Contagion

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

rcial-ShareAlike 3.0 License

Licensed under the Creative Commons Attribution-New

Outline

Basic Contagion Models

Social Contagion Models

Network version All-to-all networks Theory

References

Contagion models

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

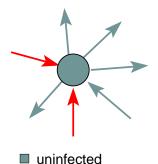
Contagion

Basic Contagior Models

Social Contagior Models

All-to-all networks References

Spreading mechanisms



infected

- General spreading mechanism: State of node *i* depends on history of *i* and *i*'s
- Doses of entity may be stochastic and history-dependent.

neighbors' states.

► May have multiple, interacting entities spreading at once.

Contagion Basic Contagion Models

Social Contagion

Models

References

Contagion

Basic Contagion Models

Social Contagion

References

少 Q (~ 4 of 58

Contagion

Basic Contagion Models

UNIVERSITY OF

少 Q (~ 1 of 58

Social Contagion

References

UNIVERSITY OF VERMONT 少 Q (~ 2 of 58

Contagion

Basic Contagion Models

Social Contagior Models

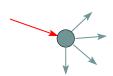
All-to-all networks

References

Spreading on Random Networks

- ▶ For random networks, we know local structure is pure branching.
- ► Successful spreading is : contingent on single edges infecting nodes.

Success



Failure:

Focus on binary case with edges and nodes either infected or not.

Contagion

Basic Contagion Models

Social Contagion

Network version All-to-all networks

References

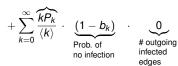
Contagion condition

- ▶ We need to find:
 - r = the average # of infected edges that one random infected edge brings about.
- is infected by a single infected edge.

少 Q (~ 3 of 58

▶ Define b_k as the probability that a node of degree k

Prob. of prob. of connecting to a degree k node



outgoing

Contagion condition

Our contagion condition is then:

$$r = \sum_{k=0}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \cdot b_k > 1.$$

▶ Case 1: If $b_k = 1$ then

$$R = \sum_{k=0}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

▶ Good: This is just our giant component condition again.

Contagion

Basic Contagion Models

Social Contagio

Contagion condition

ightharpoonup Example: $b_k = 1/k$.

 $r = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} b_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle k}$ $=\sum_{k=1}^{\infty}\frac{(k-1)P_k}{\langle k\rangle}=1-\frac{1-P_0}{\langle k\rangle}$

- ▶ Since *r* is always less than 1, no spreading can occur for this mechanism.
- Decay of b_k is too fast.
- ▶ Result is independent of degree distribution.

Contagion

Basic Contagior Models

Social Contagior Models

少 Q (~ 10 of 58

Basic Contagior Models

References

Contagion

少 Q (~ 7 of 58

Contagion Basic Contagion Models

References

- $R = \sum_{k=0}^{\infty} (k-1) \cdot \frac{kP_k}{\langle k \rangle} \cdot b > 1.$
 - ▶ A fraction (1-b) of edges do not transmit infection. Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
 - ► Aka bond percolation (⊞).

Contagion condition

▶ Case 2: If $b_k = b < 1$ then

▶ Resulting degree distribution P'_k:

$$P'_k = b^k \sum_{i=k}^{\infty} \binom{i}{k} (1-b)^{i-k} P_i.$$

Insert question from assignment 7 (⊞)

• We can show $F_{P'}(x) = F_P(bx + 1 - b)$.

Contagion condition

- **Example:** $b_k = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function (\boxplus) .
- Infection only occurs for nodes with low degree.
- ► Call these nodes vulnerables: they flip when only one of their friends flips.

 $r = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} b_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} H(\frac{1}{k} - \phi)$

$$=\sum_{k=1}^{\lfloor\frac{1}{\phi}\rfloor}\frac{(k-1)kP_k}{\langle k\rangle}\quad\text{where $\lfloor\cdot\rfloor$ means floor}.$$

Contagion Basic Contagior

Social Contagion Models

Contagion condition

- ▶ Cases 3, 4, 5, ...: Now allow b_k to depend on k
- ► Asymmetry: Transmission along an edge depends on node's degree at other end.
- ▶ Possibility: b_k increases with k... unlikely.
- ▶ Possibility: b_k is not monotonic in k... unlikely.
- ▶ Possibility: b_k decreases with k... hmmm.
- $b_k \setminus$ is a plausible representation of a simple kind of social contagion.
- The story: More well connected people are harder to influence.

