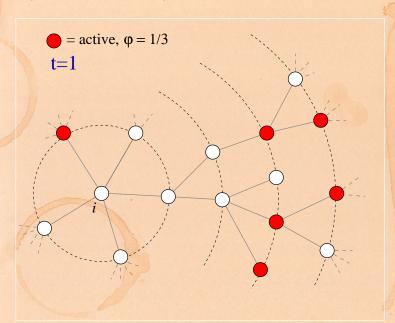
Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version All-to-all networks



Contagion

Basic Contagion Models

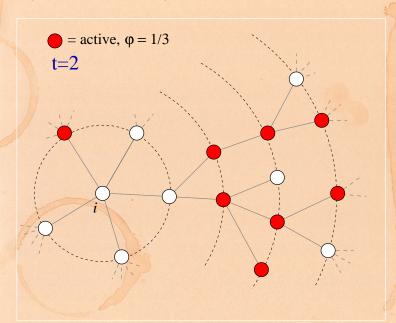
Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

Referen



Contagion

Basic Contagion Models

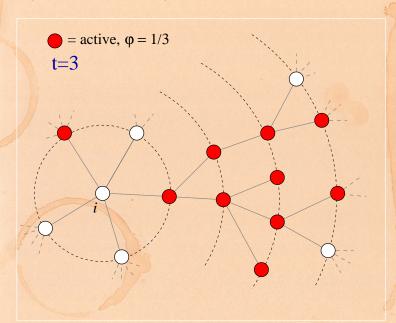
Global spreading condition

Social Contagion Models

Network version
All-to-all networks

Theory

Referen



Contagion

Basic Contagion Models

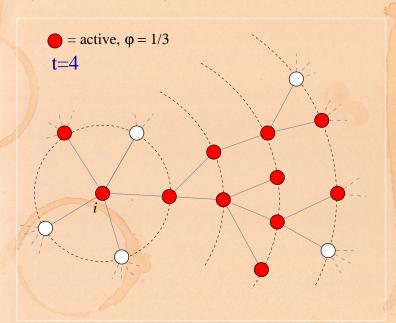
Global spreading condition

Social Contagion Models

Network version All-to-all networks

Theory

Referen



Contagion

Basic Contagion Models

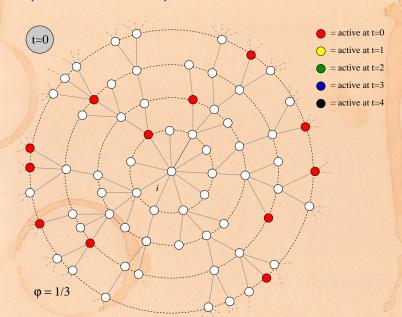
Global spreading condition

Social Contagion Models

Network version All-to-all networks

Theory

Referen



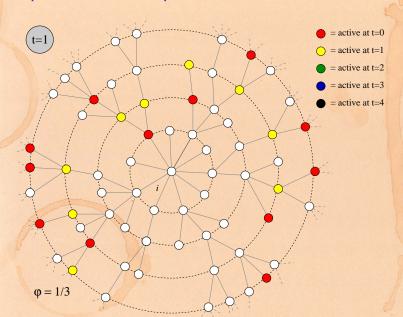
Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version



Contagion

Basic Contagion Models

Global spreading condition

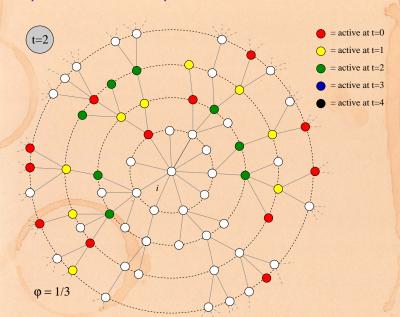
Social Contagion Models

Network version

Theory

Refere

20 42 of 61



Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version

Theory

2 Q @ 42 of 61



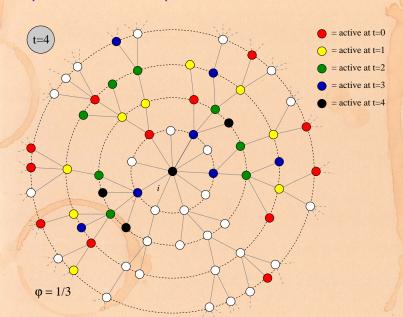
Contagion

Basic Contagion Models

Global spreading

Social Contagion

Network version



Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Referen

Notes:

 Calculations are possible nodes do not become inactive (strong restriction).

Contagion

Models

Social Contagion

Notes:

- Calculations are possible nodes do not become inactive (strong restriction).
- Not just for threshold model—works for a wide range of contagion processes.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Notes:

- Calculations are possible nodes do not become inactive (strong restriction).
- Not just for threshold model—works for a wide range of contagion processes.
- ➤ We can analytically determine the entire time evolution, not just the final size.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Notes:

- Calculations are possible nodes do not become inactive (strong restriction).
- Not just for threshold model—works for a wide range of contagion processes.
- We can analytically determine the entire time evolution, not just the final size.
- We can in fact determinePr(node of degree k switching on at time t).

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Notes:

- Calculations are possible nodes do not become inactive (strong restriction).
- Not just for threshold model—works for a wide range of contagion processes.
- We can analytically determine the entire time evolution, not just the final size.
- We can in fact determinePr(node of degree k switching on at time t).
- Asynchronous updating can be handled too.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

letwork version

Theory

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a mode.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Notation:

$$\phi_{k,t} = \mathbf{Pr}(a \text{ degree } k \text{ node is active at time } t).$$

Our starting point:
$$\phi_{k,\alpha}$$

$$\binom{k}{j}\phi_0^j(1-\phi_0)^{k-j} = \Pr(j \text{ of a degree } k \text{ node's})$$

Contagion

Social Contagion

Models

Theory

► Notation:

 $\phi_{k,t} = \mathbf{Pr}(\text{a degree } k \text{ node is active at time } t).$

Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory



- ► Notation:
 - $\phi_{k,t} = \mathbf{Pr}(a \text{ degree } k \text{ node is active at time } t).$
- Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Notation:
 - $\phi_{k,t} = \mathbf{Pr}(a \text{ degree } k \text{ node is active at time } t).$
- Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $\binom{k}{j}\phi_0^j(1-\phi_0)^{k-j}=\mathbf{Pr}\ (j \text{ of a degree } k \text{ node's neighbors were seeded at time } t=0).$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► Notation:
 - $\phi_{k,t} = \mathbf{Pr}(\mathbf{a} \text{ degree } k \text{ node is active at time } t).$
- Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $\binom{k}{j}\phi_0^j(1-\phi_0)^{k-j} = \mathbf{Pr}\ (j \text{ of a degree } k \text{ node's neighbors were seeded at time } t=0).$
- Probability a degree k node was a seed at t = 0 is ϕ_0 (as above).

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

► Notation:

 $\phi_{k,t} = \mathbf{Pr}(a \text{ degree } k \text{ node is active at time } t).$

- Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $\binom{k}{j}\phi_0^j(1-\phi_0)^{k-j} = \mathbf{Pr}\ (j \text{ of a degree } k \text{ node's neighbors were seeded at time } t=0).$
- Probability a degree k node was a seed at t=0 is ϕ_0 (as above).
- Probability a degree k node was not a seed at t = 0 is $(1 \phi_0)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

► Notation:

 $\phi_{k,t} = \mathbf{Pr}(\mathbf{a} \text{ degree } k \text{ node is active at time } t).$

- Notation: $B_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $\binom{k}{j}\phi_0^j(1-\phi_0)^{k-j} = \mathbf{Pr}\ (j \text{ of a degree } k \text{ node's neighbors were seeded at time } t=0).$
- Probability a degree k node was a seed at t = 0 is ϕ_0 (as above).
- Probability a degree k node was not a seed at t = 0 is $(1 \phi_0)$.
- Combining everything, we have:

$$\phi_{k,1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^k {k \choose j} \phi_0^j (1 - \phi_0)^{k-j} B_{kj}.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
 - Notation: call this probability
- ightharpoonup We already know $\theta_0 = \phi_0$.
 - Story analogous to t = 1 case:

$$\phi_{k,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{m} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_j - j} B_{k_0}$$

 $\phi_0 = \phi_0 + (1 - \phi_0) \sum_{k=1}^{K} P_k \sum_{j=1}^{K} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B$

► So we need to compute 0.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

References

2 9 0 46 of 61

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_j \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

neielelices

2 9 0 46 of 61

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

So we need to compute θ_t ...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

- ► For general *t*, we need to know the probability an edge coming into a degree *k* node at time *t* is active.
- Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_j \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{i=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

So we need to compute θ_t ... massive excitement...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

First connect θ_0 to θ_1 :

 $\theta_1 = \phi_0 +$

$$(1 - \phi_0) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_0^{j} (1 - \theta_0)^{k-1-j} B_{kj}$$

- $ightharpoonup rac{kP_k}{\langle k \rangle} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- ▶ $\sum_{j=0}^{k-1}$ piece gives **Pr**(degree node k activates) of its neighbors k-1 incoming neighbors are active.
- ϕ_0 and $(1 \phi_0)$ terms account for state of node at time t = 0.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