少 Q (~ 8 of 58

Contagion

Social Contagion Models

Contagion condition

► The contagion condition:

$$r = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{(k-1)kP_k}{\langle k \rangle} > 1.$$

- ▶ As $\phi \to 1$, all nodes become resilient and $r \to 0$.
- ▶ As $\phi \rightarrow 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- ▶ Key: If we fix ϕ and then vary $\langle k \rangle$, we may see two phase transitions.
- Added to our standard giant component transition, we will see a cut off in spreading as nodes become more connected.

少 Q (~ 9 of 58

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971) [8, 9, 10]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978) [7]
- ► Herding models—Bikhchandani et al. (1992) [1, 2]
 - Social learning theory, Informational cascades,...

Contagion

Basic Contagion Models

Social Contagion Models Network version All-to-all network

References

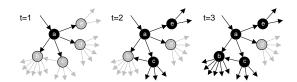
Threshold model on a network

Contagion

Basic Contagion

Social Contagior Models Network version

References



All nodes have threshold $\phi = 0.2$.

Contagion

Basic Contagion Models

Social Contagion

Network version All-to-all network

References

少 Q (~ 17 of 58

Threshold model on a network

Original work:

"A simple model of global cascades on random networks" D. J. Watts. Proc. Natl. Acad. Sci., 2002^[12]

- ▶ Mean field Granovetter model → network model
- Individuals now have a limited view of the world

Contagion

Basic Contagion Models

UNIVERSITY OF 少 Q № 14 of 58

Social Contagion

References

The most gullible

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ▶ The vulnerability condition for node i: $1/k_i \ge \phi_i$.
- ▶ Means # contacts $k_i \leq |1/\phi_i|$.

Cascades on random networks

Cascades occur only if size of vulnerable

System is robust-yet-fragile just below upper

- ▶ Key: For global cascades on random networks, must have a global component of vulnerables [12]
- For a uniform threshold ϕ , our contagion condition tells us when such a component exists:

$$r = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{(k-1)kP_k}{\langle k \rangle} > 1.$$

ഹ വ (~ 18 of 58

Threshold model on a network

- ▶ Interactions between individuals now represented by a network
- ► Network is sparse
- ▶ Individual *i* has *k_i* contacts
- ▶ Influence on each link is reciprocal and of unit weight
- **Each** individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- ▶ Individual i becomes active when number of active contacts $a_i \ge \phi_i k_i$
- Activation is permanent (SI)

Contagion

Basic Contagion Models

UNIVERSITY OF 少 Q (~ 15 of 58

Social Contagior Models

References

0.6 0.4 0.2

subcomponent > 0.

boundary [3, 4, 11]

(n.b., $z = \langle k \rangle$)

0.8

- ► Top curve: final fraction infected if successful.
- ► Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [12]

'Ignorance' facilitates spreading.

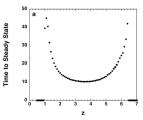
Contagion

Basic Contagior

Social Contagior Models

少 Q (~ 19 of 58

Cascades on random networks



- ► Time taken for cascade to spread through network. [12]
- Two phase transitions.

(n.b.,
$$z = \langle k \rangle$$
)

- ► Largest vulnerable component = critical mass.
- Now have endogenous mechanism for spreading from an individual to the critical mass and then beyond.

Contagion

Basic Contagior Models

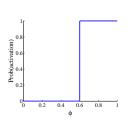
Social Contagior Models Network version All-to-all network

References

少 Q (~ 20 of 58

Social Contagion

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- ϕ_* = threshold of an individual.
- $f(\phi_*) = \text{distribution of}$ thresholds in a population.
- $F(\phi_*) = \text{cumulative}$ distribution = $\int_{\phi'_*=0}^{\phi_*} f(\phi'_*) d\phi'_*$
- ϕ_t = fraction of people 'rioting' at time step t.