First connect θ_0 to θ_1 :

$$(1 - \phi_0) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_0^{j} (1 - \theta_0)^{k-1-j} B_{kj}$$

- $ightharpoonup rac{kP_k}{\langle k \rangle} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- ► $\sum_{j=0}^{k-1}$ piece gives **Pr**(degree node k activates) of its neighbors k-1 incoming neighbors are active.
- ϕ_0 and $(1 \phi_0)$ terms account for state of node at time t = 0.
- ▶ See this all generalizes to give θ_{t+1} in terms of θ_t ...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all network

Theory

Two pieces: edges first, and then nodes

1.
$$\theta_{t+1} = \underbrace{\phi_0}_{\text{exogenous}}$$

$$+(1-\phi_0)\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{\ j}(1-\theta_t)^{k-1-j}B_{kj}$$
social effects

with $\theta_0 = \phi_0$.

2.
$$\phi_{t+1} =$$

$$\underbrace{\phi_0}_{\text{exogenous}} + (1 - \phi_0) \underbrace{\sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}}_{\text{exogenous}}.$$

social effects

Contagion

Basic Contagion Models

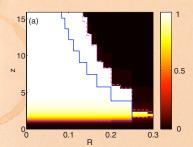
Global spreading condition

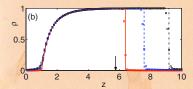
Social Contagion Models

Network version

Theory

Comparison between theory and simulations





From Gleeson and Cahalane [7]

- Pure random networks with simple threshold responses
- ► R = uniform threshold (our ϕ_*); z = average degree; $\rho = \phi$; $q = \theta$; $N = 10^5$.
- $\phi_0 = 10^{-3}, 0.5 \times 10^{-2},$ and $10^{-2}.$
- ► Cascade window is for $\phi_0 = 10^{-2}$ case.
- Sensible expansion of cascade window as ϕ_0 increases.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network versio

Theory

▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.

lends on map $\theta_{t+1} = G(\theta_t, \phi_0)$.

First: If self-starters are present, some activation in assured.

 $G(0,\phi_0) = \sum_{k} rac{k P_k}{\langle k
angle} ullet B_{k0}$

meaning $B_{k0}>0$ for at least one value of k

If $\theta=0$ is a fixed point of G (i.e., $G(0,\phi_0)=0$) then spreading occurs if

 $G(0, \rho_0) = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} \circ (k-1) \circ B_{k1} > 1.$

Insert question from assignment 8 (⊞)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

All-to-all networks

Theory

- ▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Reference

meaning $B_{k0}>0$ for at least one value of $k\geq$

spreading occurs if

- ▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- First: if self-starters are present, some activation is assured:

$$G(0;\phi_0)=\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\bullet B_{k0}>0.$$

meaning $B_{k0} > 0$ for at least one value of $k \ge 1$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

ricicionicos

- ▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- First: if self-starters are present, some activation is assured:

$$G(0;\phi_0)=\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\bullet B_{k0}>0.$$

meaning $B_{k0} > 0$ for at least one value of $k \ge 1$.

If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs if

$$G'(0; \phi_0) = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

Insert question from assignment 8 (⊞)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Tielelelices

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then passages are also always possible

Non-vanishing seed case:

- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- If G has a stable fixed point at $\theta=0$, and an unstable fixed point for some $0<\theta_*<1$, then for $\theta_0>\theta_*$, spreading takes off.
- ► Tricky point: G depends on ϕ_0 , so as we change ϕ_0 , we also change G.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- lacktriangle Cascade condition is more complicated for $\phi_0>0$.
- If G has a stable fixed point at $\theta=0$, and an unstable fixed point for some $0<\theta_*<1$, then for $\theta_0>\theta_*$, spreading takes off.
- ► Tricky point: G depends on ϕ_0 , so as we change ϕ_0 , we also change G.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

▶ Cascade condition is more complicated for $\phi_0 > 0$.

If G has a stable fixed point at $\theta=0$, and an unstable fixed point for some $0<\theta_*<1$, then for $\theta_0>\theta_*$,

► Intelly point: /G depends on Ø₀, so as we change Ø₀ we also change G

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netw

Theory

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- If G has a stable fixed point at $\theta=0$, and an unstable fixed point for some $0<\theta_*<1$, then for $\theta_0>\theta_*$, spreading takes off.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netw

moory

In words:

- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- If G has a stable fixed point at $\theta=0$, and an unstable fixed point for some $0<\theta_*<1$, then for $\theta_0>\theta_*$, spreading takes off.
- ▶ Tricky point: G depends on ϕ_0 , so as we change ϕ_0 , we also change G.