Contagion

Basic Contagior Models

Social Contagior Models

All-to-all networks References

Contagion

Basic Contagior Models

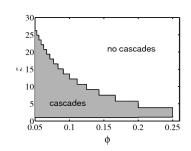
Social Contagior Models

All-to-all networks

References

少 Q (~ 24 of 58

Cascade window for random networks



(n.b., $z = \langle k \rangle$)

Outline of cascade window for random networks.

Contagion

Basic Contagion Models

Social Contagion

References

Social Sciences—Threshold models

 $\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$

▶ At time t + 1, fraction rioting = fraction with $\phi_* \leq \phi_t$.

ightharpoonup \Rightarrow Iterative maps of the unit interval [0, 1].

Contagion

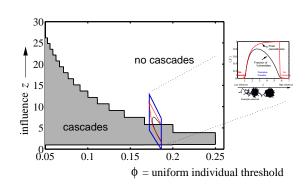
Basic Contagior

Social Contagior Models

All-to-all networks

References

Cascade window for random networks



Contagion

UNIVERSITY VERMONT 少 Q (~ 21 of 58

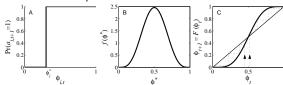
Social Contagior Models

UNIVERSITY VERMONT ჟ q № 22 of 58

References

Social Sciences—Threshold models

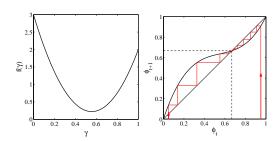
Action based on perceived behavior of others.



- ► Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong assumption!)
- ► This is a Critical mass model

少 Q (~ 26 of 58

Social Sciences—Threshold models



Example of single stable state model

Contagion

Basic Contagio Models

Social Contagion Models All-to-all networks

Threshold contagion on random networks

Contagion

Basic Contagion

Social Contagion

Theory References

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln}.
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}$.
- 3. The expected final size of any successful spread, S.
 - ▶ n.b., the distribution of *S* is almost always bimodal.

少 Q (~ 31 of 58

Contagion

Basic Contagion Models

Social Contagion Models
Network version
All-to-all network

References

Social Sciences—Threshold models

Implications for collective action theory:

- 1. Collective uniformity ⇒ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next:

- ► Connect mean-field model to network model.
- ▶ Single seed for network model: $1/N \rightarrow 0$.
- ► Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion

Basic Contagion Models

UNIVERSITY OF

少 Q (~ 27 of 58

Social Contagion Models All-to-all networks

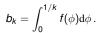
References

Threshold contagion on random networks

- First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- ▶ We'll find a similar result for the subset of nodes that are vulnerable.
- ▶ This is a node-based percolation problem.
- For a general monotonic threshold distribution $f(\phi)$, a degree k node is vulnerable with probability



Contagion

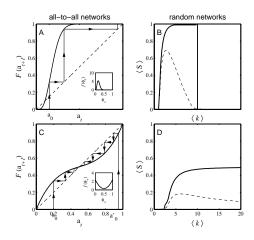
Theory

References

Basic Contagior Social Contagior Models

少 Q (~ 28 of 58

All-to-all versus random networks



Contagion

Basic Contagior Models

Social Contagior Models All-to-all networks

UNIVERSITY OF VERMONT •9 a (~ 29 of 58

References

Threshold contagion on random networks

 Everything now revolves around the modified generating function:

$$F_P^{(\text{vuln})}(x) = \sum_{k=0}^{\infty} b_k P_k x^k.$$

Generating function for friends-of-friends distribution is related in same way as before:

$$F_R^{(\text{vuln})}(x) = \frac{\frac{d}{dx} F_P^{(\text{vuln})}(x)}{\frac{d}{dx} F_P^{(\text{vuln})}(x)|_{x=1}}.$$

少 Q (~ 33 of 58

Threshold contagion on random networks

► Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_{R}^{(\text{vuln})}(1)}_{\substack{\text{first node} \\ \text{is not} \\ \text{vulnerable}}} + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

▶ Can now solve as before to find $S_{\text{vuln}} = 1 - F_{\pi}^{(\text{vuln})}(1)$.