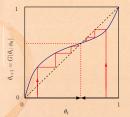
Contagion

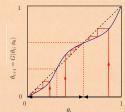
Basic Contagion Models

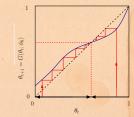
Global spreading condition

Social Contagion Models

All-to-all ne







- ▶ Given $\theta_0(=\phi_0)$, θ_∞ will be the nearest stable fixed point, either above or below.
- n.b. adjacent fixed points must have opposite
 - Important: Actual form of G depends on
- So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.

Contagion

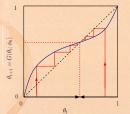
Basic Contagion Models

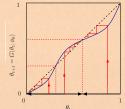
Global spreading condition

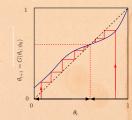
Social Contagion Models

Network version

Theory







- ▶ Given θ_0 (= ϕ_0), θ_∞ will be the nearest stable fixed point, either above or below.
- n.b., adjacent fixed points must have opposite stability types.
 - Important: Actual form of G depends on ϕ_0
- So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.

Contagion

Basic Contagion Models

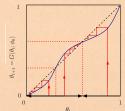
Global spreading condition

Social Contagion Models

Network version

Theory







- ▶ Given θ_0 (= ϕ_0), θ_∞ will be the nearest stable fixed point, either above or below.
- n.b., adjacent fixed points must have opposite stability types.
- Important: Actual form of G depends on ϕ_0 .

Contagion

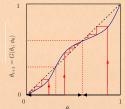
Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory





- ▶ Given θ_0 (= ϕ_0), θ_∞ will be the nearest stable fixed point, either above or below.
- n.b., adjacent fixed points must have opposite stability types.
- Important: Actual form of G depends on ϕ_0 .
- So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.

Contagion

Basic Contagion Models

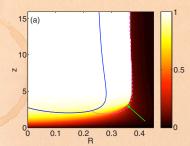
Global spreading condition

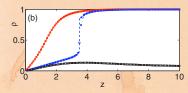
Social Contagion Models

All-to-all potwork

Theory

Comparison between theory and simulations





From Gleeson and Cahalane [7]

Now allow thresholds to be distributed according to a Gaussian with mean R.

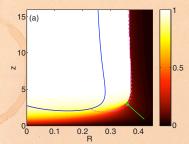
R = 0.2, 0.362, and0.38; $\sigma = 0.2$.

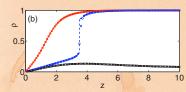
Contagion

Social Contagion

Theory

Comparison between theory and simulations





From Gleeson and Cahalane [7]

Now allow thresholds to be distributed according to a Gaussian with mean B.

- $R = 0.2, 0.362, and 0.38; \sigma = 0.2.$
- $\phi_0 = 0$ but some nodes have thresholds ≤ 0 so effectively $\phi_0 > 0$.
 - discontinuous phase

Contagion

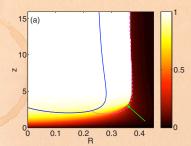
Basic Contagion Models

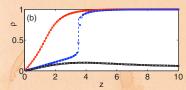
Global spreading condition

Social Contagion Models

All-to-all potwor

Theory





From Gleeson and Cahalane [7]

Now allow thresholds to be distributed according to a Gaussian with mean B.

- ► R = 0.2, 0.362, and 0.38; $\sigma = 0.2$.
- $\phi_0 = 0$ but some nodes have thresholds ≤ 0 so effectively $\phi_0 > 0$.
- Now see a (nasty) discontinuous phase transition for low (k).

Contagion

Basic Contagion Models

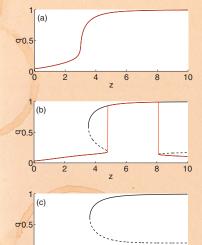
Global spreading condition

Social Contagion Models

All-to-all netwo

Theory

neierence



From Gleeson and Cahalane [7]

- Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.
- n.b.: 0 is not a fixed point here: $\theta_0 = 0$ always takes off.
- ► Top to bottom: *R* = 0.35, 0.371, and 0.375.
- for (b) and (c) lead to
- Saddle node
 bifurcations appear and

merge (b and c).

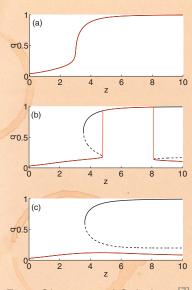
Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all netwo

Theory



- ▶ Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.
- n.b.: 0 is not a fixed point here: $\theta_0 = 0$ always takes off.
- ► Top to bottom: R = 0.35, 0.371, and 0.375.
- n.b.: higher values of θ₀ for (b) and (c) lead to higher fixed points of G.

bifurcations appear and merge (b and c).