Contagion

Basic Contagio Models

Social Contagio Models

Theory References

少 Q (~ 34 of 58

Expected size of spread

Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- ▶ Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node *i* to become active at time *t*:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = 2: enough of i's friends and friends-of-friends switched on at time t = 0 so that i's threshold is now
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Contagion

Basic Contagion

Social Contagion Models Network version All-to-all networks

Theory References

少 Q (~ 37 of 58

Threshold contagion on random networks

- Second goal: Find probability of triggering largest vulnerable component.
- ► Assumption is first node is randomly chosen.
- ▶ Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not:

$$F_{\pi}^{(\mathrm{trig})}(x) = x F_{P}\left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

$$F_{\rho}^{(\mathrm{vuln})}(x) = 1 - F_{R}^{v)}(1) + x F_{R}^{(\mathrm{vuln})}\left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

▶ Solve as before to find $P_{\text{trig}} = S_{\text{trig}} = 1 - F_{\pi}^{(\text{trig})}(1)$.

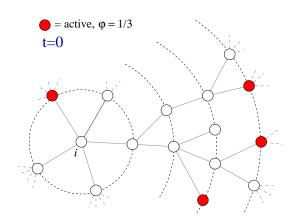
Contagion

Basic Contagion Models

Social Contagion Models Network v All-to-all r Theory

References

Expected size of spread



Contagion

Basic Contagion Models

Social Contagion Models
Network vers
All-to-all netw

References

Threshold contagion on random networks

- ▶ Third goal: Find expected fractional size of spread.
- ▶ Not obvious even for uniform threshold problem.
- ▶ Difficulty is in figuring out if and when nodes that need > 2 hits switch on.
- ▶ Problem solved for infinite seed case by Gleeson and Cahalane:
 - "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [6]
- Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008. [5]

Contagion

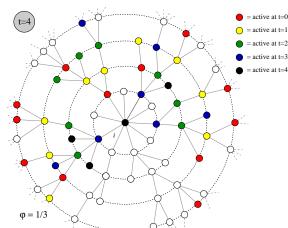
Basic Contagion Models

UNIVERSITY VERMONT 少 Q (~ 35 of 58

Social Contagior Models Network version All-to-all networks Theory

References

Expected size of spread



Contagion Basic Contagion

Social Contagion

Theory References

Expected size of spread

Notes:

- Calculations are possible nodes do not become inactive.
- ▶ Not just for threshold model—works for a wide range of contagion processes.
- ▶ We can analytically determine the entire time evolution, not just the final size.
- ▶ We can in fact determine \mathbf{Pr} (node of degree k switching on at time t).
- Asynchronous updating can be handled too.

Contagion

Basic Contagion Models

Social Contagior Models

Theory References

Expected size of spread

- For general t, we need to know the probability an edge coming into a degree k node at time t is active.
- ▶ Notation: call this probability θ_t .
- We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} \binom{k_i}{j} \theta_t^j (1 - \theta_t)^{k_i - j} b_{k_i j}.$$

▶ Average over all nodes to obtain expression for ϕ_{t+1} :

▶ So we need to compute θ_t ... massive excitement...

UNIVERSITY OF

Contagion

Basic Contagion Models

Social Contagio

References

Contagion

Basic Contagion

Social Contagion

Network version All-to-all networks

Theory References

少 Q (~ 43 of 58

Expected size of spread

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.

Contagion

Basic Contagion Models

UNIVERSITY OF

少 Q (~ 40 of 58

Social Contagion

References

Expected size of spread

First connect θ_0 to θ_1 :

 $\theta_1 = \phi_0 +$

$$(1 - \phi_0) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_0^{j} (1 - \theta_0)^{k-1-j} b_{kj}$$

- $\triangleright \frac{kP_k}{(k)} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- ▶ $\sum_{i=0}^{k-1}$ piece gives **Pr**(degree node *k* activates) of its neighbors k-1 incoming neighbors are active.
- $ightharpoonup \phi_0$ and $(1-\phi_0)$ terms account for state of node at time t = 0.
- ▶ See this all generalizes to give θ_{t+1} in terms of θ_t ...