Contagion

Basic Contagion Models

Global spreading condition

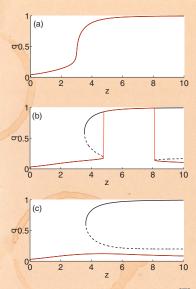
Social Contagion Models

All-to-all r

References

From Gleeson and Cahalane [7]

2 Q ← 54 of 61



From Gleeson and Cahalane [7]

Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.

▶ n.b.: 0 is not a fixed point here: $\theta_0 = 0$ always takes off.

- ► Top to bottom: *R* = 0.35, 0.371, and 0.375.
- n.b.: higher values of θ₀ for (b) and (c) lead to higher fixed points of G.
- Saddle node bifurcations appear and merge (b and c).

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all Theory

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through
- component as activating at time t=0 because ord
- doesn matter.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.

➤ But we can usefully think of the vulnerable

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion

Models Network version

All-to-all networks

Theory

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.
- But we can usefully think of the vulnerable component as activating at time t = 0 because order doesn't matter.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all notwor

Theory

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.
- But we can usefully think of the vulnerable component as activating at time t = 0 because order doesn't matter.
- Rebuild ϕ_t and θ_t expressions...

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All to all patwer

Theory

Two pieces modified for single seed:

1. $\theta_{t+1} = \theta_{\text{vuln}} + \theta_{\text{vuln}}$

$$(1 - \theta_{\text{vuln}}) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_t^{j} (1 - \theta_t)^{k-1-j} B_{kj}$$

with $\theta_0 = \theta_{\text{vuln}} = \mathbf{Pr}$ an edge leads to the giant vulnerable component (if it exists).

2.
$$\phi_{t+1} = S_{\text{vuln}} +$$

$$(1 - S_{\text{vuln}}) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

Synchronous update

Done: Evolution of φ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ▶ Update nodes with probability α .
- As $\alpha \to 0$, updates become effectively independent.
- Now can talk about $\phi(t)$ and $\theta(t)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Synchronous update

Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ightharpoonup Update nodes with probability α
- As $\alpha \to 0$, updates become effectively independent.
- Now can talk about $\phi(t)$ and $\theta(t)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Synchronous update

Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

▶ Update nodes with probability α .

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All to all natural

Theory

Synchronous update

Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ▶ Update nodes with probability α .
- As $\alpha \rightarrow 0$, updates become effectively independent.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Synchronous update

Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ▶ Update nodes with probability α .
- As $\alpha \rightarrow 0$, updates become effectively independent.
- Now can talk about $\phi(t)$ and $\theta(t)$.

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

References I

[1] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades.

J. Polit. Econ., 100:992–1026, 1992.

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades.

<u>J. Econ. Perspect.</u>, 12(3):151–170, 1998. pdf (⊞)

[3] J. M. Carlson and J. Doyle.

Highly optimized tolerance: A mechanism for power laws in design systems.

Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

References II

 [4] J. M. Carlson and J. Doyle.
 Highly optimized tolerance: Robustness and design in complex systems.

Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

[5] P. S. Dodds, K. D. Harris, and J. L. Payne. Physical, transparent derivation of the contagion condition for spreading processes on generalized random networks.

http://arxiv.org/abs/1101.5591, 2011.

[6] J. P. Gleeson.

Cascades on correlated and modular random networks.

Phys. Rev. E, 77:046117, 2008. pdf (⊞)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

References III

[7] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks.

Phys. Rev. E, 75:056103, 2007. pdf (⊞)

- [8] M. Granovetter.

 Threshold models of collective behavior.

 Am. J. Sociol., 83(6):1420–1443, 1978. pdf (⊞)
- [9] T. C. Schelling.Dynamic models of segregation.J. Math. Sociol., 1:143–186, 1971.
- [10] T. C. Schelling.
 Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities.
 J. Conflict Resolut., 17:381–428, 1973. pdf (H)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

References IV

[11] T. C. Schelling.

Micromotives and Macrobehavior.

Norton, New York, 1978.

[12] D. Sornette.

<u>Critical Phenomena in Natural Sciences</u>.

<u>Springer-Verlag, Berlin, 2nd edition, 2003</u>.

[13] D. J. Watts.
A simple model of global cascades on random networks.

Proc. Natl. Acad. Sci., 99(9):5766–5771, 2002. pdf (⊞)

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks
Theory