Contagion

Theory

References

Basic Contagior

Social Contagior Models

Expected size of spread

- Notation:
 - $\phi_{k,t} = \mathbf{Pr}(\mathbf{a} \text{ degree } k \text{ node is active at time } t).$
- Notation: $b_{ki} = \mathbf{Pr}$ (a degree k node becomes active if *j* neighbors are active).
- Our starting point: $\phi_{k,0} = \phi_0$.
- $(k) \phi_0^j (1 \phi_0)^{k-j} = \mathbf{Pr} (j \text{ of a degree } k \text{ node's})$ neighbors were seeded at time t = 0).
- Probability a degree k node was a seed at t=0 is ϕ_0 (as above).
- ▶ Probability a degree k node was not a seed at t = 0is $(1 - \phi_0)$.
- Combining everything, we have:

$$\phi_{k,1} = \phi_0 + (1 - \phi_0) \sum_{i=0}^k \binom{k}{j} \phi_0^j (1 - \phi_0)^{k-j} b_{kj}.$$

Contagion

Basic Contagior Models

UNIVERSITY VERMONT

少 Q (~ 41 of 58

Social Contagior Models

∽ a ~ 42 of 58

Expected size of spread

Two pieces: edges first, and then nodes

1.
$$\theta_{t+1} = \underbrace{\phi_0}_{\text{exogenous}}$$

$$+(1-\phi_0)\underbrace{\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_t^{j}(1-\theta_t)^{k-1-j}b_{kj}}_{\text{social effects}}$$

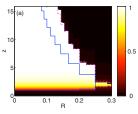
with $\theta_0 = \phi_0$.

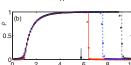
2. $\phi_{t+1} =$

exogenous
$$+(1-\phi_0)\sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1-\theta_t)^{k-j} b_{kj}.$$

•9 q (~ 45 of 58

Comparison between theory and simulations





From Gleeson and Cahalane [6]

- Pure random networks with simple threshold responses
- ► R = uniform threshold (our ϕ_*); z = averagedegree; $\rho = \phi$; $q = \theta$; $N = 10^5$.
- $\phi_0 = 10^{-3}, 0.5 \times 10^{-2},$ and 10^{-2} .
- Cascade window is for $\phi_0 = 10^{-2}$ case.
- Sensible expansion of cascade window as ϕ_0 increases.

Contagion

Basic Contagion Models

Social Contagion Models Theory

References

少 Q (~ 46 of 58

Basic Contagion Models

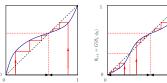
Social Contagion

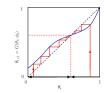
Contagion

Network v All-to-all n Theory

References

General fixed point story:





- ▶ Given $\theta_0(=\phi_0)$, θ_∞ will be the nearest stable fixed point, either above or below.
- n.b., adjacent fixed points must have opposite stability types.
- ▶ Important: Actual form of G depends on ϕ_0 .
- ▶ So choice of ϕ_0 dictates both G and starting point—can't start anywhere for a given G.

Contagion

Models

Theory

References

Basic Contagion

Social Contagion

少 Q (~ 49 of 58

Notes:

- ► Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \to 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- First: if self-starters are present, some activation is assured:

$$G(0;\phi_0)=\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}b_{k0}>0.$$

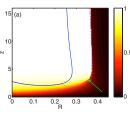
meaning $b_{k0} > 0$ for at least one value of k > 1.

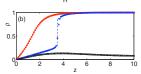
▶ If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs if

$$G'(0;\phi_0) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} (k-1)k P_k b_{k1} > 1.$$

Insert question from assignment 8 (⊞)

Comparison between theory and simulations





From Gleeson and Cahalane [6]

- Now allow thresholds to be distributed according to a Gaussian with mean R.
- R = 0.2, 0.362, and0.38; $\sigma = 0.2$.
- $\phi_0 = 0$ but some nodes have thresholds < 0 so effectively $\phi_0 > 0$.
- Now see a (nasty) discontinuous phase transition for low $\langle k \rangle$.

Contagion

Basic Contagion Models

Social Contagion Models
Network versic
All-to-all netwo

References

Contagion

Basic Contagior

Social Contagion Models

Network version All-to-all networks

References

Theory

Contagion Basic Contagion Models

UNIVERSITY VERMONT

◆) Q (> 47 of 58

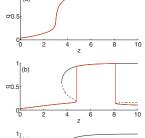
Social Contagion Models Network version All-to-all networks

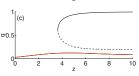
UNIVERSITY OF VERMONT

少 Q (~ 48 of 58

References

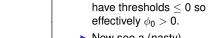
Comparison between theory and simulations





From Gleeson and Cahalane [6]

- Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.
- ▶ n.b.: 0 is not a fixed point here: $\theta_0 = 0$ always takes off.
- Top to bottom: R =0.35, 0.371, and 0.375.
- n.b.: higher values of θ_0 for (b) and (c) lead to higher fixed points of G.
- Saddle node bifurcations appear and merge (b and c).



Notes:

In words:

- ▶ If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- ▶ If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- ▶ If G has a stable fixed point at $\theta = 0$, and an unstable fixed point for some $0 < \theta_* < 1$, then for $\theta_0 > \theta_*$, spreading takes off.
- ▶ Tricky point: *G* depends on ϕ_0 , so as we change ϕ_0 , we also change G.

Spreadarama

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.
- ▶ But we can usefully think of the vulnerable component as activating at time t = 0 because order doesn't matter.
- ▶ Rebuild ϕ_t and θ_t expressions...

Contagion

Basic Contagion Models

Social Contagion Theory

References

少 Q (~ 52 of 58

Basic Contagion Models

Social Contagion

References

Contagion

References I

- [1] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ., 100:992-1026, 1992.
- S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)
- J. M. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in design systems. Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

Contagion

Basic Contagion Social Contagior Models

All-to-all networks

References

少 Q (~ 55 of 58

Contagion

Basic Contagion Models

Social Contagion

References

Spreadarama

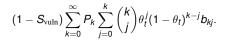
Two pieces modified for single seed:

1. $\theta_{t+1} = \theta_{\text{vuln}} +$

$$(1 - \theta_{\text{vuln}}) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_t^{\ j} (1 - \theta_t)^{k-1-j} b_{kj}$$

with $\theta_0 = \theta_{\text{vuln}} = \mathbf{Pr}$ an edge leads to the giant vulnerable component (if it exists).

2. $\phi_{t+1} = S_{\text{vuln}} +$



少 Q (~ 53 of 58

References II

J. M. Carlson and J. Dovle. Highly optimized tolerance: Robustness and design in complex systems. Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

J. P. Gleeson. Cascades on correlated and modular random networks. Phys. Rev. E, 77:046117, 2008. pdf (⊞)

J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random

Phys. Rev. E, 75:056103, 2007. pdf (⊞)

M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf (⊞)

Contagion

Basic Contagior

Social Contagior Models Network version All-to-all networks

References

Time-dependent solutions

Synchronous update

▶ Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ▶ Update nodes with probability α .
- ▶ As $\alpha \rightarrow 0$, updates become effectively independent.
- ▶ Now can talk about $\phi(t)$ and $\theta(t)$.
- More on this later...

Basic Contagion Models

Contagion

Social Contagion Models Network version All-to-all networks Theory

References

J. Math. Sociol., 1:143-186, 1971.

T. C. Schelling.

References III

T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf (⊞)

[10] T. C. Schelling.

Micromotives and Macrobehavior. Norton, New York, 1978.

Dynamic models of segregation.

Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

[11] D. Sornette.

少 Q (~ 54 of 58

References IV

Contagion

Basic Contagion Models

Social Contagion Models Network version All-to-all networks Theory

References

[12] D. J. Watts.

A simple model of global cascades on random networks.

Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf (⊞)

•> < ○ 58 of 58